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Abstract

In this paper we present novel reflectance measurement procedures that require fewer total measurements than
standard uniform sampling approaches. First, we acquire densely sampled reflectance data for a large collection
of different materials. Using these densely sampled measurements we analyze the general surface reflectance func-
tion to determine the local signal variation at each point in the function’s domain. We then use wavelet analysis
to derive a common basis for all of the acquired reflectance functions as well as a corresponding non-uniform
sampling pattern that corresponds to all non-zero wavelet coefficients. Second, we show that the reflectance of an
arbitrary material can be represented as a linear combination of the surface reflectance functions. Furthermore,
our analysis provides a reduced set of sampling points that permits us to robustly estimate the coefficients of this
linear combination. These procedures dramatically shorten the acquisition time for isotropic reflectance measure-
ments. We present a detailed description and analysis of our measurement approaches and sampling strategies.

1. Introduction

Modeling and measuring how light is reflected from surfaces
is a central theme in both computer graphics and computer
vision. The Bidirectional Reflectance Distribution Function
(BRDF) describes reflection under the assumption that all
light transport occurs at a single surface point. Measured
BRDF data allows the generation of photorealistic images
and is important for many image analysis tasks. Further-
more, measured BRDF data can also be used to refine BRDF
models, and these improved models can aid the measure-
ment process.

A general BRDF describes reflected radiance as a four-
dimensional function of incident and exitant directions. In
this paper we focus on the important subclass of isotropic
BRDFs, for which rotations about the surface normal can
be ignored. Isotropic BRDFs can be described by a three-
dimensional function of the incident angle from the surface
normal and the reflected radiance over the entire hemisphere.
A uniform sampling of this function requires a huge amount
of measurements. For example, an angular resolution of 0.5 °
requires more than 46 million measurements.

The classical device for measuring BRDFs is the goniore-
flectometer, which is composed of a photometer and light
source that are moved relative to a surface sample under
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computer control. By design, such devices measure a sin-
gle radiance value at a time, making this process very time-
consuming. There have been efforts to make this acquisition
process more efficient by measuring many BRDF samples
at once. This can be achieved by using a digital camera and
mirrors?2 3 or spherical samples of the measured material!4.
However, optical elements usually do not allow the mea-
surement of reflectance at near grazing angles, and they can
be a source of indirect illumination, which can corrupt the
measurements. BRDF measurements using spherical speci-
mens may be difficult for some materials, and this approach
requires the material to be homogeneous. In either case, a
dense sampling of the BRDF still requires numerous high-
dynamic range photographs and a lot of time.

Our work tries to reduce the number of BRDF measure-
ments by answering these questions: (1) What is the required
sampling frequency over the domain of the isotropic BRDF
function to adequately measure it? (2) What is the optimal
set of basis functions that represent any isotropic BRDF?
(3) Can new BRDFs be represented as a linear combina-
tions of these basis functions? The answer to these ques-
tions leads to optimal BRDF sampling procedures for gonio-
reflectometers and digital camera scanners.

Our techniques are based on the measurement and anal-
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ysis of a relatively large collection of densely sampled
isotropic BRDFs from many different materials!>. Our first
proposed measurement procedure is based on the wavelet
analysis of the space of measured BRDFs. We observe that
the BRDF functions in our set have varying frequency con-
tent at various points in their domain. For example, spec-
ular highlights have complicated local spectrums that con-
tain high frequencies, whereas off-specular signals are typi-
cally smooth with simple local spectrums. We exploit these
properties of BRDF spectrums to derive an efficient mea-
surement procedure that employs a non-uniform sampling
of the BRDF function. The sampling density at each point
of the function’s domain is proportional to the signal fre-
quency that adequately represents any BRDF. This technique
requires around 69,000 measurements at specific points of
the BRDF domain.

Next, we show that new BRDFs can be accurately repre-
sented using a linear combination of 100 BRDFs in the orig-
inals set. It follows that one needs only 100 measurements
to derive coefficients for the linear combination. This mod-
eling procedure requires having the original densely sam-
pled BRDFs to synthesize the new BRDFs. We show that
the noise and error characteristics of the BRDFs synthesized
using this method are very good.

