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Figure 1: We extract silhouettes from video sequences to build a deformable skin model that can be animated with new motion.

Abstract

We describe a method for the acquisition of deformable human ge-
ometry from silhouettes. Our technique uses a commercial track-
ing system to determine the motion of the skeleton, then estimates
geometry for each bone using constraints provided by the silhou-
ettes from one or more cameras. These silhouettes do not give a
complete characterization of the geometry for a particular point in
time, but when the subject moves, many observations of the same
local geometries allow the construction of a complete model. Our
reconstruction algorithm provides a simple mechanism for solving
the problems of view aggregation, occlusion handling, hole filling,
noise removal, and deformation modeling. The resulting model is
parameterized to synthesize geometry for new poses of the skele-
ton. We demonstrate this capability by rendering the geometry for
motion sequences that were not included in the original datasets.
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Graphics and Realism—Animation; I.4.8 [Image Processing and
Computer Vision]: Scene Analysis—Shape
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1 Introduction

A digital replica of a moving human body has applications in video
games, teleconferencing, automated news shows, and filmmaking.
For example, the physical appearance of a celebrity actor could be
recorded and later animated with acrobatic motions controlled by an
animator or performed by a stunt double in a motion-capture suit.
In current filmmaking, this application requires extensive manual
labor to position and adjust skin around each bone and muscle. In
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some cases, months are spent matching a virtual character to an
existing actor [Stokdyk et al. 2002].

Our goal is to build a skin model that replicates the skin deforma-
tions of a particular person. The technique described in this paper
builds this model automatically from video of the subject and mo-
tion data that describes how the subject’s skeleton moves through-
out the video recording. To build the model from this data, we
exploit the idea that video of a moving person provides many ob-
servations of the same surface. A single set of silhouettes (even
from several viewpoints) provides a highly incomplete characteri-
zation of the geometry. By having the subject move through many
different poses, local configurations of the body parts are repeated,
allowing the construction of a complete model.

Our main contribution is a method of gathering silhouette ob-
servations such that a simple reconstruction algorithm can create a
complete deformable model, parameterized in a way that is useful
for animation. We do not contribute new techniques in the areas of
skin representation and skin interpolation, but in ways of quickly
acquiring skin data. By using the right combination of prior tools,
we substantially simplify the problem of generating a 3D model
from moving silhouettes.

Our skin model, described in Section 3, represents a complex
articulated figure using a collection of elongated deformable prim-
itives. Our acquisition algorithm, described in Section 4, uses the
silhouettes to provide constraints on the possible body geometry.
The reconstruction algorithm, described in Section 5, uses these
constraints to find a model of the skin deformations, parameterized
with the motion of the skeleton. This parameterization allows ani-
mation of the skin with new motion data.

2 Related Work

The most general 3D reconstruction systems attempt to build a
model of the scene at each successive time frame, allowing the
acquisition of moving objects. These systems use vision meth-
ods such as binocular stereo [Nebel et al. 2001] and voxel color-
ing [Vedula et al. 2002]. For certain kinds of scenes, the geometry
can be reasonably represented using a visual hull: the space carved
about by silhouettes from a set of viewpoints [Matusik et al. 2000;
Würmlin et al. 2002].

Some of these methods make frame-to-frame comparisons of the
geometry [Würmlin et al. 2002; Vedula et al. 2002], but they do not
accumulate observations to improve the geometry. The strength of
gathering information from temporally distinct views is illustrated
in recent work in real-time model acquisition, in which a rigid ob-
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ject can be moved while it’s digitized [Rusinkiewicz et al. 2002].
Real-time feedback and freedom of movement allow the operator
to fill in holes and build a complete model. While this technique al-
lows accurate and complete models to be generated from multiple
observations of an object, it is limited to rigid objects.

Factorization techniques, in contrast, can build models of de-
forming objects. Surface deformations are represented as a lin-
ear combination of prototype shapes, found via matrix factoriza-
tion [Bregler et al. 2000; Brand 2001; Torresani and Bregler 2002].
A matrix of image observations is factored into a matrix of pose
vectors, which defines the object’s motion, a matrix of geome-
try vectors, which defines the basis shapes, and a vector of basis
weights, which defines the deformation of the object. While these
factorization methods are quite powerful, they have not been ap-
plied to capture deformations of an entire human body.

