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ABSTRACT
Image-based rendering is a powerful new approach for generating
real-time photorealistic computer graphics. It can provide convinc-
ing animations without an explicit geometric representation. We use
the “plenoptic function” of Adelson and Bergen to provide a concise
problem statement for image-based rendering paradigms, such as
morphing and view interpolation. The plenoptic function is a param-
eterized function for describing everything that is visible from a
given point in space. We present an image-based rendering system
based on sampling, reconstructing, and resampling the plenoptic
function. In addition, we introduce a novel visible surface algorithm
and a geometric invariant for cylindrical projections that is equiva-
lent to the epipolar constraint defined for planar projections.

CR Descriptors: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration– display algorithms, viewing algorithms; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism– hidden line/
surface removal; I.4.3 [Image Processing]: Enhancement– regis-
tration; I.4.7 [Image Processing]: Feature Measurement–
projections; I.4.8 [Image Processing]: Scene Analysis.

1. INTRODUCTION
In recent years there has been increased interest, within the computer
graphics community, in image-based rendering systems. These sys-
tems are fundamentally different from traditional geometry-based
rendering systems. In image-based systems the underlying data rep-
resentation (i.e model) is composed of a set of photometric
observations, whereas geometry-based systems use either mathe-
matical descriptions of the boundary regions separating scene
elements (B-rep) or discretely sampled space functions (volumetric).

The evolution of image-based rendering systems can be traced
through at least three different research fields. In photogrammetry the
initial problems of camera calibration, two-dimensional image reg-
istration, and photometrics have progressed toward the determina-
tion of three-dimensional models. Likewise, in computer vision,
problems such as robot navigation, image discrimination, and image
understanding have naturally led in the same direction. In computer
graphics, the progression toward image-based rendering systems

was initially motivated by the desire to increase the visual realism of
the approximate geometric descriptions by mapping images onto
their surface (texture mapping) [7], [12]. Next, images were used to
approximate global illumination effects (environment mapping) [5],
and, most recently, we have seen systems where the images them-
selves constitute the significant aspects of the scene’s description [8].

Another reason for considering image-based rendering systems
in computer graphics is that acquisition of realistic surface models is
a difficult problem. While geometry-based rendering technology has
made significant strides towards achieving photorealism, creating
accurate models is still nearly as difficult as it was ten years ago. Tech-
nological advances in three-dimensional scanning provide some
promise in model building. However, they also verify our worst sus-
picions— the geometry of the real-world is exceedingly complex.
Ironically, the primary subjective measure of image quality used by
proponents of geometric rendering systems is the degree with which
the resulting images are indistinguishable from photographs.

One liability of image-based rendering systems is the lack of a
consistent framework within which to judge the validity of the
results. Fundamentally, this arises from the absence of a clear prob-
lem definition. Geometry-based rendering, on the other hand, has a
solid foundation; it uses analytic and projective geometry to describe
the world’s shape and physics to describe the world’s surface prop-
erties and the light’s interaction with those surfaces.

This paper presents a consistent framework for the evaluation
of image-based rendering systems, and gives a concise problem def-
inition. We then evaluate previous image-based rendering methods
within this new framework. Finally, we present our own image-based
rendering methodology and results from our prototype implementa-
tion.

2. THE PLENOPTIC FUNCTION
Adelson and Bergen [1] assigned the name plenoptic function (from
the latin root plenus, meaning complete or full, and optic pertaining
to vision) to the pencil of rays visible from any point in space, at any
time, and over any range of wavelengths. They used this function to
develop a taxonomy for evaluating models of low-level vision. The
plenoptic function describes all of the radiant energy that can be per-
ceived from the point of view of the observer rather than the point of
view of the source. They postulate

“… all the basic visual measurements can be considered
to characterize local change along one or two dimensions
of a single function that describes the structure of the
information in the light impinging on an observer.”

Adelson and Bergen further formalized this functional description by
providing a parameter space over which the plenoptic function is
valid, as shown in Figure 1. Imagine an idealized eye which we are
free to place at any point in space (Vx, Vy, Vz). From there we can select
any of the viewable rays by choosing an azimuth and elevation angle
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(θ,φ) as well as a band of wavelengths, λ, which we wish to consider.

FIGURE 1. The plenoptic function describes all of the
image information visible from a particular viewing
position.

In the case of a dynamic scene, we can additionally choose the time,
t, at which we wish to evaluate the function. This results in the fol-
lowing form for the plenoptic function:

(1)

In computer graphics terminology, the plenoptic function
describes the set of all possible environment maps for a given scene.
For the purposes of visualization, one can consider the plenoptic
function as a scene representation. In order to generate a view from
a given point in a particular direction we would need to merely plug
in appropriate values for (Vx, Vy, Vz) and select from a range of (θ,φ)
for some constant t.

We define a complete sample of the plenoptic function as a full
spherical map for a given viewpoint and time value, and an incom-
plete sample as some solid angle subset of this spherical map.

Within this framework we can state the following problem def-
inition for image-based rendering. Given a set of discrete samples
(complete or incomplete) from the plenoptic function, the goal of
image-based rendering is to generate a continuous representation of
that function. This problem statement provides for many avenues of
exploration, such as how to optimally select sample points and how
to best reconstruct a continuous function from these samples.

