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ABSTRACT

Image-based rendering is a powerful new approach for generating
real-time photorealistic computer graphics. It can provide convinc-
ing animationswithout an explicit geometric representation. We use
the“ plenoptic function” of Adelson and Bergento provideaconcise
problem statement for image-based rendering paradigms, such as
morphing and view interpolation. The plenoptic functionisaparam-
eterized function for describing everything that is visible from a
given point in space. We present an image-based rendering system
based on sampling, reconstructing, and resampling the plenoptic
function. In addition, weintroduce anovel visible surface algorithm
and a geometric invariant for cylindrical projectionsthat is equiva
lent to the epipolar constraint defined for planar projections.

CR Descriptors: 1.3.3[Computer Graphics]: Picture/lmage Gen-
eration— display algorithms, viewing algorithms; 1.3.7 [Computer
Graphics]: Three-Dimensional Graphicsand Realism—hidden line/
surface removal; 1.4.3 [Image Processing]: Enhancement— regis-
tration; 1.4.7 [Image Processing]: Feature Measurement—
projections; 1.4.8 [Image Processing]: Scene Analysis.

1. INTRODUCTION

Inrecent yearsthere hasbeen increased interest, withinthe computer
graphics community, in image-based rendering systems. These sys-
tems are fundamentally different from traditional geometry-based
rendering systems. |nimage-based systemsthe underlying datarep-
resentation (i.e model) is composed of a set of photometric
observations, whereas geometry-based systems use either mathe-
matical descriptions of the boundary regions separating scene
elements(B-rep) or discretely sampl ed spacefunctions(volumetric).

The evolution of image-based rendering systems can be traced
through at | east threedifferent researchfields. |n photogrammetry the
initial problems of camera calibration, two-dimensional image reg-
istration, and photometrics have progressed toward the determina-
tion of three-dimensional models. Likewise, in computer vision,
problems such asrobot navigation, image discrimination, and image
understanding have naturally led in the same direction. In computer
graphics, the progression toward image-based rendering systems
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wasinitially motivated by the desireto increasethe visual realism of
the approximate geometric descriptions by mapping images onto
their surface (texture mapping) [7], [12]. Next, images were used to
approximate global illumination effects (environment mapping) [5],
and, most recently, we have seen systems where the images them-
selvesconstitutethe significant aspectsof the scene’ sdescription[8].

Another reason for considering image-based rendering systems
in computer graphicsisthat acquisition of realistic surface modelsis
adifficult problem. While geometry-based rendering technol ogy has
made significant strides towards achieving photorealism, creating
accuratemodelsisstill nearly asdifficult asitwastenyearsago. Tech-
nological advances in three-dimensional scanning provide some
promisein model building. However, they also verify our worst sus-
picions— the geometry of the real-world is exceedingly complex.
Ironically, the primary subjective measure of image quality used by
proponents of geometric rendering systemsisthe degree with which
the resulting images are indistinguishable from photographs.

Oneliability of image-based rendering systemsisthelack of a
consistent framework within which to judge the validity of the
results. Fundamentally, this arises from the absence of aclear prob-
lem definition. Geometry-based rendering, on the other hand, has a
solid foundation; it usesanal ytic and projective geometry to describe
the world's shape and physics to describe the world’s surface prop-
erties and the light’s interaction with those surfaces.

This paper presents a consistent framework for the evaluation
of image-based rendering systems, and gives a concise problem def-
inition. We then evaluate previous image-based rendering methods
withinthisnew framework. Finally, we present our ownimage-based
rendering methodol ogy and results from our prototype implementa-
tion.

2. THE PLENOPTIC FUNCTION

Adelson and Bergen [1] assigned the name plenoptic function (from
thelatin root plenus, meaning complete or full, and optic pertaining
tovision) to the pencil of raysvisiblefrom any point in space, at any
time, and over any range of wavelengths. They used thisfunction to
develop ataxonomy for evaluating models of low-level vision. The
plenoptic function describesall of theradiant energy that can be per-
ceived from the point of view of the observer rather than the point of
view of the source. They postulate

“ ... all thebasic visual measurements can be considered
tocharacterizelocal change along oneor two dimensions
of a single function that describes the structure of the
information in the light impinging on an observer.”

Adelson and Bergen further formalized thisfunctional description by
providing a parameter space over which the plenoptic function is
valid, as shown in Figure 1. Imagine an idealized eye which we are
freetoplaceat any pointinspace(Vy, W, V). Fromtherewecan select
any of theviewableraysby choosing an azimuth and elevation angle
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(0,0) aswell asaband of wavel engths, A, which wewishto consider.

FIGURE 1. The plenoptic function describesall of the
image information visible from a particular viewing
position.