To overcome the difficulties of general reconstruction, a model
of an object class can be fit to observations of a particular object.
For example, numerous methods reconstruct and reanimate the hu-
man face [Guenter et al. 1998; Cootes et al. 1998; Blanz and Vet-
ter 1999]. These techniques are successful at modeling a range of
human faces, but would be difficult to extend to capturing an en-
tire human body, due to large-scale occlusions and deformations.
Nonetheless, they would be an excellent complement to our current
system, which cannot capture facial expressions.

Several systems reconstruct human bodies by fitting prior model
to observations of a moving person. For tracking applications,
simple models consisting of ellipsoids can be fit using silhouettes
[Mikić et al. n. d.]. Plänkers and Fua [2001] use an elaborate
anatomical model, in which the skin surface is defined as the level
set of Gaussians rigidly attached to a skeleton. The dimensions
of these Gaussians are optimized according to observations from
the silhouettes and stereo depth estimates. Kakadiaris and Metaxas
[1993] use a pre-defined protocol of motions to extract 2D contours
of body parts. These 2D contours can deform for different poses
and be interpolated to obtain an approximation of the 3D geometry.

Allen and colleagues [2002] acquire multiple poses of the hu-
man body using a 3D laser scanner to obtain a high level of detail
and accuracy. Each of the reconstructed poses is related to a skele-
tal configuration through the use of dots placed on the skin. New
poses are then synthesized by interpolating nearby key poses. This
method has successfully created animations of the upper body, but
it requires a substantial amount of time and effort in order to ac-
quire hundreds of 3D range scans. In contrast, our system acquires
the deformation automatically as the subject moves freely through
various poses, building a complete model using only a few min-
utes of motion. However, because our models are built from video,
rather than laser scanning, we do not obtain the same level of detail.

Like many of these acquisitions systems, our work uses inter-
polation to combine models of different poses. These interpolation
techniques (such as [Lewis et al. 2000; Sloan et al. 2001; Wang and
Phillips 2002]) vary in the interpolation mechanisms, the particular
quantities being interpolated, and the way in which the skeleton
drives the interpolation. Several of these papers give theoretical
results on the relative strengths and limitations of different repre-
sentations of geometry and deformation—a subject not addressed
in this paper. Instead, we focus on how to position and reconstruct
prototype shapes in a fast and automatic manner.

3 Skin Model

Our skin model simplifies the complex process of acquiring geom-
etry of a moving human body. We represent the skin surface using
points along needles that are rigidly attached to a skeleton. This
model describes complex areas near joins by combining nearby
samples. Deformation is parameterized with a configuration space
for each bone.

3.1 Deformable Primitives

We represent the geometry of an articulated human figure using a
collection of elongated deformable primitives. Each deformable
primitive consists of a rigid axis, which usually corresponds to a
bone in the skeleton, and a set of needles, which are rigidly attached
to the axis. Each needle originates at a point along the axis and
extends outward in a fixed direction with respect to the axis.

Our deformable primitive is equivalent to a discrete sampling of
a pose-varying generalized cylinder [Nevatia and Binford 1977].
Smooth surfaces can be reconstructed from the point samples by
fitting an arbitrary function to the needle endpoints. Our implemen-
tation triangulates the needles to create a piece-wise linear surface
model. Triangulation is simplified by positioning the needles in
rings around the axis, as shown in Figure 2. We can vary the sam-
pling density by changing the number of needles in the radial and
axial directions. Although we use regular sampling for rendering
purposes, our acquisition and estimation algorithms do not require
any particular needle arrangement. Indeed, irregular sampling den-
sity may provide a more economical representation of the human
form (e.g. using additional samples near joints).

As an alternative to our needle model, a surface could be repre-
sented by oriented particles that model deformation by moving in
three dimensions [Szeliski and Tonnesen 1992]. This would com-
plicate our acquisition and estimation algorithms because the posi-
tion of each particle would be a function of three parameters instead
of one. By using a scalar value for each needle, we can infer how a
particular observation changes with the motion of the skeleton.

Axial View

Radial View
Figure 2: Deformable primitives describe the human body with
variable-length needles (red) attached to a fixed axis (black). The
left skeleton uses needle counts given in Table 1. The skeleton on
the right uses one quarter as many needles (half as many radially
and half as many axially). In both cases, the needles are shown at
half the maximum length indicated in the table.