3. PREVIOUS WORK

3.1 Movie-Maps
The Movie-Map system by Lippman [17] is one of the earliest
attempts at constructing an image-based rendering system. In Movie-
Maps, incomplete plenoptic samples are stored on interactive video
laser disks. They are accessed randomly, primarily by a change in
viewpoint; however, the system can also accommodate panning, tilt-
ing, or zooming about a fixed viewing position. We can characterize
Lippman’s plenoptic reconstruction technique as a nearest-neighbor
interpolation because, when given a set of input parameters (Vx, Vy,
Vz, θ, φ, t), the Movie-Map system can select the nearest partial sam-
ple. The Movie-Map form of image-based rendering can also be
interpreted as a table-based evaluation of the plenoptic function. This
interpretation reflects the database structure common to most image-
based systems.

3.2 Image Morphing
Image morphing is a very popular image-based rendering technique
[4], [28]. Generally, morphing is considered to occur between two
images. We can think of these images as endpoints along some path
through time and/or space. In this interpretation, morphing becomes
a method for reconstructing partial samples of the continuous ple-
noptic function along this path. In addition to photometric data,
morphing uses additional information describing the image flow
field. This information is usually hand crafted by an animator. At first

θ
φ

(Vx, Vy, Vz)

p P θ φ λ Vx Vy Vz t, , , , , ,( )=

glance, this type of augmentation might seem to place it outside of
the plenoptic function’s domain. However, several authors in the field
of computer vision have shown that this type of image flow infor-
mation is equivalent to changes in the local intensity due to
infinitesimal perturbations of the plenoptic function’s independent
variables [20], [13]. This local derivative behavior can be related to
the intensity gradient via applications of the chain rule. In fact, mor-
phing makes an even stronger assumption that the flow information
is constant along the entire path, thus amounting to a locally linear
approximation. Also, a blending function is often used to combine
both reference images after being partially flowed from their initial
configurations to a given point on the path. This blending function
is usually some linear combination of the two images based on what
percentage of the path’s length has been traversed. Thus, morphing
is a plenoptic reconstruction method which interpolates between
samples and uses local derivative information to construct approxi-
mations.

3.3 View Interpolation
Chen’s and Williams’ [8] view interpolation employs incomplete
plenoptic samples and image flow fields to reconstruct arbitrary
viewpoints with some constraints on gaze angle. The reconstruction
process uses information about the local neighborhood of a sample.
Chen and Williams point out and suggest a solution for one of the key
problems of image-based rendering— determining the visible sur-
faces. Chen and Williams chose to presort the quadtree compressed
flow-field in a back-to-front order according to its (geometric) z-
value. This approach works well when all of the partial sample
images share a common gaze direction, and the synthesized view-
points are restricted to stay within 90 degrees of this gaze angle.

An image flow field alone allows for many ambiguous visibility
solutions, unless we restrict ourselves to flow fields that do not fold,
such as rubber-sheet local spline warps or thin-plate global spline
warps. This problem must be considered in any general-purpose
image-based rendering system, and ideally, it should be done without
transporting the image into the geometric-rendering domain.

Establishing flow fields for a view interpolation system can also
be problematic. Chen and Williams used pre-rendered synthetic
images to determine flow fields from the z-values. In general, accu-
rate flow field information between two samples can only be estab-
lished for points that are mutually visible to both samples. This points
out a shortcoming in the use of partial samples, because reference
images seldom have a 100% overlap.

Like morphing, view interpolation uses photometric informa-
tion as well as local derivative information in its reconstruction pro-
cess. This locally linear approximation is nicely exploited to
approximate perspective depth effects, and Chen and Williams show
it to be correct for lateral motions relative to the gaze direction. View
interpolation, however, adds a nonlinearity by allowing the visibility
process to determine the blending function between reference frames
in a closest-take-all (a.k.a. winner-take-all) fashion.

3.4 Laveau and Faugeras
Laveau and Faugeras [15] have taken advantage of the fact that the
epipolar geometries between images restrict the image flow field in
such a way that it can be parameterized by a single disparity value
and a fundamental matrix which represents the epipolar relationship.
They also provide a two-dimensional raytracing-like solution to the
visibility problem which does not require an underlying geometric
description. Their method does, however, require establishing cor-
respondences for each image point along the ray’s path. The Laveau
and Faugeras system also uses partial plenoptic samples, and results
are shown only for overlapping regions between views.

Laveau and Faugeras also discuss the combination of informa-
tion from several views but primarily in terms of resolving visibility.
By relating the reference views and the desired views by the homog-
enous transformations between their projections, Laveau and
Faugeras can compute exact perspective depth solutions. The recon-
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struction process again takes advantage of both image data and local
derivative information to reconstruct the plenoptic function.

3.5 Regan and Pose
Regan and Pose [23] describe a hybrid system in which plenoptic
samples are generated on the fly by a geometry-based rendering sys-
tem at available rendering rates, while interactive rendering is
provided by the image-based subsystem. At any instant, a user inter-
acts with a single plenoptic sample. This allows the user to make
unconstrained changes in the gaze angle about the sample point.
Regan and Pose also discuss local reconstruction approximations due
to changes in the viewing position. These approximations amount to
treating the objects in the scene as being placed at infinity, resulting
in a loss of the kinetic depth effect. These partial updates can be com-
bined with the approximation values.