In the case of adynamic scene, we can additionally choose thetime,
t, at which we wish to evaluate the function. This resultsin the fol-
lowing form for the plenoptic function:

p = P(0. 0, A V,. V), V,. 1) €

In computer graphics terminology, the plenoptic function
describesthe set of all possible environment mapsfor agiven scene.
For the purposes of visualization, one can consider the plenoptic
function as a scene representation. In order to generate aview from
agiven point in aparticular direction we would need to merely plug
in appropriate valuesfor (Vy, W, V) and select from arange of (8,0)
for some constant t.

We define acompl ete sample of the plenoptic function asafull
spherical map for a given viewpoint and time value, and an incom-
plete sample as some solid angle subset of this spherical map.

Within thisframework we can state the following problem def-
inition for image-based rendering. Given a set of discrete samples
(complete or incomplete) from the plenoptic function, the goal of
image-based rendering isto generate a continuous representation of
that function. This problem statement providesfor many avenues of
exploration, such as how to optimally select sample points and how
to best reconstruct a continuous function from these samples.

3. PREVIOUS WORK

3.1 Movie-Maps

The Movie-Map system by Lippman [17] is one of the earliest
attemptsat constructing animage-based rendering system. InMovie-
Maps, incompl ete plenoptic samples are stored on interactive video
laser disks. They are accessed randomly, primarily by a change in
viewpoint; however, the system can al so accommodate panning, tilt-
ing, or zooming about afixed viewing position. We can characterize
Lippman’s plenoptic reconstruction technique as a nearest-nei ghbor
interpolation because, when given a set of input parameters (Vy, Vi,
V,, 0, ¢, t), the Movie-Map system can select the nearest partial sam-
ple. The Movie-Map form of image-based rendering can also be
interpreted asatabl e-based eval uation of theplenopticfunction. This
interpretation reflectsthe database structure common to most image-
based systems.

3.2 Image Morphing

Image morphing isavery popular image-based rendering technique
[4], [28]. Generally, morphing is considered to occur between two
images. We can think of these images as endpoints along some path
through time and/or space. In thisinterpretation, morphing becomes
amethod for reconstructing partial samples of the continuous ple-
noptic function along this path. In addition to photometric data,
morphing uses additional information describing the image flow
field. Thisinformationisusually hand crafted by an animator. At first

glance, this type of augmentation might seem to place it outside of
theplenopticfunction’sdomain. However, several authorsinthefield
of computer vision have shown that this type of image flow infor-
mation is equivalent to changes in the local intensity due to
infinitesmal perturbations of the plenoptic function’s independent
variables[20], [13]. Thislocal derivative behavior can be related to
theintensity gradient viaapplications of the chain rule. In fact, mor-
phing makes an even stronger assumption that the flow information
is constant along the entire path, thus amounting to alocally linear
approximation. Also, a blending function is often used to combine
both reference images after being partialy flowed from their initial
configurations to a given point on the path. This blending function
isusually some linear combination of the two images based on what
percentage of the path’s length has been traversed. Thus, morphing
is a plenoptic reconstruction method which interpolates between
samples and useslocal derivative information to construct approxi-
mations.

3.3 View Interpolation

Chen's and Williams' [8] view interpolation employs incomplete
plenoptic samples and image flow fields to reconstruct arbitrary
viewpoints with some constraints on gaze angle. The reconstruction
process uses information about the local neighborhood of a sample.
Chenand Williams point out and suggest asol utionfor one of thekey
problems of image-based rendering— determining the visible sur-
faces. Chen and Williams chose to presort the quadtree compressed
flow-field in a back-to-front order according to its (geometric) z-
value. This approach works well when all of the partial sample
images share a common gaze direction, and the synthesized view-
points are restricted to stay within 90 degrees of this gaze angle.

Animageflow field aloneallowsfor many ambiguousvisibility
solutions, unlesswe restrict ourselvesto flow fields that do not fold,
such as rubber-sheet local spline warps or thin-plate global spline
warps. This problem must be considered in any general-purpose
image-based rendering system, andideally, it should be donewithout
transporting the image into the geometric-rendering domain.

Establishing flow fieldsfor aview interpol ation system can also
be problematic. Chen and Williams used pre-rendered synthetic
images to determine flow fields from the z-values. In general, accu-
rate flow field information between two samples can only be estab-
lishedfor pointsthat aremutually visibleto both samples. Thispoints
out a shortcoming in the use of partial samples, because reference
images seldom have a 100% overlap.

Like morphing, view interpolation uses photometric informa-
tionaswell aslocal derivativeinformation initsreconstruction pro-
cess. This locally linear approximation is nicely exploited to
approximate perspective depth effects, and Chen and Williams show
ittobecorrect for lateral motionsrelativeto the gaze direction. View
interpolation, however, addsanonlinearity by allowing thevisibility
processto determinetheblending function between referenceframes
in aclosest-take-all (ak.a winner-take-all) fashion.