3.2 Representation of Junctions

Junctions between limbs are traditionally difficult to model: the
combination of linked bone structures, muscles, and tendons create
complex surface behaviors. We represent a junction between two
deformable primitives by taking the union of the their volumes, as
illustrated in Figure 3. These interpenetrating objects work together
to describe the deformation of the skin near a joint. We do not use
explicit constraints to ensure continuity between the surfaces from
different skin models. The continuity arises naturally because each
deformable primitive deforms appropriately.

Although this representation is well-suited to our acquisition
process, it is more expensive to render. Because each primitive ren-
ders as a separate mesh, rendering the entire body requires merging
all the meshes. Furthermore, the nodes on the surface do not move
like the real skin, which complicates texturing. Possible solutions
to these problems are discussed in Section 7.
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Figure 3: We represent an elbow using overlapping deformable
primitives for the upper arm and forearm. Both primitives deform
as the elbow bends, maintaining continuity in the junction. The
image on the right shows how the segments overlap in a complete
body.

3.3 Parameterization of Skin Deformation

The length of each needle can depend on parameters that influence
skin deformation. For example, we may wish that the geometry of
the upper arm varies as a function of the angle of the elbow and
as a function of the angle of the shoulder. We could also make the
geometry vary as a function of muscle force (for muscular people)
and the direction of gravity (for heavy people).

The results in this paper demonstrate deformations caused by
the motion of a skeleton. Each deformable primitive has a limited
configuration space that is a subset of the configuration of the entire
body. For example, the deformation of the left arm does not depend
on the configuration of the right knee. We make this assumption to
cope with the combinatorial complexity of the human pose space.
By decoupling remote parts of the body, we can capture a wide
range of deformations in a short amount of time.

To avoid the issues of joint-angle representation, we use marker
coordinates to determine the configuration space. For example, the
configuration of the right thigh depends on markers attached to the
hip and the right calf, where the positions are expressed with respect
to the local coordinate frame of the thigh bone. Table 1 summarizes
the configuration parameters for each deformable primitive.

4 Acquisition of Skin Observations

Our system extracts surface observations by combining information
from two separate sources: a commercial motion-capture system
and a set of standard video cameras. The motion-capture system
tracks reflective markers, which are used to compute the motion
of each bone. Because the motion-capture cameras in our system
use infrared strobes and filters, they are not suitable for silhouette
extraction. Instead, the silhouettes are extracted from one or more
video cameras placed around the motion-capture workspace. Our
system does not require any special camera arrangement; we posi-
tion the cameras such that the subject is within the view throughout
the motion, as shown in Figure 4.

Our system first calibrates and synchronizes the video and the
motion data. It then combines these two data sources to measure
the intersection of needles and silhouettes. The reconstruction al-
gorithm described in Section 5 subsequently processes the resulting
measurements to parameterize the motion of the skin surface.

4.1 Calibration

Camera calibration relates the motion data (the location of markers
and bones in a single 3D coordinate system) to the image coor-
dinates of each camera. We perform calibration using a simple de-

Figure 4: The input video includes images of the subject in a wide
variety of poses. As discussed in Section 6.6, the quality of the final
model depends on the range of motion in the training sequences.

vice, shown in Figure 5, which allows us to match an image point to
an identical point in the motion data. The calibration process starts
with synchronization of video and motion data. We move the cali-
bration device up and down in a plane roughly parallel to the image
plane of a particular camera and correlate the vertical image coor-
dinate with the vertical world coordinate. Once synchronized, we
resample the motion-capture data to obtain a sequence of matching
image pi ∈ ℜ2 and world wi ∈ ℜ3 points. The mapping between
these points depends on camera position, camera orientation, fo-
cal length, aspect ratio, and radial distortion. Our system estimates
these parameters by minimizing Euclidean error in image space:

min
q, f ,a,c,r ∑i

||pi −Dc,r(Pq, f ,awi)||

The matrix Pq, f ,a describes a perspective projection (parameter-
ized by camera pose q, focal length f , and aspect ratio a) and the
function Dc,r() describes first-order radial distortion (with center
of distortion c and a distortion coefficient r). For simplicity we si-
multaneously optimize the parameters using the downhill simplex
method [Nelder and Mead 1965]. The method quickly converges to
a solution that obtains a sub-pixel RMS error over several hundred
(wi, pi) input points.

Figure 5: Our calibration device consists of a green sphere with
two motion-capture markers. We find the center of the sphere in
image coordinates by detecting green pixels. We find the center
of the sphere in world coordinates by taking the midpoint of the
two marker positions. This gives a single correspondence that be
varies through time to obtain a number of spatial correspondences
for calibration.