2. Background and Previous Work

Compared to the vast literature on BRDF models, there
are relatively few publications about BRDF measure-
ments. Traditionally, BRDF data is measured using gonio-
reflectometers!’- 1. One of the first methods to use a digital
camera is the pioneering work of Ward?2. His measurement
device consists of a hemispherical mirror and a camera with
a fisheye lens. Moving the light source and material over
all incident angles enables the measurement of anisotropic
BRDF data.

Dana et al.* developed a system to measure spatially
varying BRDFs, also called Bidirectional Texture Functions
(BTFs). Using a digital camera, a robot arm, and a light
source, they take approximately 200 reflectance measure-
ments over varying incident and reflected angles for a pla-
nar material sample. The data for about 60 measured materi-
als is available as the CUReT database?. More recently, they
proposed an improved measuring device for BTFs using a
parabolic mirror3.

Marschner et al.!4 13 constructed an efficient measurement
system for isotropic BRDFs by using a spherical material
sample. A fixed camera takes images of the sample under
varying illumination from an orbiting light source. We use
a similar setup, discussed in Section 3, to measure a large
database of isotropic BRDFs. Lu et al.!2 use a similar scan-
ning device with cylindrical sample geometry to measure
the anisotropic BRDF of velvet. Marschner et al. extended
their method to surface geometry acquired with a laser range

scanner, including human faces!4. None of these measuring
approaches take the local spectral characteristics of BRDFs
into account. Consequently, they all require a dense, uniform
sampling over the BRDF domain, which is time and data in-
tensive.

To shorten the acquisition procedure, and to filter out the
inherent noise of the measurement process, measured BRDF
data is typically fit to analytic BRDF models using various
optimization techniques?2 8414, Sato et al.!® fit a spatially
varying BRDF model to the relatively sparse image data of a
rotating object with known geometry from laser range mea-
surements. Lensch et al.!! improve this approach by clus-
tering sparsely sampled reflectance measurements, fitting a
Lafortune BRDF model® to the data, and then computing
basis BRDF functions for material clusters using principal
function analysis (PFA). Yu et al.24 fit an analytic BRDF
model to scenes that include global effects, such as indirect
illumination. However, analytic BRDF functions are only an
approximation of real reflectance, and the resulting analytic
model is only an approximate fit to the measured BRDF val-
ues.

There are a variety of BRDF representations that have
been used for fitting measured data. Westin et al.23 proposed
spherical harmonics to fit simulated BRDF data. Lafortune
et al.® developed a compact BRDF model based on co-
sine lobes that is able to represent off-specular peaks and
retro-reflection. Schroeder at al.20 use spherical wavelets
to represent a slice of the BRDF with constant viewing
direction. Other efficient representations include Zernicke
polynomials?, purely positive matrix factorization!¢, and sin-
gular value decomposition (SVD)e.

Lalonde and Fournier®- 10 use a wavelet decomposition
and a wavelet coefficient tree to represent BRDFs. The major
advantage of wavelets is the ability to perform local analysis
— that is, to analyze a localized area of a larger signal. As
we will show in Section 4, we employ a similar wavelet tree
representation for our large collection of measured isotropic
BRDFs.

3. Data Acquisition

We have built a BRDF measurement device similar to the
one described by Marschner et al.!? (see Figure 1). Our de-
vice and its measurement process are described in detail by
Matusik et al.15.

Our acquisition system, like Marschner’s, requires a
spherical specimen of each material that is measured. We
have acquired isotropic BRDFs of more than 100 different
materials, including metals, plastics, painted surfaces, and
fabrics. Figure 2 depicts some of the materials that were
acquired. We used this corpus of sampled BRDFs to ana-
lyze the general signal characteristics of isotropic BRDFs.
This analysis, in turn, allowed us to derive optimal sampling
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Figure 1: A photograph of our isotropic BRDF measure-
ment device.

Figure 2: Pictures of some acquired materials.

strategies for subsequent BRDF measurements, under the as-
sumption that our measured BRDFs are representative of the
space of all isotropic BRDFs.