4. PLENOPTIC MODELING
We claim that all image-based rendering approaches can be cast

as attempts to reconstruct the plenoptic function from a sample set
of that function. We believe that there are significant insights to be
gleaned from this characterization. In this section, we propose our
prototype system in light of this plenoptic function framework.

We call our image-based rendering approach Plenoptic Model-
ing. Like other image-based rendering systems, the scene description
is given by a series of reference images. These reference images are
subsequently warped and combined to form representations of the
scene from arbitrary viewpoints. The warping function is defined by
image flow field information that can either be supplied as an input
or derived from the reference images.

Our discussion of the plenoptic modeling image-based render-
ing system is broken down into four sections. First, we discuss the
representation of the plenoptic samples. Next, we discuss their acqui-
sition. The third section covers the determination of image flow
fields, if required. And, finally, we describe how to reconstruct the
plenoptic function from these sample images.

4.1 Plenoptic Sample Representation
The most natural surface for projecting a complete plenoptic sample
is a unit sphere centered about the viewing position. One difficulty
of spherical projections, however, is the lack of a representation that
is suitable for storage on a computer. This is particularly difficult if
a uniform (i.e. equal area) discrete sampling is required. This diffi-
culty is reflected in the various distortions which arise in planar
projections of world maps in cartography. Those uniform mappings
which do exist are generally ill-suited for systematic access as a data
structure. Furthermore, those which do map to a plane with consistent
neighborhood relationships are generally quite distorted and, there-
fore, non-uniform.

A set of six planar projections in the form of a cube has been sug-
gested by Greene [10] as an efficient representation for environment
maps. While this representation can be easily stored and accessed by
a computer, it provides significant problems relating to acquisition,
alignment, and registration when used with real, non-computer-gen-
erated images. The orthogonal orientation of the cube faces requires
precise camera positioning. The wide, 90 degree field-of-view of
each face requires expensive lens systems to avoid optical distortion.
Also, the planar mapping does not represent a uniform sampling, but
instead, is considerably oversampled in the edges and corners. How-
ever, the greatest difficulty of a cube-oriented planar projection set
is describing the behavior of the image flow fields across the bound-
aries between faces and at corners. This is not an issue when the six
planar projections are used solely as an environment map, but it adds
a considerable overhead when it is used for image analysis.

We have chosen to use a cylindrical projection as the plenoptic
sample representation. One advantage of a cylinder is that it can be
easily unrolled into a simple planar map. The surface is without
boundaries in the azimuth direction, which simplifies correspon-
dence searches required to establish image flow fields. One short-

coming of a projection on a finite cylindrical surface is the boundary
conditions introduced at the top and bottom. We have chosen not to
employ end caps on our projections, which has the problem of lim-
iting the vertical field of view within the environment.

4.2 Acquiring Cylindrical Projections
A significant advantage of a cylindrical projection is the simplicity
of acquisition. The only acquisition equipment required is a video
camera and a tripod capable of continuous panning. Ideally, the cam-
era’s panning motion would be around the exact optical center of the
camera. In practice, in a scene where all objects are relatively far from
the tripod’s rotational center, a slight misalignment offset can be
tolerated.

Any two  planar perspective projections of a scene which share
a common viewpoint are related by a two-dimensional homogenous
transform:

(2)

where x and y represent the pixel coordinates of an image I, and x’
and y’ are their corresponding coordinates in a second image I’. This
well known result has been reported by several authors [12], [28],
[22]. The images resulting from typical camera motions, such as pan,
tilt, roll, and zoom, can all be related in this fashion. When creating
a cylindrical projection, we will only need to consider panning cam-
era motions. For convenience we define the camera’s local
coordinate system such that the panning takes place entirely in the x-
z plane.

In order to reproject an individual image into a cylindrical pro-
jection, we must first determine a model for the camera’s projection
or, equivalently, the appropriate homogenous transforms. Many dif-
ferent techniques have been developed for inferring the homogenous
transformation between images sharing common centers of projec-
tion. The most common technique [12] involves establishing four
corresponding points across each image pair. The resulting trans-
forms provide a mapping of pixels from the planar projection of the
first image to the planar projection of the second. Several images
could be composited in this fashion by first determining the transform
which maps the Nth image to image N-1. These transforms can be
catenated to form a mapping of each image to the plane of the first.
This approach, in effect, avoids direct determination of an entire cam-
era model by performing all mappings between different instances of
the same camera. Other techniques for deriving these homogeneous
transformations without specific point correspondences have also
been described [22], [25].

The set of homogenous transforms, Hi, can be decomposed into
two parts which will allow for arbitrary reprojections in a manner
similar to [11]. These two parts include an intrinsic transform, S,
which is determined entirely by camera properties, and an extrinsic
transform, Ri, which is determined by the rotation around the cam-
era’s center of projection:

(3)

This decomposition decouples the projection and rotational compo-
nents of the homogeneous transform. By an appropriate choice of
coordinate systems and by limiting the camera’s motion to panning,
the extrinsic transform component is constrained to a function of a
single parameter rotation matrix describing the pan.