4.2 Silhouette Extraction

Our system uses standard background subtraction to obtain silhou-
ettes from video data. For each pixel, background subtraction finds
the difference between the current frame and an empty background
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Configuration Dim. of Radial Axial Maximum
Bone Name Depends On Config. Space Needles Needles Needle Length
Torso Upper Arms, Hips 9 30 30 30cm
Hips Torso, Thighs 9 30 30 30cm
Right Upper Arm Torso, Right Forearm 6 20 20 15cm
Left Upper Arm Torso, Left Forearm 6 20 20 15cm
Right Forearm Right Upper Arm 3 20 20 10cm
Left Forearm Left Upper Arm 3 20 20 10cm
Right Thigh Hips, Right Calf 6 20 30 20cm
Left Thigh Hips, Left Calf 6 20 30 20cm
Right Calf Right Thigh, Right Foot 6 20 30 15cm
Left Calf Left Thigh, Left Foot 6 20 30 15cm
Right Foot Right Calf 3 20 20 15cm
Left Foot Left Calf 3 20 20 15cm

Table 1: Each deformable primitive is described with a configuration space (Section 3.3), needle counts (Section 3.1), and a maximum needle
length (Section 4.3).

frame and labels pixels with a high difference as part of the fore-
ground. Our system uses a large subtraction threshold to overcome
shadows and video compression artifacts. The threshold near the
head is smaller to account for the closeness of skin color to the
background (where the head position is determined directly from
the motion capture data). These thresholds are sufficiently robust
that the same values can be used across multiple cameras and across
multiple sequences.

We use the silhouettes and camera calibration to synchronize the
video data and motion data for a human subject. Our system uses
a simplex optimizer (the same one used for camera calibration) to
minimize an objective function that measures the image-space dis-
tance from projected arm and leg markers to the silhouettes over a
number of video frames.

4.3 Accumulation of Needle Observations

After calibrating and synchronizing the video and motion data, the
system projects each needle into each video frame to compute the
needle length from its intersection with the silhouette. Starting at
the origin of the needle, we traverse the image outward until the
needle projection leaves the silhouette, as illustrated in Figure 6.
If the traversal extends beyond a prescribed maximum length, the
measurement is discarded. Thus the system discards observations
for needles that are nearly perpendicular to the image plane or that
extend into distant parts of the body. Our maximum length values
(specified in Table 1) are relatively large; the same values can be
used for a wide variety of people.

For each needle length observation, we also record the bone’s
current position in configuration space, as described in Section 3.3.
By annotating each observation with the conditions under which
the observation was made (a location in configuration space), we
can estimate skin deformation, as described in the next section.

5 Skin Reconstruction

The acquisition process accumulates observations of needle
lengths. Subsequent reconstruction will refer only to these obser-
vations, not the original video and motion data. Because the needle
observations do not give a complete description of the geometry at
any time instant, reconstruction integrates observations over time
to obtain a complete model. Skin reconstruction determines which
observations are valid measurements of the true needle length and
which are invalid due to occlusion.

As shown in Figure 6, multiple types of invalid observations oc-
cur. In each case, the measurements overestimate the true geome-

(a)
(b)

A
B

Camera Center
1 2

Figure 6: Left: To obtain a needle length observation, we project
the needle into the image plane. We traverse the image along the
needle (from (a) towards (b)), to find the image space distance from
the bone to the edge of the silhouette (in blue). This length is con-
verted to a world space distance and later used to estimate defor-
mation. Right: The black lines indicate the silhouette observed for
the pair of objects A and B. The length of needle 1 is overestimated
because the background is occluded by object A while the length of
needle 2 is overestimated because the background is occluded by
object B. In general, the silhouette provides an upper bound on the
geometry.

try. Thus, by taking the minimum of these observations, we find the
least upper bound on the true geometry. Equivalently, we seek the
maximal geometry that is consistent with the observations.

Because the silhouettes provide an upper bound on the geometry,
the needle data effectively has a one-sided error. This contrasts the
two-sided errors that occur with other reconstruction methods (e.g.
stereo and factorization). This is a key element of our approach: a
one-sided error can be removed more easily than a two-sided error.