4. BRDF Representation

The natural coordinate system (0i,, Oout, Qgifr) for isotropic
BRDFs requires very dense angular sampling to accurately
represent specular peaks. When the sampling frequency for
any angle is too low, a circular specular peak may become
an ellipse tilted in different directions depending on the in-
coming light position.

To address this problem we use the coordinate system
proposed by Rusinkiewicz!® (Figure 3) which parameter-
izes BRDFs based on the half-vector between incoming and
outgoing light direction. The three angles used to describe
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Figure 3: The Rusinkiewicz BRDF coordinate system.

isotropic BRDF are: 0y, 04, and ¢4. The angle ¢y, is irrele-
vant for isotropic BRDFs.

We make use of nonuniform sampling to represent the
specular peaks more efficiently. Specifically, we sample 0y
more densely near the specular reflection and decrease the
sampling density as the angle increases. We illustrate this in
Figure 4) for one incident light direction.

In our BRDF measurement method, each image of a
sphere specimen represents many BRDF samples!S. We
put all measurements corresponding to the same angles
(6h,04,04) into so called sampling bins. To minimize sys-
tematic noise, we remove the lowest and highest 25% of the
values in each sampling bin and average the remaining mea-
surements. This also helps to compensate for small varia-
tions in material properties over the specimen.

? 57-71\\A\ T ‘/Y" T s
s /_(\_1/ o5 0 0%
Figure 4: Our sampling density for one slice of a BRDF (6,
= 45°). The solid line denotes the incident light direction.
The sampling density is the highest (white color) near the

specular reflection direction (dashed line).

We discretize 0y, 04, and ¢4 into 90, 90, and 360 sam-
pling bins, respectively. This results in a total of 90 x 90 x
360 = 2,916,000 bins for each color component (R,G,B). We
also enforce the BRDF reciprocity constraint, which in the
Rusinkiewicz coordinate system takes the form of:

S (8h,84,9d) = f(OBn, 04,94 + 7). )]
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By taking advantage of reciprocity we need only discretize
04 into 180 bins. Overall, the Rusinkiewicz BRDF parame-
terization reduces the number of sampling bins required to
represent specular BRDFs with a given fidelity. We estimate
that we would need samples every 0.25° in the natural co-
ordinate system (23,328,000 sampling bins for each color
channel) to comparably represent the same BRDFs.

Subsequent analysis of the localized frequency content of
our acquired BRDF database will permit us to even further
reduce the sampling density of our BRDFs. The details of
this analysis and the resulting implications for BRDF sam-
pling strategies are described in the following sections.

5. Wavelet Analysis of BRDFs

Typical BRDFs exhibit high frequencies in only very spe-
cific regions of their parameter space (e.g., near specular
peaks). Only these regions require dense radiance sampling.
Otherwise, BRDFs are smooth and slowly varying over most
of their domain, and, thus, require fewer samples for accu-
rate reconstruction in these regions. As discussed in the pre-
vious section, non-uniform sampling can be used to exploit
this “spatially varying” localized spectrum property, which
is characteristic of BRDFs. The precise densities and pat-
terns of this non-uniform sampling is largely a matter of
guess work, and it is likely that one should err on the side
of oversampling the function, as we attempted to do in our
acquisition of example BRDFs. However, once given a large
set of oversampled representative BRDFs it is possible to
analyze the entire corpus in order to reveal the maximum lo-
calized signal frequencies for any point in the domain, which
in turn implies the maximum necessary sampling frequency
for that point. Assuming that our example BRDFs are repre-
sentative of the entire space of isotropic BRDFs, we can then
sample the BRDF of any new material correctly at a lower
non-uniform sampling rate without any a priori knowledge.

Standard Fourier analysis could be used to determine the
frequency spectrum of our database. However, the maximum
signal frequency would be very high since the Fourier ba-
sis functions span the whole domain of the sample space.
Consequently, a Fourier analysis would suggest a dense and
uniform sampling. We instead use wavelet analysis to obtain
the maximum signal frequency for each part of the BRDF
domain. The advantage of wavelet analysis is its ability to
perform localized analysis of a larger signal because the un-
derlying wavelet basis functions vary both in the spatial and
in the frequency domain?!.