(4)
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Since the intrinsic component’s properties are invariant over all of the
images, the decomposition problem can be broken into two parts: the
determination of the extrinsic rotation component, Ri, followed by
the determination of an intrinsic projection component, S. The first
step in our method determines estimates for the extrinsic panning
angle between each image pair of the panning sequence. This is
accomplished by using a linear approximation to an infinitesimal
rotation by the angle . This linear approximation results from sub-
stituting  for the cosine terms and  for the sine
terms of the rotation matrix. This infinitesimal perturbation has been
shown by [14] to reduce to the following approximate equations:

(5)

where f is the apparent focal length of the camera measured in pixels,
and (Cx, Cy) is the pixel coordinate of the intersection of the optical
axis with the image plane. (Cx, Cy) is initially estimated to be at the
center pixel of the image plane. A better estimate for (Cx, Cy) is found
during the intrinsic matrix solution.

These equations show that small panning rotations can be
approximated by translations for pixels near the image’s center. We
require that some part of each image in the sequence must be visible
in the successive image, and that some part of the final image must
be visible in the first image of the sequence. The first stage of the
cylindrical registration process attempts to register the image set by
computing the optimal translation in x which maximizes the normal-
ized correlation within a region about the center third of the screen.
This is first computed at a pixel resolution, then refined on a 0.1 sub-
pixel grid, using a Catmull-Rom interpolation spline to compute sub-
pixel intensities. Once these translations, ti, are computed, Newton’s
method is used to convert them to estimates of rotation angles and the
focal length, using the following equation:

(6)

where N is the number of images comprising the sequence. This usu-
ally converges in as few as five iterations, depending on the original
estimate for f. This first phase determines an estimate for the relative
rotational angles between each of the images (our extrinsic param-
eters) and the initial focal length estimate measured in pixels (one of
the intrinsic parameters).

The second stage of the registration process determines the S,
or structural matrix, which describes various camera properties such
as the tilt and roll angles which are assumed to remain constant over
the group of images. The following model is used:

(7)

where P is the projection matrix:

(8)

and (Cx, Cy) is the estimated center of the viewplane as described pre-
viously, σ is a skew parameter representing the deviation of the
sampling grid from a rectilinear grid, ρ determines the sampling
grid’s aspect ratio, and f is the focal length in pixels as determined
from the first alignment stage.

The remaining terms, Ωx and Ωz, describe the combined effects
of camera orientation and deviations of the viewplane’s orientation
from perpendicular to the optical axis. Ideally, the viewplane would
be normal to the optical axis, but manufacturing tolerances allow
these numbers to vary slightly [27].

θ
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P
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(9)

(10)

In addition, the ωz term is indistinguishable from the camera’s roll
angle and, thus, represents both the image sensor’s and the camera’s
rotation. Likewise, ωx, is combined with an implicit parameter, φ, that
represents the relative tilt of the camera’s optical axis out of the pan-
ning plane. If φ is zero, the images are all tangent to a cylinder and
for a nonzero φ the projections are tangent to a cone.

This gives six unknown parameters, (Cx, Cy, σ, ρ, ωx, ωz), to be
determined in the second stage of the registration process. Notice
that, when combined with the θi and f parameters determined in the
first stage, we have a total of eight parameters for each image, which
is consistent with the number of free parameters in a general homo-
geneous matrix.

The structural matrix, S, is determined by minimizing the fol-
lowing error function:

(11)

where Ii-1 and Ii represent the center third of the pixels from images
i-1 and i respectively. Using Powell’s multivariable minimization
method [23] with the following initial values for our six parameters,

(12)

the solution typically converges in about six iterations. At this point
we will have a new estimate for (Cx, Cy) which can be fed back into
stage one, and the entire process can be repeated.

The registration process results in a single camera model, S(Cx,
Cy, σ, ρ, ωx, ωz, f), and a set of the relative rotations, θi, between each
of the sampled images. Using these parameters, we can compose
mapping functions from any image in the sequence to any other
image as follows:

(13)

We can also reproject images onto arbitrary surfaces by modifying
S. Since each image pixel determines the equation of a ray from the
center-of-projection, the reprojection process merely involves inter-
secting these rays with the projection manifold.

4.3 Determining Image Flow Fields
Given two or more cylindrical projections from different positions
within a static scene, we can determine the relative positions of cen-
ters-of-projection and establish geometric constraints across all
potential reprojections. These positions can only be computed to a
scale factor. An intuitive argument for this is that from a set of images
alone, one cannot determine if the observer is looking at a model or
a full-sized scene. This implies that at least one measurement is
required to establish a scale factor. The measurement may be taken
either between features that are mutually visible within images, or the
distance between the acquired image’s camera positions can be used.
Both techniques have been used with little difference in results.

To establish the relative relationships between any pair of cylin-
drical projections, the user specifies a set of corresponding points that
are visible from both views. These points can be treated as rays in
space with the following form:
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(14)

where is the unknown position of the cylinder’s
center of projection, φa is the rotational offset which aligns the angu-
lar orientation of the cylinders to a common frame, ka is a scale factor
which determines the vertical field-of-view, and  is the scanline
where the center of projection would project onto the scene (i.e. the
line of zero elevation, like the equator of a spherical map).