The reconstruction algorithms uses the following design goals to
compute the maximal consistent geometry:

occlusion handling. Invalidate measurements that are incorrect
because of visibility.

time aggregation. Combine multiple observations to complete
partially observed shapes.

hole filling. Borrow an observation from a nearby configuration if
there are no valid observations for a given configuration.

noise filtering. Remove outliers caused by errors in silhouette ex-
traction and motion capture.

deformation modeling. Obtain geometry estimates that vary
smoothly with configuration.
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5.1 Deformation Model

The skin deforms with the motion of the skeleton. We model this re-
lationship with a set of functions li j(x) that each map a joint config-
uration x to an appropriate needle length, where the index i ranges
over all deformable primitives in the body and the index j ranges
over all needles in that primitive. The configuration point x ∈ Ci
describes the configuration of a deformable primitive as discussed
in Section 3.3. We represent lengths li j(x) using a normalized ra-
dial basis function (NRBF) [Broomhead and Lowe 1988], which
interpolate prototype shapes via distance-weighted averaging:

li j(x) =
∑k vi jkK(x, pik)

∑k K(x, pik)
,

where index k ranges over all prototypes. Each prototype has a
location pik in the configuration space Ci and a shape vi jk , which
gives the length of the jth needle in the kth prototype of primitive i.
The weighting function K(x1,x2) is an arbitrary distance kernel. We
choose a Gaussian kernel because it is well-behaved over a range
of dimensionalities.

This formulation obtains better extrapolation than non-
normalized radial basis functions (which go to zero as they move
further from the basis locations). The NRBF extrapolates by repli-
cating the nearest values outside the realm of observed data. In
the context of skin modeling, we prefer this kind of extrapolation
because it avoids generating extreme geometry for extreme config-
urations. Allen and colleagues [2002] use nearest-neighbor inter-
polation for the same reason.

Although NRBF interpolation is simple and effective, more so-
phisticated techniques have been developed for interpolating skin
prototypes [Lewis et al. 2000; Sloan et al. 2001; Wang and Phillips
2002]. The use of these other techniques could provide better re-
sults (at the cost of increased conceptual complexity).

We use the term prototype because it is a conceptually useful
way to think about our model. Many other methods represent defor-
mation via the interpolation of pre-defined prototypes [Lewis et al.
2000; Sloan et al. 2001; Blanz and Vetter 1999; Allen et al. 2002].
In our work, however, the prototypes are not pre-defined. Their lo-
cations are randomly scattered in the configuration space and their
shapes are inferred from the data.

5.2 Prototype Locations

Before we estimate the prototype shapes (vi jk) we neeed to deter-
mine the prototype locations (pik). We want the prototypes to be
well scattered across the space of training poses so that we can
model the complete range of observed deformations.

For each deformable primitive, we greedily select prototype lo-
cations from among the set of observed points in the configuration
space. We choose the first prototype location pi0 at random from the
known configurations. We then select pi1 to be the furthest (in Eu-
clidean distance) from pi0 and proceed by selecting each additional
prototype pik to be furthest from the previously selected prototypes
(pil for l < k). An exhaustive search, which is linear in the num-
ber of datapoints and quadratic in the number of prototypes, can
be used to find each prototype location. The results are illustrated
in Figure 7. Unlike clustering the observed configurations or sam-
pling from the observed configurations, this results in prototypes
being placed even where the data density is low.

5.3 Prototype Shapes

Once each prototype has been assigned to a particular location in
configuration space, we can determine the shape of the prototype

Figure 7: Prototype locations in configuration space: the small dots
represent observed poses of the forearm (left) and lower leg (right).
The configuration space consists of 3D marker coordinates in the
bone’s local coordinate system (projected into 2D for these plots).
The red marks show projected locations of prototypes, which are
randomly scattered across the observed configurations.

by finding lengths for each needle in the prototype. Due to occlu-
sion, the length observations may include many incorrect values,
so we must select multiple observations to form a reliable estimate
of the correct length. Because the geometry varies with pose, we
want to select these observations from nearby points in the config-
uration space. For each needle of each prototype, we select the n
nearest observations. To remove dependence on the dataset size, we
choose n to be equal to the number of observations multiplied by a
fixed fraction Fnear. By selecting the points according to this frac-
tion instead of a fixed distance, we consider a narrow range of data
where the observations are dense and a wide range of data where
the observations are sparse. This satisfies the hole-filling goal by
borrowing observations from other poses when there are no obser-
vations for a given pose.