3.4 Laveau and Faugeras

Laveau and Faugeras [15] have taken advantage of the fact that the
epipolar geometries between images restrict the image flow field in
such away that it can be parameterized by a single disparity value
and afundamental matrix which representsthe epipolar relationship.
They also provide atwo-dimensional raytracing-like solution to the
visibility problem which does not require an underlying geometric
description. Their method does, however, require establishing cor-
respondences for each image point along theray’s path. The Laveau
and Faugeras system also uses partial plenoptic samples, and results
are shown only for overlapping regions between views.

Laveau and Faugeras al so discuss the combination of informa-
tionfrom several viewsbut primarily intermsof resolving visibility.
By relating the reference views and the desired views by the homog-
enous transformations between their projections, Laveau and
Faugeras can compute exact perspective depth solutions. Therecon-
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struction process again takes advantage of both image dataand local
derivative information to reconstruct the plenoptic function.

3.5 Regan and Pose

Regan and Pose [23] describe a hybrid system in which plenoptic
samplesare generated on the fly by ageometry-based rendering sys-
tem at available rendering rates, while interactive rendering is
provided by theimage-based subsystem. At any instant, auser inter-
acts with a single plenoptic sample. This allows the user to make
unconstrained changes in the gaze angle about the sample point.
Regan and Poseal so discusslocal reconstruction approximationsdue
to changesin the viewing position. These approximations amount to
treating the objects in the scene as being placed at infinity, resulting
inalossof thekinetic depth effect. These partial updates can becom-
bined with the approximation values.

4. PLENOPTIC MODELING

Weclaimthat all image-based rendering approaches can be cast
as attempts to reconstruct the plenoptic function from a sample set
of that function. We believe that there are significant insights to be
gleaned from this characterization. In this section, we propose our
prototype system in light of this plenoptic function framework.

We call our image-based rendering approach Plenoptic Model-
ing. Likeother image-based rendering systems, the scenedescription
isgiven by aseries of referenceimages. These referenceimagesare
subsequently warped and combined to form representations of the
scene from arbitrary viewpoints. The warping function isdefined by
image flow field information that can either be supplied as an input
or derived from the reference images.

Our discussion of the plenoptic modeling image-based render-
ing system is broken down into four sections. First, we discuss the
representation of the plenoptic samples. Next, wediscusstheir acqui-
sition. The third section covers the determination of image flow
fields, if required. And, finally, we describe how to reconstruct the
plenoptic function from these sample images.

4.1 Plenoptic Sample Representation

Themost natural surfacefor projecting acomplete plenoptic sample
isa unit sphere centered about the viewing position. One difficulty
of spherical projections, however, isthelack of arepresentation that
is suitable for storage on acomputer. Thisis particularly difficult if
auniform (i.e. equal area) discrete sampling is required. This diffi-
culty is reflected in the various distortions which arise in planar
projections of world mapsin cartography. Those uniform mappings
which do exist aregenerally ill-suited for systematic accessasadata
structure. Furthermore, thosewhich do mapto aplanewith consistent
neighborhood relationships are generally quite distorted and, there-
fore, non-uniform.

A setof six planar projectionsintheform of acubehasbeen sug-
gested by Greene[10] as an efficient representation for environment
maps. Whilethisrepresentation can be easily stored and accessed by
acomputer, it provides significant problems relating to acquisition,
alignment, and regi stration when used with real, non-computer-gen-
erated images. The orthogonal orientation of the cube facesrequires
precise camera positioning. The wide, 90 degree field-of-view of
eachfacerequiresexpensivelenssystemsto avoid optical distortion.
Also, the planar mapping does not represent auniform sampling, but
instead, isconsiderably oversampled in the edgesand corners. How-
ever, the greatest difficulty of a cube-oriented planar projection set
isdescribing the behavior of theimage flow fields across the bound-
aries between faces and at corners. Thisis not an issue when the six
planar projectionsare used solely asan environment map, but it adds
a considerable overhead when it is used for image analysis.

We have chosen to use acylindrical projection as the plenoptic
sample representation. One advantage of a cylinder isthat it can be
easily unrolled into a simple planar map. The surface is without
boundaries in the azimuth direction, which simplifies correspon-
dence searches required to establish image flow fields. One short-

coming of aprojection on afinitecylindrical surfaceisthe boundary
conditionsintroduced at the top and bottom. We have chosen not to
employ end caps on our projections, which has the problem of lim-
iting the vertical field of view within the environment.

4.2 Acquiring Cylindrical Projections
A significant advantage of a cylindrical projection is the simplicity
of acquisition. The only acquisition equipment required is a video
cameraand atripod capable of continuous panning. Ideally, the cam-
era spanning motion would be around the exact optical center of the
camera. Inpractice, inascenewhereall objectsarerelatively far from
the tripod's rotational center, a slight misalignment offset can be
tolerated.