A pair of tiepoints, one from each image, establishes a pair of
rays which ideally intersect at the point in space identified by the tie-
point. In general, however, these rays are skewed. Therefore, we use
the point that is simultaneously closest to both rays as an estimate of
the point’s position, , as determined by the following derivation.

(15)

where  and  are the tiepoint coordinates on cylin-
ders A and B respectively. The two points,  and , are given by

(16)

where

(17)

This allows us to pose the problem of finding a cylinder’s position
as a minimization problem. For each pair of cylinders we have two
sets of six unknowns, [(Ax,Ay,Az,φa,ka,Cva), (Bx,By,Bz,φb,kb, Cvb)]. In
general, we have good estimates for the k and Cv terms, since these
values are found by the registration phase. The position of the cyl-
inders is determined by minimizing the distance between these
skewed rays. We also choose to assign a penalty for shrinking the ver-
tical height of the cylinder in order to bring points closer together.
This penalty could be eliminated by accepting either the k or Cv val-
ues given by the registration.

We have tested this approach using from 12 to 500 tiepoints, and
have found that it converges to a solution in as few as ten iterations
of Powell’s method. Since no correlation step is required, this process
is considerably faster than the minimization step required to deter-
mine the structural matrix, S.

The use of a cylindrical projection introduces significant geo-
metric constraints on where a point viewed in one projection might
appear in a second. We can capitalize on these restrictions when we
wish to automatically identify corresponding points across cylinders.
While an initial set of 100 to 500 tiepoints might be established by
hand, this process is far too tedious to establish a mapping for the
entire cylinder. Next, we present a geometric constraint for cylindri-
cal projections that determines the possible positions of a point given
its position in some other cylinder. This constraint plays the same role
that the epipolar geometries [18], [9], used in the computer vision
community for depth-from-stereo computations, play for planar pro-
jections.

First, we will present an intuitive argument for the existence of
such an invariant. Consider yourself at the center of a cylindrical pro-
jection. Every point on the cylinder around you corresponds to a ray
in space as given by the cylindrical epipolar geometry equation.
When one of the rays is observed from a second cylinder, its path
projects to a curve which appears to begin at the point corresponding
to the origin of the first cylinder, and it is constrained to pass through
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the point’s image on the second cylinder.
This same argument could obviously have been made for a pla-

nar projection. And, since two points are identified (the virtual image
of the camera in the second projection along with the corresponding
point) and, because a planar projection preserve lines, a unique, so
called epipolar line is defined. This is the basis for an epipolar geom-
etry, which identifies pairs of lines in two planar projections such that
if a point falls upon one line in the first image, it is constrained to fall
on the corresponding line in the second image. The existence of this
invariant reduces the search for corresponding points from an O(N2)
problem to O(N).

Cylindrical projections, however, do not preserve lines. In gen-
eral, lines map to quadratic parametric curves on the surface of a cyl-
inder. Surprisingly, we can completely specify the form of the curve
with no more information than was needed in the planar case.

The paths of these curves are uniquely determined sinusoids.
This cylindrical epipolar geometry is established by the following
equation.

(18)

where

(19)

This formula gives a concise expression for the curve formed by
the projection of a ray across the surface of a cylinder, where the ray
is specified by its position on some other cylinder.

This cylindrical epipolar relationship can be used to establish
image flow fields using standard computer vision methods. We have
used correlation methods [9], a simulated annealing-like relaxation
method [3], and the method of differences [20] to compute stereo dis-
parities between cylinder pairs. Each method has its strengths and
weaknesses. We refer the reader to the references for further details.

4.4 Plenoptic Function Reconstruction
Our image-based rendering system takes as input cylindrically pro-
jected panoramic reference images along with scalar disparity
images relating each cylinder pair. This information is used to auto-
matically generate image warps that map reference images to
arbitrary cylindrical or planar views that are capable of describing
both occlusion and perspective effects.

FIGURE 2. Diagram showing the transfer of the known
disparity values between cylinders A and B to a new
viewing position V.

We begin with a description of cylindrical-to-cylindrical map-
pings. Each angular disparity value, α, of the disparity images, can
be readily converted into an image flow vector field,

 using the epipolar relation given by Equation 18
for each position on the cylinder, (θ, v). We can transfer disparity val-
ues from the known cylindrical pair to a new cylindrical projection
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in an arbitrary position, as in Figure 2, using the following equations.

(20)

By precomputing  for each column of
the cylindrical reference image and storing  in place of the
disparity image, this transfer operation can be computed at interac-
tive speeds.

Typically, once the disparity images have been transferred to
their target, the cylindrical projection would be reprojected as a pla-
nar image for viewing. This reprojection can be combined with the
disparity transfer to give a single image warp that performs both oper-
ations. To accomplish this, a new intermediate quantity, δ, called the
generalized angular disparity is defined as follows:

(21)

This scalar function is the cylindrical equivalent to the classical ste-
reo disparity. Finally, a composite image warp from a given reference
image to any arbitrary planar projection can be defined as

(22)

where

(23)

and the vectors  and  are defined by the desired view as shown
in Figure 3.