To estimate the prototype shape based on these nearby observa-
tions, we compute a robust minimum by taking the Fmin percentile
observation after sorting by needle length. This achieves the goal
of finding the maximal consistent geometry while allowing a small
number of outliers.

The complete reconstruction algorithm is illustrated in Figure 8
and summarized as follows:

for each bone i do
Ci ← get config space observations(i)
for each prototype k do

pik ← find prototype location(k, Ci)
end for
for each needle j do

Si j ← get needle observations(i, j)
for each prototype k do

R ← nearest neighbors(Si j , pik, Fnear)
vi jk ← robust minimum(R, Fmin)

end for
end for

end for
The nearest neighbors(S, p, f ) function finds the fraction f of
points in S that are closest to the point p.

5.4 Animation

The prototype locations and shapes provide a representation that is
sufficient to synthesize new geometry. When animating the model
for a new motion sequence, we are given a pose for each frame of
the animation. The given pose determines a point in the configu-
ration space of each deformable primitive. We then interpolate the
prototype shapes (using the NRBF equation from Section 5.1) to
obtain a complete geometry.
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Figure 8: A plot of observed lengths for a single needle in a de-
formable primitive. To estimate the length of a needle at a given
prototype location (blue dotted line), we consider a set of nearby
observations (between black dashed lines). The neighborhood is
selected as the closest fraction Fnear of observations, resulting in
a narrow neighborhood where the data is dense (left) and a wide
neighborhood where the data is sparse (right). Once the neighbor-
hood is selected, we find a low percentile length value (red line) to
be the length of the needle in this prototype shape.

To animate our model using motion from a different person, we
need to retarget the motion to the original skeleton. This retarget-
ing is a well-studied problem that can be performed by commercial
software (for example, Kaydara’s FilmBox [Kaydara 2001]). Our
models can also be animated using standard key-framing techniques
by mapping the motion onto the original subject’s skeleton.

5.5 Computational Efficiency

Our system is intended for off-line reconstruction of geometry, but
it is reasonably efficient. The data acquisition phase is linear in
the number of frames: the background subtraction and traversal of
the needles in image space is performed separately for each frame
and can be done in real time. The prototype reconstruction phase
is a batch process that is super-linear in the number of frames,
but nonetheless can be performed quickly (we process observations
from 30 minutes of video in less than 30 minutes).

6 Results and Analysis

Using the methods described in this paper, we have successfully re-
constructed deformable models from video sequences. These mod-
els can be animated with new motion, as shown in Figure 9.

6.1 Experimental Setup

Our default model configuration is given in Table 1. The number
of prototypes per deformable primitive and other reconstruction pa-
rameters are set as described in Section 6.3. Unless otherwise spec-
ified, all models were trained using 8 minutes of motion recorded
with 3 video cameras (for a total of about 24 minutes of video). The
video cameras record 720 by 480 images at 30 frames per second.
The cameras were placed on one side of the workspace to allow
easy segmentation using a cloth backdrop.

The motion capture system uses 10 Vicon MCAM cameras with
mega-pixel resolution to track 41 reflective markers at a rate of 120
frames per second. The Vicon iQ software [Vicon 2003] extracts
the position of each bone from these marker trajectories.

6.2 Model Validation

We quantify the accuracy of our reconstruction by comparing the
observed and reconstructed silhouettes. This silhouette-based error
measure is biased towards parts of the body that tend to appear on
the silhouette and ignores concave parts of the surface that never
appear on the silhouette from any viewpoint (such as the navel).
Nonetheless, silhouette matching provides an automated way to
perform various experiments about the trade-offs of our design de-
cisions.

We measure the silhouette matching error by comparing the seg-
mented video images to a projection of the reconstructed geometry.
To reduce the effect of unmodeled geometry (such as the head), we
consider only pixels near the projected silhouette boundary. We de-
fine the silhouette error of our algorithm on a particular dataset to
be the fraction of pixels for which the predicted and observed sil-
houette do not match, as shown in Figure 10. We normalize the
error value by dividing by the number of frames. This notion of
silhouette error is effectively equivalent to the silhouette mapping
error used by [Gu et al. 1999].

Figure 10: Pixels are colored according to differences between the
estimated geometry and video silhouette: red denotes overpredic-
tion while yellow denotes underprediction. Regions that are more
than a few pixels from the estimate geometry are ignored (i.e. the
head and fingers).