Any two planar perspective projections of ascenewhich share
acommon viewpoint arerelated by atwo-dimensional homogenous
transform:

u 8y1 8y g3 |
V| T |dpp dpp 8nally
w 8y Ag, agy (1 @)
ol oV
w w

where x and y represent the pixel coordinates of an image |, and X'
andy’ aretheir corresponding coordinatesin asecondimagel’. This
well known result has been reported by several authors [12], [28],
[22]. Theimagesresulting from typical cameramotions, such aspan,
tilt, roll, and zoom, can al be related in this fashion. When creating
acylindrical projection, wewill only need to consider panning cam-
era motions. For convenience we define the camera’s local
coordinate system such that the panning takes place entirely inthex-
zplane.

In order to reproject an individual imageinto acylindrical pro-
jection, we must first determine amodel for the camera’s projection
or, equivalently, the appropriate homogenoustransforms. Many dif-
ferent techni ques have been devel oped for inferring the homogenous
transformation between images sharing common centers of projec-
tion. The most common technique [12] involves establishing four
corresponding points across each image pair. The resulting trans-
forms provide amapping of pixelsfrom the planar projection of the
first image to the planar projection of the second. Several images
couldbecompositedinthisfashion by first determining thetransform
which maps the Nth image to image N-1. These transforms can be
catenated to form a mapping of each image to the plane of thefirst.
Thisapproach, ineffect, avoidsdirect determination of anentirecam-
eramodel by performing all mappingsbetween different instances of
the same camera. Other techniquesfor deriving these homogeneous
transformations without specific point correspondences have also
been described [22], [25].

Theset of homogenoustransforms, H;, can be decomposedinto
two parts which will alow for arbitrary reprojections in a manner
similar to [11]. These two parts include an intrinsic transform, S,
which is determined entirely by camera properties, and an extrinsic
transform, R;, which is determined by the rotation around the cam-
era’s center of projection:

0 = Hx = S7IR;Sx )

This decomposition decouples the projection and rotational compo-
nents of the homogeneous transform. By an appropriate choice of
coordinate systems and by limiting the camera’s motion to panning,
the extrinsic transform component is constrained to a function of a
single parameter rotation matrix describing the pan.

cos® 0 sind
Ry=1 0 10 (4)
—sin® 0 coso
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Sincetheintrinsiccomponent’ spropertiesareinvariant over all of the
images, the decomposition problem can be broken into two parts: the
determination of the extrinsic rotation component, R;, followed by
the determination of an intrinsic projection component, S. The first
step in our method determines estimates for the extrinsic panning
angle between each image pair of the panning sequence. This is
accomplished by using a linear approximation to an infinitesimal
rotation by the angle 6 . Thislinear approximation results from sub-
stituting 1 + O(62) for the cosine terms and 6 + O(83) for the sine
termsof the rotation matrix. Thisinfinitesimal perturbation hasbeen
shown by [14] to reduce to the following approximate equations:

B(x—Cy)?2
f
6(x-C,) (y-C,)
f

X = x-fo- +0(6?)

)
+0(0?)

y':y_

wherefistheapparent focal length of the camerameasured in pixels,
and (C,, C,) isthe pixel coordinate of the intersection of the optical
axiswith theimage plane. (C,, C,) isinitially estimated to be at the
center pixel of theimageplane. A better estimatefor (Cy, Cy) isfound
during the intrinsic matrix solution.

These equations show that small panning rotations can be
approximated by translations for pixels near the image’s center. We
requirethat some part of each imagein the sequence must bevisible
in the successive image, and that some part of the final image must
be visible in the first image of the sequence. The first stage of the
cylindrical registration process attempts to register the image set by
computing the optimal translation inx which maximizesthenormal-
ized correlation within aregion about the center third of the screen.
Thisisfirst computed at apixel resolution, then refined on a0.1 sub-
pixel grid, using aCatmull-Rom interpolation splineto compute sub-
pixel intensities. Oncethesetranslations, tj, are computed, Newton's
method isused to convert themto estimatesof rotation anglesandthe
focal length, using the following equation:

N t

I
2n izlatan( f) =0 (6)
where N isthe number of images comprising the sequence. Thisusu-
ally convergesin asfew asfiveiterations, depending on the original
estimatefor f. Thisfirst phase determines an estimate for therelative
rotational angles between each of the images (our extrinsic param-
eters) and theinitial focal length estimate measured in pixels (one of

the intrinsic parameters).