FIGURE 3. The center-of-projection, , a vector to the
origin, , and two spanning vectors (  and ) uniquely
determine the planar projection.

In the case where , the image warp defined by
Equation 22, reduces to a simple reprojection of the cylindrical image
to a desired planar view. The perturbation introduced by allowing

 to vary over the image allows arbitrary shape and occlusions
to be represented.

Potentially, both the cylinder transfer and image warping
approaches are many-to-one mappings. For this reason we must con-
sider visibility. The following simple algorithm can be used to deter-
mine an enumeration of the cylindrical mesh which guarantees a
proper back-to-front ordering, (See Appendix). We project the
desired viewing position onto the reference cylinder being warped
and partition the cylinder into four toroidal sheets. The sheet bound-
aries are defined by the θ and v coordinates of two points, as shown
in Figure 4. One point is defined by the intersection of the cylinder

a Bx Vx–( ) φA θ–( )cos By Vy–( ) φA θ–( )sin+=

b By Ay–( ) φA θ–( )cos Bx Ax–( ) φA θ–( )sin–=

c Vy Ay–( ) φA θ–( )cos Vx Ax–( ) φA θ–( )sin–=

β θ v,( )( )cot a b α θ v,( )( )cot+
c

--------------------------------------------=

φi θ–( )cos φi θ–( )sin,[ ]
α( )cot

d Bx Ax–( ) φA θ–( )cos By Ay–( ) φA θ–( )sin+=

δ θ v,( ) 1
d b α θ v,( )( )cot+
--------------------------------------------=

x θ v,( )
r DA θ v,( )⋅ krδ θ v,( )+

n DA θ v,( )⋅ knδ θ v,( )+
---------------------------------------------------------=

y θ v,( )
s DA θ v,( )⋅ ksδ θ v,( )+

n DA θ v,( )⋅ knδ θ v,( )+
---------------------------------------------------------=

r v o×= kr r Ca V–( )⋅=

s o u×= ks s Ca V–( )⋅=

n u v×= kn n Ca V–( )⋅=

p o u, , v

p

u

o

v

(0,0) (1,0)

(0,1)

p
o u v

δ θ v,( ) constant=

δ θ v,( )

with the vector from the origin through the eye’s position. The other
is the intersection with the vector from the eye through the origin.

FIGURE 4. A back-to-front ordering of the image flow field
can be established by projecting the eye’s position onto the
cylinder’s surface and dividing it into four toroidal sheets.

Next, we enumerate each sheet such that the projected image of
the desired viewpoint is the last point drawn. This simple partitioning
and enumeration provides a back-to-front ordering for use by a paint-
er’s style rendering algorithm. This hidden-surface algorithm is a
generalization of Anderson’s [2] visible line algorithm to arbitrary
projected grid surfaces. Additional details can be found in [21].

At this point, the plenoptic samples can be warped to their new
position according to the image flow field. In general, these new pixel
positions lie on an irregular grid, thus requiring some sort of recon-
struction and resampling. We use a forward-mapping [28] recon-
struction approach in the spirit of [27] in our prototype. This involves
computing the projected kernel’s size based on the current disparity
value and the derivatives along the epipolar curves.

While the visibility method properly handles mesh folds, we
still must consider the tears (or excessive stretching) produced by the
exposure of previously occluded image regions. In view interpola-
tion [8] a simple “distinguished color” heuristic is used based on the
screen space projection of the neighboring pixel on the same scan-
line. This approach approximates stretching for small regions of
occlusion, where the occluder still abuts the occluded region. And,
for large exposed occluded regions, it tends to interpolate between
the boundaries of the occluded region. These exposure events can be
handled more robustly by combining, on a pixel-by-pixel basis, the
results of multiple image warps according to the smallest-sized
reconstruction kernel.

5. RESULTS
We collected a series of images using a video camcorder on a leveled
tripod in the front yard of one of the author’s home. Accurate leveling
is not strictly necessary for the method to work. When the data were
collected, no attempt was made to pan the camera at a uniform angu-
lar velocity. The autofocus and autoiris features of the camera were
disabled, in order to maintain a constant focal length during the col-
lection process. The frames were then digitized at a rate of
approximately 5 frames per second to a resolution of 320 by 240 pix-
els. An example of three sequential frames are shown below.

Immediately after the collection of the first data set, the process
was repeated at a second point approximately 60 inches from the first.
The two image sequences were then separately registered using the
methods described in Section 4.2. The images were reprojected onto
the surface of a cylinder with a resolution of 3600 by 300 pixels. The
results are shown in Figures 5a and 5b. The operating room scene,
in Figure 5c, was also constructed using these same methods.

Next, the epipolar geometry was computed by specifying 12 tie-
points on the front of the house. Additional tiepoints were gradually
added to establish an initial disparity image for use by the simulated

Sheet 1 Sheet 2

Sheet 3Sheet 4

Projection of
Eye Position

33

3

4

2



Proceedings of SIGGRAPH 95 (Los Angeles, California, August 6-11, 1995)

7

annealing and method of differences stereo-correspondence rou-
tines. As these tiepoints were added, we also refined the epipolar
geometry and cylinder position estimates. The change in cylinder
position, however, was very slight. In Figure 5d, we show a cylin-
drical image with several epipolar curves superimposed. Notice how
the curves all intersect at the alternate camera’s virtual image and
vanishing point.