6.3 Selection of Reconstruction Parameters

Using the silhouette error, we can improve the model by automat-
ically selecting optimal reconstruction parameters. For a given ar-
rangement of needles, the prototype estimation algorithm has four
free parameters: the fraction of nearby points Fnear, the percentile
of the minimum point Fmin, the kernel width W (part of K(x1,x2)),
and the number of prototypes per bone N. Although we were able to
set these parameters manually with good results, we now describe
an automatic parameter selection that produces better results.

The parameter selection algorithm varies the parameters and
computes the silhouette error for each set of values. We perform
repeated optimizations of each individual parameter to account for
the dependence between the parameters. In each case, the other pa-
rameters were held near their optimal values (Fnear = 0.022,Fmin =
0.10,W = 7), as shown in Figure 11. Setting the number of pro-
totypes is more difficult because the error continues to decrease as
more prototypes are added; we selected N = 100 based on the sil-
houette error plot. Because this is part of the training process, we
optimize these parameters using the same dataset that we use for
the geometry capture.

6.4 Visualization

To visualize the results, we use radial basis functions (RBFs) to
extract a continuous mesh from our needle endpoints. We gener-
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Figure 9: These meshes were synthesized for a motion sequence that was not in the training set.
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Figure 11: We use the silhouette error to automatically determine
values of the estimation parameters Fnear, Fmin, and the kernel width
W . The fourth plot demonstrates that the error drops as we increase
the number of prototypes per bone.

ate points that are both on and above the surface, then label exte-
rior points with the distance to the surface. This data (a total of
about 15,000 points) is given to a software package (FastRBF ver-
sion 1.4 [Carr et al. 2001]) that fits a radial basis function to the
point/distance data and extracts an isosurface mesh.

This entire process can be scripted to render long motion se-
quences, but it is much too slow for real-time rendering on cur-
rent hardware. Building the RBF and extracting a high-quality iso-
surface mesh takes about 20 seconds per frame. Section 7 discusses
faster alternatives.

6.5 Qualitative Results

By inspection of the rendered geometry, the reconstructed models
capture as much detail as a human observer can see in the source
videos. Examining the surfaces, one can discern the location of
geometric features such as protruding hip bones and the belt of the
motion-capture suit. The primary flaws seem to occur in regions of
high deformation (e.g. a twisting torso) or where the surface was
rarely on the silhouette (e.g. at the junction of the legs).

6.6 Sources of Error

The number of needles can be increased arbitrarily without concern
for overfitting. This increases the spatial resolution of the surface
at the cost of longer computation. Even with a high needle density,
certain geometries cannot be accurately represented. For example,
when using a perpendicular needle arrangement, the model can-
not represent deep folds in the skin such as those that occur under
drooping breasts and stomachs. Not only are these kinds of surfaces
hard for the model to represent, but they are difficult for our algo-
rithm to acquire because they rarely (if ever) appear on the silhou-
ette. In practice, however, these parts of the body would typically
be covered with clothing placed on top of the acquired model.

The number of prototypes can also be increased arbitrarily (again
at a computational cost). Overfitting is possible, but this is deter-
mined by the fraction (Fnear) of nearby points contributing to each
prototype. Adding prototypes without adjusting this fraction does
not cause overfitting so long as the fraction is sufficiently high that
valid observations are selected for each prototype.

In practice, the generality of the deformation model is not fully
exploited because of flaws in the data acquisition and reconstruction
processes. Camera resolution introduces an error on the order of a
pixel for each observation. However, because we typically have
multiple observations of each surface patch, we can in principle
combine these observations in a way that allows sub-pixel accuracy.
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This super-resolution effect is lost due to other sources of er-
ror, such as the accuracy of the motion-capture system. Modern
motion-capture systems are able to track markers with high pre-
cision, but the markers do not provide a perfect estimate of bone
position because they are placed on the deforming skin. Inconsis-
tent bone estimation appears to be a substantial source of error in
our reconstructions.

Another possible source of reconstruction error is silhouette ex-
traction. If too many pixels are mislabeled as background when
they are really foreground, the robust minimum could fail, result-
ing in holes in the geometry. Fortunately, we can easily avoid this
by reducing the background subtraction threshold. This will result
in labeling some background pixels as part of the foreground, but
such errors are not a problem because the algorithm assumes that
the silhouette provides only an upper bound on the geometry.