Wavelets have been used before to represent BRDFs.
Schroder and Sweldens?0 use spherical wavelets to represent
2D slices of a 4D reflectance function. They can represent a
slice of the BRDF with several hundreds of coefficients (the
rest of the coefficients is set to zero). Lalonde and Fournier!0
extended this work and represent 4D reflectance functions
using 4D basis wavelet functions stored in a wavelet tree.

They achieve a very compact representation for a single
BRDF. In our work we use a wavelet tree to analyze and
represent our entire collection of measured BRDF functions.

Wavelet analysis represents a particular BRDF function
as a linear combination of basis functions of varying scale.
At the same time it specifies the signal frequency over each
interval of the function’s domain that is required to repre-
sent the function. The signal frequency translates directly
to the required sampling frequency for each interval?!. In
general, this sampling frequency is only adequate for one
particular BRDF. We performed a wavelet analysis for all
of the BRDFs we have measured. For each interval of the
BRDF domain we found the maximum required frequency
needed in order to reconstruct any of the measured BRDFs.
Using this information we derive the sampling density (and
corresponding sampling points (6,604, ¢4)) which should be
measured in order to sample any arbitrary BRDF correctly.
Our algorithm also reconstructs a dense BRDF representa-
tion from the measured BRDF values at the specified sam-
pling points.

We now discuss the details of our wavelet analysis. As
stated in Section 4, each measured BRDF is represented
as a 90 x 90 x 180 three-dimensional array of sampling
bins. Standard wavelet analysis packages require data di-
mensions that are powers of two. We insert each BRDFs
into a 256 x 256 x 256 array and pad the rest of the array
with zeros. Next, we perform a non-uniform wavelet trans-
form on each 3D array to obtain an array of 256 x 256 x 256
wavelet coefficients. For each BRDF, we keep the high-
est coefficients that allow us to reconstruct the BRDF with
3% precision because that is the estimated accuracy of our
measurements'S. The rest of the coefficients are set to zero.

The non-zero wavelet coefficients define the required sig-
nal frequency in each interval of the domain for a particular
BRDEF. The set of non-zero coefficients is generally different
for each measured BRDF. However, there is a large degree
of coherence between these sets. When we take the union
of these sets for all 100 BRDFs, the size of the set grows to
approximately 69,000 common wavelet coefficients — 4.7%
of the original data. The union of non-zero coefficients cor-
responds to a set of wavelet functions. We call this set of
wavelet functions the Common Wavelet Basis (CWB) for all
isotropic BRDFs. This wavelet basis defines the maximum
signal frequency over each interval of the function’s domain
for all BRDFs in our set.

Next, we discuss how to define the BRDF sampling
points, how to compute the CWB coefficients using the
BRDF values at these sampling points, and how to recon-
struct the full BRDF from the CWB. First, we note that each
BRDF G(6,64,04) can be represented as a weighted sum
of the CWB functions H;(0y,04,09q) as follows:

G(Bn,04,0a) = Y H;(6p,04,04) x C;, )
=

i=

(© The Eurographics Association 2003.



Matusik et al / Efficient Isotropic BRDF Measurement

where C is a vector of coefficients for the CWB functions
that need to be computed. We also note that all of the CWB
functions are known (for the sake of simplicity we use Haar
wavelets) and they can be evaluated at any point (81, 64,0q).
Each BRDF value G(0y,04,¢4) produces one linear con-
straint on the values of the wavelet coefficients C. Given the
approximately 69,000 non-zero coefficients as constraints
allows us to compute all wavelet coefficients C by solving
a system of linear equations.

Next, we need to select the sampling points (6,04, 4)
that produce the linearly independent equations, and, there-
fore, allow us to compute the wavelet coefficients. We note
that there is no unique set of sampling points; thus, we just
select one possible set that leads to linearly independent
equations. First, we compute one constraint for each original
sampling point for a total of 1,458,000 equations. Many of
these are linearly dependent. We determine a set of 69,000
equations that are linearly independent. Given these equa-
tions and the corresponding BRDF values we solve the fol-
lowing system of equations:

G=HxC. 3)

Matrix H is large (69,000 x 69,000) but typically very
sparse — usually there are around 40 nonzero elements in
a row. This is a result of the small support of the wavelets
at higher levels in the wavelet tree. We use the MAT-
LAB sparse matrix routine to directly perform the operation
HT /C T for each color channel (R, G, and B).