After the disparity images are computed, they can be interac-
tively warped to new viewing positions. The following four images
show various reconstructions. When used interactively, the warped
images provide a convincing kinetic depth effect.

6. CONCLUSIONS
The plenoptic function provides a consistent framework for image-
based rendering systems. The various image-based methods, such as
morphing and view interpolation, are characterized by the different
ways they implement the three key steps of sampling, reconstructing,
and resampling the plenoptic function.

We have described our approach to each of these steps. Our
method for sampling the plenoptic function can be done with equip-
ment that is commonly available, and it results in cylindrical samples
about a point. All the necessary parameters are automatically esti-
mated from a sequence of images resulting from panning a video
camera through a full circle.

Reconstructing the function from these samples requires esti-
mating the optic flow of points when the view point is translated.
Though this problem can be very difficult, as evidenced by thirty
years of computer vision and photogrammetry research, it is greatly
simplified when the samples are relatively close together. This is
because there is little change in the image between samples (which
makes the estimation easier), and because the viewer is never far from

a sample (which makes accurate estimation less important).
Resampling the plenoptic function and reconstructing a planar

projection are the key steps for display of images from arbitrary view-
points. Our methods allow efficient determination of visibility and
real-time display of visually rich environments on conventional
workstations without special purpose graphics acceleration.

The plenoptic approach to modeling and display will provide
robust and high-fidelity models of environments based entirely on a
set of reference projections. The degree of realism will be determined
by the resolution of the reference images rather than the number of
primitives used in describing the scene. Finally, the difficulty of pro-
ducing realistic models of real environments will be greatly reduced
by replacing geometry with images.

ACKNOWLEDGMENTS
We are indebted to the following individuals for their contributions
and suggestions on this work: Henry Fuchs, Andrei State, Kevin
Arthur, Donna McMillan, and all the members of the UNC/UPenn
collaborative telepresence-research group.

This research is supported in part by Advanced Research
Projects Agency contract no. DABT63-93-C-0048, NSF Coopera-
tive Agreement no. ASC-8920219, Advanced Research Projects
Agency order no. A410, and National Science Foundation grant no.
MIP-9306208. Approved by ARPA for public release - distribution
unlimited.

REFERENCES
[1] Adelson, E. H., and J. R. Bergen, “The Plenoptic Function and the

Elements of Early Vision,” Computational Models of Visual Pro-
cessing, Chapter 1, Edited by Michael Landy and J. Anthony Movs-
hon. The MIT Press, Cambridge, Mass. 1991.

[2] Anderson, D., “Hidden Line Elimination in Projected Grid Sur-
faces,” ACM Transactions on Graphics, October 1982.

[3] Barnard, S.T. “A Stochastic Approach to Stereo Vision,” SRI Inter-
national, Technical Note 373, April 4, 1986.

[4] Beier, T. and S. Neely, “Feature-Based Image Metamorphosis,”
Computer Graphics (SIGGRAPH’92 Proceedings), Vol. 26, No.
2, pp. 35-42, July 1992.

[5] Blinn, J. F. and M. E. Newell, “Texture and Reflection in Computer
Generated Images,” Communications of the ACM, vol. 19, no. 10,
pp. 542-547, October 1976.

[6] Bolles, R. C., H. H. Baker, and D. H. Marimont, “Epipolar-Plane
Image Analysis: An Approach to Determining Structure from
Motion,” International Journal of Computer Vision, Vol. 1,
1987.

[7] Catmull, E., “A Subdivision Algorithm for Computer Display of
Curved Surfaces” (Ph. D. Thesis), Department of Computer Sci-

FIGURE 5. Cylindrical images a and b are panoramic views separated by approximately 60 inches. Image c is a panoramic view of
an operating room. In image d, several epipolar curves are superimposed onto cylindrical image a.



Proceedings of SIGGRAPH 95 (Los Angeles, California, August 6-11, 1995)

8

ence, University of Utah, Tech. Report UTEC-CSc-74-133,
December 1974.

[8] Chen, S. E. and L. Williams. “View Interpolation for Image Syn-
thesis,” Computer Graphics (SIGGRAPH’93 Proceedings), pp.
279-288, July 1993.

[9] Faugeras, O., Three-dimensional Computer Vision: A Geomet-
ric Viewpoint, The MIT Press, Cambridge, Massachusetts, 1993.

[10] Greene, N., “Environment Mapping and Other Applications of
World Projections,” IEEE Computer Graphics and Applica-
tions, November 1986.

[11] Hartley, R.I., “Self-Calibration from Multiple Views with a Rotat-
ing Camera,” Proceedings of the European Conference on Com-
puter Vision, May 1994.

[12] Heckbert, P. S., “Fundamentals of Texture Mapping and Image
Warping,” Masters Thesis, Dept. of EECS, UCB, Technical Report
No. UCB/CSD 89/516, June 1989.

[13] Horn, B., and B.G. Schunck, “Determining Optical Flow,” Arti-
ficial Intelligence, Vol. 17, 1981.