The quality of the silhouettes can also be effected by motion blur.
Because the video cameras use a relatively large exposure window
(e.g. 1

60 of a second), the motion of the subject introduces up to a
couple pixels of blur. We were unable to use shorter exposure times
due to interference with the fluorescent lighting. An ideal capture
environment would use bright incandescent lights (allowing very
short exposure windows) and a chroma-key background (allowing
better foreground extraction).

The final and most complicated source of error is the range of
input motion. Ideally we would make a valid (non-occluded) ob-
servation of each needle at each prototype location. When this is
not the case, we need to increase Fnear to borrow values from other
parts of the configuration space. Since we take a minimum (albeit
a robust minimum) of the borrowed values, we will underestimate
the geometry in regions of deformation.

To minimize this problem, we direct the subject to move through
a wide range of poses. In our experiments, we found that a few min-
utes of video from a single camera was sufficient to build a decent
model. However, because we can easily gather additional data, we
also considered larger datasets consisting of multiple video cameras
and up to 8 minutes of video footage per camera. By adding cam-
eras, we effectively reduce the amount of performance time needed
to obtain a given level of quality. In Figure 12 we illustrate the
influence of the amount of data on the quality of the results.

7 Conclusion

We have presented a new method for digitizing skin geometry using
motion capture and video cameras. We attach needles to a skeleton
obtained from motion capture, then determine where these needles
intersect silhouettes to obtain constraints on the geometry. These
observed constraints are accumulated and filtered—simultaneously
solving the problems of occlusion, hole-filling, deformation, and
noise-removal. Using a few minutes of video footage, we can create
a human model that can be animated with new motions. The quality
of our reconstruction is primarily limited by the amount of detail
captured in the silhouette, the accuracy of skeleton estimation from
motion-capture markers, and the range of motion in the training set.

Our primary future goal is to increase our reconstruction accu-
racy. We would like to consider other estimation algorithms, such
as ones that use advanced visibility reasoning, make probabilistic
models of noise and occlusion, or perform iterative refinement of
the surfaces found by our reconstruction algorithm. We would also
like to investigate the use of additional configuration space param-
eters, such as the direction of gravity and estimated muscle force.
Additionally, we hope to use better methods for estimating skele-
tons from the motion-capture data and improve input fidelity by us-
ing mega-pixel FireWire cameras, better lighting, and a chroma-key
background. To validate these improvements, we intend to compare
our reconstruction results with a synthetic model by rendering sil-
houettes to train our model.

(a)

(b)

(c)
Figure 12: Part (a): With 3 minutes of motion observed with a sin-
gle camera, we can obtain a good model, but its range of motion is
limited. Part (b): With only 30 seconds of motion observed from
a single camera, the model has a number of unpleasant artifacts.
Part (c): When we train a model without any deformation (by set-
ting Fnear = 1), the joints are poorly represented, illustrating that
deformation is essential to an accurate human skin model.

We also intend to investigate faster ways to obtain a continuous
surface mesh from the interpenetrating deformable primitives. One
option would be to reorient the needles (as a function of pose) such
that they do not overlap and permit a single continuous triangula-
tion over the entire body. Alternately, we could fit a mesh to our
existing geometry and iteratively re-fit the mesh as the underlying
skeleton moves. In either case, our existing acquisition and estima-
tion algorithm could still be used.

For many animation purposes, such as creating large crowds of
extras, animators would like to create new geometries without cap-
turing additional people. Given data for a variety of people, we
could create a basis of human geometries, including variations such
as male vs. female (see Figure 13), thin vs. fat, muscular vs.
smooth. By interpolating prototype shapes, we would automati-
cally obtain not only new geometry but also new deformations.

Recent work in markerless motion capture [Mikić et al. n. d.;
Theobalt et al. 2002] suggests that we may be able to use our
method without requiring special motion-capture equipment. By
eliminating the need for a marker-covered suit, we could capture
meaningful skin texture by projecting video images onto the model
and examining how the texture appearance changes as a function of
pose. Because we have estimates of geometry, this method could
even account for variations in reflectance and lighting. Further-
more, by capturing body texture, we could make use of the factor-
ization methods described in Section 2, allowing reconstruction of
concave regions such as the eyes. This would be a substantial step
toward complete and automatic acquisition of human subjects.
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Figure 13: This model was generated from a female subject using
5 minutes of motion and silhouettes from three viewpoints. In the
future we would like to capture a wide variety of people and inter-
polate their geometries to synthesize new deformable models.
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