Unfortunately, the coefficients for wavelets at the lowest
levels (level O, 1, and 2) are not estimated robustly. There
are 8, 84, and 384 of them, respectively. However, we can
estimate these coefficients using a different method. We col-
lapse the sparse 69,000 BRDF values from a 256 x 256 x
256 gridtoa 16 x 16 x 16 grid by averaging the values. This
grid becomes completely filled and we perform the wavelet
transform on this low resolution grid. The coefficients of the
low resolution grid approximate the low level coefficients of
the high resolution grid well.

In order to reconstruct a BRDF we use the estimated coef-
ficients of the CWB and we set coefficients for the wavelets
not in the CWB to zero. Then we perform the inverse wavelet
transform to compute the BRDF values at the original sam-
pling grid locations.

6. Pull-Push Reconstruction of BRDFs

In the previous section we have shown how to reconstruct
a BRDF on a uniform grid using 69,000 BRDF samples at
specified locations. In this section, we present an alternative
reconstruction method that in practice yields lower recon-
struction errors.

Since we are given sparse BRDF samples we can treat the
problem of reconstructing the full grid BRDF as a scattered
data interpolation problem. One simple and fast methods is
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the pull-push method>. This method relies on the pyramid
data structure of a progressively downsampled BRDF.

The algorithm consists of two steps. (1) The pull step is
applied hierarchically from the highest to the lowest reso-
lution in the BRDF pyramid. Each lower resolution of the
pyramid is obtained from the higher resolution version. First,
the higher resolution BRDF is convolved with a low pass
filter. Then, the result of this convolution is downsampled
by a factor of two to obtain the lower resolution BRDF. (2)
The push step is also applied hierarchically to the BRDF
pyramid. It starts at the lowest resolution and progresses to
the highest, original, resolution. Low resolution data com-
puted during the pull phase is used to fill in the gaps at the
higher resolution. If the higher resolution BRDF value has
high enough confidence then the lower resolution value is
not used. Otherwise, the higher and lower resolution values
are blended together. The implementation details of the al-
gorithm are described by Gortler et al.5.

7. Linear Combinations of BRDFs

Matusik et al.!> performed Principal Component Analysis
(PCA) over the set of more than 100 densely measured
BRDFs. They have shown that each of the measured BRDFs
can be represented well by a linear combination of 45 prin-
cipal components. In this section we show that new BRDFs
can be represented equally well using the BRDF:s in the orig-
inal set. It follows that one needs only to estimate appropri-
ate weighting factors for each of the original BRDFs in order
to estimate any new BRDF. Since there are only 100 of these
coefficients, the number of BRDF samples needed for this
estimation should be relatively small.

We represent each densely sampled BRDF as a high-
dimensional vector composed of all values for R, G, and B.
Let P be the matrix of all BRDFs in the original set, C the
vector of coefficients for the linear combinations, and B the
new BRDF we measure. It follows that:

PxC~B. 4

This system of equations is over-constrained since it has 90
x 90 x 180 x 3 = 4,374,000 equations and only 100 un-
knowns. However, a lot of these equations are linearly de-
pendent. Therefore, we need to select only a small set of
equations that allows us to robustly estimate the coefficients
C.

Let X be a matrix composed of some subset of rows of the
matrix P. A good measure of how robustly we can estimate
C is the ratio between the highest and lowest eigenvalue of
the matrix X7 X. The system is well conditioned if this ratio
is small. Since finding an optimal set exhaustively is pro-
hibitive, we resort to a simple greedy strategy. We start with
an initial set of n constraints. We select a constraint outside
of the set X and one constraint in the set X. We swap them
only if the ratio of the eigenvalues decreases in matrix X7 X



Matusik et al / Efficient Isotropic BRDF Measurement

with the constrains swapped. We repeat this procedure till X
converges to a stable set and we perform this procedure for
different set sizes n.