The second stage of the registration process determinesthe S,
or structural matrix, which describes various cameraproperties such
asthetilt and roll angleswhich are assumed to remain constant over
the group of images. The following model is used:

S=QQFP ™
where P is the projection matrix:

l1o0-C,
P=lop-—C, )
00 f

and(Cy, C,) istheestimated center of theviewplane asdescribed pre-
vioudly, o is a skew parameter representing the deviation of the
sampling grid from a rectilinear grid, p determines the sampling
grid’s aspect ratio, and f is the focal length in pixels as determined
from the first alignment stage.

Theremaining terms, Q, and ., describe the combined effects
of camera orientation and deviations of the viewplane's orientation
from perpendicular to the optical axis. Ideally, the viewplane would
be normal to the optical axis, but manufacturing tolerances allow
these numbersto vary dightly [27].

1 0 0
Q. = |0 cose, —sno, 9

0 snw, Cosm,

Cos®, —sin(nZ 0
Q, = |snw, cosw, 0 (10)
0 0 1

In addition, the m, term is indistinguishable from the camera’s rall
angle and, thus, represents both theimage sensor’sand the camera's
rotation. Likewise, o,, iscombinedwithanimplicit parameter, ¢, that
representstherelativetilt of the camera soptical axisout of the pan-
ning plane. If ¢ is zero, the images are al tangent to a cylinder and
for anonzero ¢ the projections are tangent to a cone.

Thisgivessix unknown parameters, (C,, Cy G, p, Oy, ), tobe
determined in the second stage of the registration process. Notice
that, when combined with the 6; and f parameters determined in the
first stage, we have atotal of eight parametersfor each image, which
is consistent with the number of free parametersin ageneral homo-
geneous matrix.

The structural matrix, S, is determined by minimizing the fol-
lowing error function:

error(C,, C,, 6, p, 0, ®,) = 21—C0rrelation(li,l, SR, SI)  (11)
i=1

wherel;_; and |; represent the center third of the pixels from images

i-1 and i respectively. Using Powell’s multivariable minimization

method [23] with the following initial valuesfor our six parameters,

c = image width c = image height
X 2 y 2 (12)
c=0 p=1 o, =0 o, =0

the solution typically convergesin about six iterations. At this point
wewill have anew estimate for (C,, Cy) which can be fed back into
stage one, and the entire process can be repeated.
Theregistration processresultsin asingle cameramodel, S(C,,
.G, p, Wy, 0, T), and aset of therelativerotations, 6;, between each
of the sampled images. Using these parameters, we can compose
mapping functions from any image in the sequence to any other
image as follows:

"= g
I'h=3S Ryi+1Ryi+zRyi+3"'Rij|i (23

We can aso reproject images onto arbitrary surfaces by modifying
S. Since each image pixel determines the equation of aray from the
center-of -projection, the reprojection process merely involvesinter-
secting these rays with the projection manifold.

4.3 Determining Image Flow Fields

Given two or more cylindrical projections from different positions
within a static scene, we can determine the rel ative positions of cen-
ters-of-projection and establish geometric constraints across all
potential reprojections. These positions can only be computed to a
scalefactor. Anintuitiveargument for thisisthat from aset of images
aone, one cannot determine if the observer islooking at amodel or
a full-sized scene. This implies that at least one measurement is
required to establish a scale factor. The measurement may be taken
either between featuresthat aremutually visiblewithinimages, or the
distance between the acquired image’s camerapositions can be used.
Both techniques have been used with little difference in results.

Toestablishtherelativerel ationshipsbetween any pair of cylin-
drical projections, theuser specifiesaset of corresponding pointsthat
are visible from both views. These points can be treated as raysin
space with the following form:
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cos (¢, —6)
D,6,v) = |sn(¢,-0)| (14

ka(Cva—v)

whereC, = (A, A, A,) istheunknown positionof thecylinder’s
center of projection, cga istherotational offset which alignsthe angu-
lar orientation of thecylinderstoacommon frame, k, isascalefactor
which determinesthe vertical field-of-view, and C,, isthe scanline
where the center of projection would project onto tte scene (i.e. the
line of zero elevation, like the equator of a spherical map).

A pair of tiepoints, one from each image, establishes a pair of
rayswhichideally intersect at the point in spaceidentified by thetie-
point. Ingeneral, however, theserays are skewed. Therefore, weuse
the point that issimultaneously closest to both rays as an estimate of
the point’s position, p, as determined by the following derivation.
Xa ™ %p

5 (15)

where (6,,v,) and (6,,v,) arethetiepoint coordinateson cylin-

dersA ana B respectively. The two points, X, and %, , are given by

X, = Ca+tD,(6,,V,)

%,(6,V) = C,+1Dy(6, V)

PO, V,, 0, V) =

aa

o (16)
X, = Cp+sDy(6,, vp)
where
_ Det[C,—Cy, Dy(By, Vi), Da(8,, v,) X D(By, v, |
D,6,,Vv,) xDy®,,v,)|?
‘ a\Ya Ya b’ 'b ‘ (17)

_ Det[Cy—C,, Dy(6, v,), Da(6,, v,) x Dy(6p, vp) |
D4(8,, V,) X D6y, vp)[?