[14] Kanatani, K., “Transformation of Optical Flow by Camera Rota-
tion,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 10, No. 2, March 1988.

[15] Laveau, S. and O. Faugeras, “3-D Scene Representation as a Col-
lection of Images and Fundamental Matrices,” INRIA, Technical
Report No. 2205, February, 1994.

[16] Lenz, R. K. and R. Y. Tsai, “Techniques for Calibration of the Scale
Factor and Image Center for High Accuracy 3D Machine Vision
Metrology,” Proceedings of IEEE International Conference on
Robotics and Automation, March 31 - April 3, 1987.

[17] Lippman, A., “Movie-Maps: An Application of the Optical Video-
disc to Computer Graphics,” SIGGRAPH ‘80 Proceedings, 1980.

[18] Longuet-Higgins, H. C., “A Computer Algorithm for Reconstruct-
ing a Scene from Two Projections,” Nature, Vol. 293, September
1981.

[19] Longuet-Higgins, H. C., “The Reconstruction of a Scene From Two
Projections - Configurations That Defeat the 8-Point Algorithm,”
Proceedings of the First IEEE Conference on Artificial Intelli-
gence Applications, Dec 1984.

[20] Lucas, B., and T. Kanade, “An Iterative Image Registration Tech-
nique with an Application to Stereo Vision,” Proceedings of the
Seventh International Joint Conference on Artificial Intelli-
gence, Vancouver, 1981.

[21] McMillan, Leonard, “A List-Priority Rendering Algorithm for
Redisplaying Projected Surfaces,” Department of Computer Sci-
ence, UNC, Technical Report TR95-005, 1995.

[22] Mann, S. and R. W. Picard, “Virtual Bellows: Constructing High
Quality Stills from Video,” Proceedings of the First IEEE Inter-
national Conference on Image Processing, November 1994.

[23] Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C, Cambridge University Press, Cambridge,
Massachusetts, pp. 309-317, 1988.

[24] Regan, M., and R. Pose, “Priority Rendering with a Virtual Reality
Address Recalculation Pipeline,” SIGGRAPH’94 Proceedings,
1994.

[25] Szeliski, R., “Image Mosaicing for Tele-Reality Applications,”
DEC and Cambridge Research Lab Technical Report, CRL 94/
2, May 1994.

[26] Tomasi, C., and T. Kanade, “Shape and Motion from Image
Streams: a Factorization Method; Full Report on the Orthographic
Case,” Technical Report, CMU-CS-92-104, Carnegie Mellon Uni-
versity, March 1992.

[27] Tsai, R. Y., “A Versatile Camera Calibration Technique for High-
Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV
Cameras and Lenses,” IEEE Journal of Robotics and Automa-
tion, Vol. RA-3, No. 4, August 1987.

[28] Westover, L. A., “Footprint Evaluation for Volume Rendering,”
SIGGRAPH’90 Proceedings, August 1990.

[29] Wolberg, G., Digital Image Warping, IEEE Computer Society
Press, Los Alamitos, CA, 1990.

APPENDIX
We will show how occlusion compatible mappings can be deter-
mined on local spherical frames embedded within a global cartesian
frame, W. The projected visibility algorithm for cylindrical surfaces
given in the paper can be derived by reducing it to this spherical case.

First, consider an isolated topological multiplicity on the pro-
jective mapping from Si to Sj, as shown below

Theorem 1: In the generic case, the points of a topological multi-
plicity induced by a mapping from Si to Sj, and the two frame origins
are coplanar.

Proof: The points of the topological multiplicity are colinear
with the origin of Sj since they share angular coordinates. A second
line segment connects the local frame origins, Si and Sj. In general,
these two lines are distinct and thus they define a plane in three space.

Thus, a single affine transformation, A, of W can accomplish the
following results.

• Translate Si to the origin
• Rotate Sj to lie on the x-axis
• Rotate the line along the multiplicity into the xy-plane
• Scale the system so that Sj has the coordinate (1,0,0).

With this transformation we can consider the multiplicity entirely
within the xy-plane, as shown in the following figure.

Theorem 2: If  and  then a < b.
Proof: The length of sides a and b can be computed in terms of

the angles  and  using the law of sines as follows.

Thus, an occlusion compatible mapping, can be determined by
enumerating the topological mesh defined on  in an order of
increasing , while allowing later mesh facets to overwrite pre-
vious ones. This mapping is occlusion compatible since, by Theorem
2, greater range values will always proceed lesser values at all mul-
tiplicities. Notice, that this mapping procedure only considers the
changes in the local frame’s world coordinates, and makes no use of
the range information itself.

y

z

Si

x
p1

p2

Sj

b

a
θ1

θ2
α

α−θ2

α−θ1

θ1cos θ2cos> θ1 θ2 α, ,( ) 0 π,[ ]∈

θ1 θ2, α
a
θ1sin

------------- 1
α θ1–( )sin

-----------------------------= b
θ2sin

------------- 1
α θ2–( )sin

-----------------------------=

a
b
--

α θ2cotsin αcos–
α θ1cotsin αcos–

--------------------------------------------=

if θ1cos θ2then θ1cot θ2, thus a b<cot>cos>

ASi
θcos

Si Sj