This procedure guarantees that the system is numerically
well conditioned, which in turn makes it robust to perturba-
tions of the constraints. It also approximates a “most infor-
mative set” of measurements. In order to expect good gen-
eralization of the known BRDFs, we must also ensure that
the system is well overconstrained. From large deviation the-
ory, we can expect that the number of measurements neces-
sary grows with the square root of the number of unknowns.
Typically, a small multiple is sufficient for linear systems.
We found out using » = 800 linear constraints ensures ro-
bust computation of the coefficients while adding more con-
straints does not improve the solution. This implies that we
can measure any BRDF using only 800 samples. At each
point we measure either R, G, or B. We note that each of the
800 equations corresponds to a specific value of (6y,,604,0q)
and does not depend on the value of the BRDF at that point.

The procedure presented here is well defined, simple, and
fast. In order to compute the coefficients C we only need to
compute a pseudo-inverse of the 800 x 100 matrix and per-
form one vector-matrix multiply. In contrast to fitting sam-
ples to analytical BRDF models this procedure is not depen-
dent on a good initial guess.

8. Results

To validate our methods, we densely measured four addi-
tional isotropic BRDFs: dark-red paint, gold paint, orange
plastic, and aluminum-bronze. These materials are substan-
tially different from any of the materials in the original col-
lection.

First, we show that these BRDFs can be represented well
using only the coefficients in the CWB (which of course has
been computed without these materials). Figure 5 compares
the original BRDFs and the BRDFs expressed with the CWB
for different angles of incident illumination. The errors for
each of the BRDFs are: dark-red paint - 0.7%, gold paint -
0.9%, orange plastic - 2.1%, and aluminum-bronze - 1.2%.
We conclude that our common wavelet basis represents these
new BRDFs well.

Next, we reconstruct these BRDFs from 69,000 samples
specified by the linear constraints. The results of this recon-
structions are shown in Figure 6. The errors for each of the
reconstructed BRDFs compared to the original BRDFs are:
dark-red paint - 1.0%, gold paint - 1.3%, orange plastic -
3.2%, and aluminum-bronze - 1.2%. Although the errors are
relatively small we observe some ringing artifacts that are
typical for the non-smooth Haar wavelets. Smooth wavelets
should yield better looking results.

We also reconstruct the same BRDFs using the pull-push
algorithm. We use the same 69,000 sparse BRDF samples.

This solution yields better results. The errors for each of
the pull-push reconstructed BRDFs compared to the original
BRDFs are: dark-red paint - 0.6%, gold paint - 0.9%, orange
plastic - 2.5%, and aluminum-bronze - 1.1%. The results of
the pull-push reconstructions are shown in Figure 7.

Next we show that the reflectance of these materials
can be represented well using a linear combination of 100
BRDFs from the original collection (which also did not con-
tain these BRDFs). In Figure 8 we show the comparison be-
tween the original densely sampled BRDFs and the corre-
sponding reconstructed BRDFs using just 800 BRDF sam-
ples. The errors for each of the reconstructed BRDF:s as a lin-
ear combination of BRDFs compared to the original BRDFs
are: dark-red paint - 1.8%, gold paint - 1.8%, orange plastic
- 4.3%, and aluminum-bronze - 2.5%.

All methods have their advantages and disadvantages.
Both the CWB and the pull-push reconstruction require
69,000 measurements. However, these methods are indepen-
dent of any BRDF database and can be applied immedi-
ately. The linear combination of BRDFs requires only 800
measurements, but it relies on the availability of the BRDF
database.

9. Conclusions and Future Work

In this paper we have presented two novel approaches for
measuring isotropic BRDFs. These procedures significantly
reduce the number of required measurement samples. The
reflectance functions reconstructed using our procedures ap-
proximate the exhaustively measured reflectances well.

One obvious extension of this work is to apply a similar
approach to full 4D reflectance functions of anisotropic ma-
terials. The wavelet analysis of the arbitrary reflectance func-
tions might also find use in efficient rendering algorithms.

We used the simplest wavelet function (Haar) to perform
wavelet analysis which is not optimal for BRDF representa-
tions. We plan to investigate the use of other wavelet basis
functions to perform our analysis.
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