This alows us to pose the problem of finding a cylinder’s position
as aminimization problem. For each pair of cylinders we have two
setsof six unknowns, [(AXA,,AZ,q)a,ka,Cva), (BX,Bsz,q)b,kb, Cwl-In
general, we have good estimates for the k and C,, terms, since these
values are found by the registration phase. The position of the cyl-
inders is determined by minimizing the distance between these
skewed rays. Weal so chooseto assign apenalty for shrinking thever-
tical height of the cylinder in order to bring points closer together.
This penalty could be eliminated by accepting either thek or C,, val-
ues given by the registration.

Wehavetested thisapproach using from 12 to 500tiepoints, and
have found that it convergesto asolution in asfew asten iterations
of Powell’smethod. Sinceno correlation stepisrequired, thisprocess
is considerably faster than the minimization step required to deter-
mine the structural matrix, S.

The use of acylindrical projection introduces significant geo-
metric constraints on where a point viewed in one projection might
appear in asecond. We can capitalize on these restrictions when we
wishtoautomatically identify corresponding pointsacrosscylinders.
While aninitial set of 100 to 500 tiepoints might be established by
hand, this process is far too tedious to establish a mapping for the
entire cylinder. Next, we present ageometric constraint for cylindri-
cal projectionsthat determinesthe possible positionsof apoint given
itspositionin someother cylinder. Thisconstraint playsthesamerole
that the epipolar geometries [18], [9], used in the computer vision
community for depth-from-stereo compuitations, play for planar pro-
jections.

First, wewill present an intuitive argument for the existence of
suchaninvariant. Consider yourself at the center of acylindrical pro-
jection. Every point on the cylinder around you correspondsto aray
in space as given by the cylindrical epipolar geometry equation.
When one of the rays is observed from a second cylinder, its path
projectsto acurvewhich appearsto begin at the point corresponding
totheorigin of thefirst cylinder, and it isconstrained to passthrough

the point’s image on the second cylinder.

This same argument could obviously have been madefor apla-
nar projection. And, sincetwo pointsareidentified (thevirtual image
of the camerain the second projection along with the corresponding
point) and, because a planar projection preserve lines, a unique, so
called epipolar lineisdefined. Thisisthe basisfor an epipolar geom-
etry, whichidentifiespairsof linesintwo planar projectionssuch that
if apoint fallsupon onelineinthefirstimage, itisconstrained tofall
on the corresponding linein the second image. The existence of this
invariant reducesthe search for corresponding pointsfrom an O(NZ)
problem to O(N).

Cylindrical projections, however, do not preservelines. In gen-
eral, linesmap to quadratic parametric curves on the surface of acyl-
inder. Surprisingly, we can completely specify the form of the curve
with no more information than was needed in the planar case.

The paths of these curves are uniquely determined sinusoids.
This cylindrical epipolar geometry is established by the following
equation.

_ N,cos(¢,—6) + Nysin (6,—90)
v() = Nk + Cva (18)
where
N = (Cy,—C,) x Dy, V,) (29)

Thisformulagivesaconciseexpressionfor the curveformed by
the projection of aray acrossthe surface of acylinder, wheretheray
is specified by its position on some other cylinder.

This cylindrical epipolar relationship can be used to establish
image flow fields using standard computer vision methods. We have
used correlation methods [9], a simulated annealing-like relaxation
method [ 3], and themethod of differences[20] to computestereodis-
parities between cylinder pairs. Each method has its strengths and
weaknesses. We refer the reader to the referencesfor further details.

4.4 Plenoptic Function Reconstruction

Our image-based rendering system takes as input cylindrically pro-
jected panoramic reference images along with scalar disparity
images relating each cylinder pair. Thisinformation is used to auto-
matically generate image warps that map reference images to
arbitrary cylindrical or planar views that are capable of describing
both occlusion and perspective effects.

FIGURE 2. Diagram showing thetransfer of the known
disparity values between cylinders A and B to a new
viewing position V.

We begin with a description of cylindrical-to-cylindrical map-
pings. Each angular disparity value, o, of the disparity images, can
be readily converted into an image flow vector field,
(6 + o, v(6 + or)) using the epipolar relation given by Equation 18
for each position onthecylinder, (6, v). We cantransfer disparity val-
ues from the known cylindrical pair to anew cylindrical projection
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inanarbitrary position, asin Figure 2, using thefollowing equations.
a= (B,—V,)cos(dp,—6) + (By—Vy)sin(q)A—e)
b= (B,—A,) cos(9,—6) — (B, —A,) Sin (9, —6)
¢ = (V,=A)cos(9,—0) = (V,—A) Sin (9, —6) (20)

cot (B(®, V) = w

By precomputing [cos (¢;—9), sin (0;=9)] for each column of
the cylindrical referencei |mage and sxorlng cot (o) in place of the
disparity image, thistransfer operation can be computed at interac-
tive speeds.

Typically, once the disparity images have been transferred to
their target, the cylindrical projection would bereprojected asapla-
nar image for viewing. This reprojection can be combined with the
disparity transfer togiveasingleimagewarpthat performsboth oper-
ations. To accomplish this, anew intermediate quantity, 5, called the
generalized angular disparity is defined as follows:

d = (B,—A,)cos(0,—0) + (By—Ay)sin(q)A—G)

1 (22)
d +bcot (o8, v))
Thisscalar function isthe cylindrical equivalent to the classical ste-

reodisparity. Finally, acompositeimagewarpfromagivenreference
image to any arbitrary planar projection can be defined as

5(0,v) =

r-D,(O,v)+k 6(0,Vv
qo.) = DAV TEE. Y
n-D,(6,v) +Kk 3(6,V)
22
o) = 5 DA(6, V) +k3(6, v) (22)
YOV = 55 @) K, 50, v)
where
Fr=vxo0 k. =1 (Cy=V)
s=0x0 ke =8 (C,—V) (23)

n=axv k,=n-(C,-V)
andthevectorsp, 0, 0 and v aredefined by thedesired view asshown

in Figure 3.

FIGURE 3. The center-of-projection, p, avector to the
origin, o, and two spanning vectors (o and v) uniquely
determine the planar projection.

In the case where §(6, v) = constant, the image warp defined by
Equation 22, reducesto asimplereprojection of thecylindrical image
to a desired planar view. The perturbation introduced by allowing
8(6, v) tovary over theimageallowsarbitrary shape and occlusions
to be represented.

Potentially, both the cylinder transfer and image warping
approachesare many-to-one mappings. For thisreason wemust con-
sider visibility. Thefollowing simple algorithm can be used to deter-
mine an enumeration of the cylindrical mesh which guarantees a
proper back-to-front ordering, (See Appendix). We project the
desired viewing position onto the reference cylinder being warped
and partition the cylinder into four toroidal sheets. The sheet bound-
aries are defined by the © and v coordinates of two points, as shown
in Figure 4. One point is defined by the intersection of the cylinder

with the vector from the origin through the eye's position. The other
is the intersection with the vector from the eye through the origin.
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FIGURE 4. A back-to-front ordering of theimage flow field
can be established by projecting the eye’s position onto the
cylinder’s surface and dividing it into four toroidal sheets.

Next, we enumerate each sheet such that the projected image of
thedesired viewpoint isthelast point drawn. Thissimplepartitioning
and enumeration providesaback-to-front ordering for useby apaint-
er’s style rendering algorithm. This hidden-surface algorithm is a
generalization of Anderson’s [2] visible line algorithm to arbitrary
projected grid surfaces. Additional details can be found in [21].

At this point, the plenoptic samples can be warped to their new
position according totheimageflow field. Ingeneral, these new pixel
positionslie on anirregular grid, thus requiring some sort of recon-
struction and resampling. We use a forward-mapping [28] recon-
struction approachinthespirit of [27] inour prototype. Thisinvolves
computing the projected kernel’s size based on the current disparity
value and the derivatives along the epipolar curves.

While the visibility method properly handles mesh folds, we
still must consider thetears (or excessive stretching) produced by the
exposure of previously occluded image regions. In view interpola-
tion[8] asimple“distinguished color” heuristic isused based on the
screen space projection of the neighboring pixel on the same scan-
line. This approach approximates stretching for small regions of
occlusion, where the occluder still abuts the occluded region. And,
for large exposed occluded regions, it tends to interpolate between
the boundaries of the occluded region. These exposure events can be
handled more robustly by combining, on a pixel-by-pixel basis, the
results of multiple image warps according to the smallest-sized
reconstruction kernel.

5. RESULTS

We collected aseriesof imagesusing avideo camcorder onaleveled
tripodinthefront yard of oneof theauthor’shome. Accurateleveling
isnot strictly necessary for the method to work. When the datawere
collected, no attempt was made to pan the cameraat auniform angu-
lar velocity. The autofocus and autoiris features of the camerawere
disabled, in order to maintain aconstant focal length during the col-
lection process. The frames were then digitized at a rate of
approximately 5 frames per second to aresol ution of 320 by 240 pix-
els. An example of three sequential frames are shown below.

Immediately after the collection of thefirst data set, the process
wasrepeated at asecond point approximately 60inchesfromthefirst.
The two image sequences were then separately registered using the
methods described in Section 4.2. Theimageswere reprojected onto
the surface of acylinder with aresolution of 3600 by 300 pixels. The
results are shown in Figures 5a and 5b. The operating room scene,
in Figure 5¢, was also constructed using these same methods.

Next, theepipolar geometry wascomputed by specifying 12tie-
pointson thefront of the house. Additional tiepointswere gradually
added to establish aninitial disparity image for use by the simulated
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FIGURE 5. Cylindrical images a and b are panoramic views separ ated by approximately 60 inches. Image c is a panoramic view of

an operating room. In image d, several epipolar curves are superimposed onto cylindrical image a.

annealing and method of differences stereo-correspondence rou-
tines. As these tiepoints were added, we also refined the epipolar
geometry and cylinder position estimates. The change in cylinder
position, however, was very dight. In Figure 5d, we show a cylin-
drical imagewith several epipolar curves superimposed. Notice how
the curves all intersect at the alternate camera’s virtua image and
vanishing point.

After the disparity images are computed, they can be interac-
tively warped to new viewing positions. The following four images
show various reconstructions. When used interactively, the warped
images provide a convincing kinetic depth effect.

6. CONCLUSIONS

The plenoptic function provides a consistent framework for image-
based rendering systems. The variousimage-based methods, such as
morphing and view interpolation, are characterized by the different
waysthey implement thethreekey stepsof sampling, reconstructing,
and resampling the plenoptic function.

We have described our approach to each of these steps. Our
method for sampling the plenoptic function can be done with equip-
ment that iscommonly available, andit resultsin cylindrical samples
about a point. All the necessary parameters are automatically esti-
mated from a sequence of images resulting from panning a video
camerathrough afull circle.

Reconstructing the function from these samples requires esti-
mating the optic flow of points when the view point is trandated.
Though this problem can be very difficult, as evidenced by thirty
years of computer vision and photogrammetry research, it isgreatly
simplified when the samples are relatively close together. This is
because there islittle change in the image between samples (which
makestheestimation easier), and becausetheviewer isnever far from

a sample (which makes accurate estimation |ess important).

Resampling the plenoptic function and reconstructing a planar
projectionarethekey stepsfor display of imagesfromarbitrary view-
points. Our methods allow efficient determination of visibility and
rea-time display of visualy rich environments on conventional
workstations without specia purpose graphics acceleration.

The plenoptic approach to modeling and display will provide
robust and high-fidelity models of environments based entirely on a
set of reference projections. Thedegreeof realismwill bedetermined
by the resolution of the reference images rather than the number of
primitives used in describing the scene. Finaly, thedifficulty of pro-
ducing realistic models of real environmentswill be greatly reduced
by replacing geometry with images.
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APPENDIX

We will show how occlusion compatible mappings can be deter-
mined on local spherical frames embedded within aglobal cartesian
frame, W. The projected visibility algorithm for cylindrical surfaces
giveninthe paper can bederived by reducingit tothisspherical case.

First, consider an isolated topological multiplicity on the pro-
jective mapping from §; to S, as shown below

z

Theorem 1: In the generic case, the points of a topological multi-
plicity induced by amapping from S to §, and thetwo frameorigins
are coplanar.

Proof: The points of the topological multiplicity are colinear
with the origin of §; since they share angular coordinates. A second
line ssgment connectsthe local frame origins, § and S. In general,
thesetwo linesaredistinct and thusthey defineaplanein three space.

Thus, asingleaffinetransformation, A, of W canaccomplishthe
following results.

* Trandate S; to the origin

* Rotate S to lie on the x-axis

« Rotate the line along the multiplicity into the xy-plane

« Scale the system so that S has the coordinate (1,0,0).

With this transformation we can consider the multiplicity entirely
within the xy-plane, as shown in the following figure.

Theorem 2: If cos6, > cos6,, and (8,, 6,, &) € [0, 7] thena<hb.
Proof: Thelength of sidesa and b can be computed in terms of
theangles 6,, 8, and o using the law of sines asfollows.
a 1 h  _ 1

Sne,  sn(o-6, Sn6,  sn(o-6,

a _ Sinocot6,— coso
b sinocotB, — cosa

if cosB, > cos6,then cot, > cot6,, thus a<bh

Thus, an occlusion compatible mapping, can be determined by
enumerating the topological mesh defined on AS; in an order of
increasing cos6 , while allowing later mesh facetsto overwrite pre-
viousones. Thismappingisocclusion compatiblesince, by Theorem
2, greater range values will always proceed lesser values at al mul-
tiplicities. Notice, that this mapping procedure only considers the
changesin thelocal frame’'sworld coordinates, and makes no use of
the range information itself.




