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Appendix
The follow C code fragment demonstrates the forward-mapping evaluation of the
k(4,2) reconstruction kernel:

short key[4][128];
short table[4][128][2];

splat42(tile, value, gindex)

short tile[8][8];
short value;
short qindex;

register short hash = value & 127;

register short *tptr = table[qindex] [hash];
register short cO0, cl, c2, c3;

register int coeff;

if (key[qindex][hash] != value) {
/* dequantization step */
coeff = value * quantizer[qindex][32];
keyl[ index][hash? = value;

tptr[ 0] = c0 = (coeff * COS_03 + 128) / 256;

tptr[ 1] = c1 = (coeff * COS_07 + 128) / 256;

tptr[ 2] = ¢2 = (coeff * COS_01 + 128) / 256;

tptrl[ 3] = ¢3 = (coeff * COS_05 + 128) / 256;
} else

c0 = tptr[ 0];

cl = tptr[ 1];

c2 = tptr[ 2];
) c3 = tptr[ 3];
tile[0] [0] += cO; tile[0][1] -= c1; tile[0][2] —-= c2; tile[0][3] -= c3;
tile[0][4] += c3; tilel[01[5] += c2; tile[0][6] += c1; tilel[0][7] -= cO0;
tile[1]1[0] -= c0; tilel[11[1] += c1; tile[1]1[2] += c2; tile[1]1[3] += c3;
tile[1]1[4] -= c3; tile[1]1[5] -= c2; tile[1]1[6] —= c1; tile[1][7] += cO;
tile[2] [0] -= c0; tile[2][1] += c1; tile[2]1[2] += c2; tile[2][3] += c3;
tile[2] [4] -= c3; tile[2][5] -= c2; tile[2][6] —= c1; tile[2][7] += cO;
tile[3][0] += cO; tile[3][1] -= c1; tile[3][2] —-= c2; tile[3][3] -= c3;
tile[3][4] += c¢3; tilel[3]1[5] += c2; tilel[3]1[6] += c1; tilel[3]1[7] -= cO0;
tile[4] [0] += cO; tile[4][1] -= c1; tile[4][2] —= c2; tile[4][3] -= c3;
tile[4][4] += c3; tilel[4]1[5] += c2; tile[4]1[6] += c1; tilel[4][7] -= cO0;
tile[5]1[0] -= c0; tile[5]1[1] += c1; tile[51[2] += c2; tile[5]1[3] += c3;
tile[5][4] -= c3; tile[B][5] -= c2; tile[5][6] —= c1; tile[5][7] += cO;
tile[6]1[0] -= c0; tilel6]1[1] += c1; tile[6]1[2] += c2; tilel[6]1[3] += c3;
tile[6][4] -= c3; tile[6][5] -= c2; tile[6][6] —= c1; tile[6][7] += cO;
tile[7]1[0] += cO; tile[7]1[1] -= c1; tile[7]1[2] —= c2; tile[7][3] -= c3;
tile[7]1[4] += c3; tilel[71[5] += c2; tile[7]1[6]1 += c1; tilel[7]1[7] -= cO0;



One could also further reduce the control circuitry required by recognizing that there
are fewer than 384 actual configurations of a given quadrant, as implied by Table 1.

Thus, with a highly regular structure requiring a single input of approximately
16-bits and 10-12 controls bits, a low cost and high-speed implementation of a 2-D
8 x 8 IDCT can be realized. Futher enhancements might include combining the
look-up tables and the accumulator array on the same chip along with a suitable
state-machine which would automatically step through each of the kernel values
corresponding to a given quantized coeflicient value.

5. Conclusions

We have presented an algorithm for the efficient evaluation of the IDCT which uses a
forward-mapping approach. It typically requires 2 to 6 times less computation than
other fast algorithms. Our approach takes unique advantage of the decorrelation
properties of the DCT, in that it requires no work for zero valued coefficients.
Multiplies are essentially eliminated through the use of table look-ups and caching.
The FMIDCT also provides a unique tradeoff that exchanges quality for further
reductions in computation. Thus, in addition to being amenable to a simple
and regular hardware realization, this technique allows for an efficient software-
only realization that provides performance previously only achievable via hardware
assisted approaches, yielding a low-cost playback-only solution for DCT based
compression standards.
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levels and the variance of the coeflicient’s distribution varies for each coefficient, the
system could size each cache accordingly.

4.2 Hardware Realization Potential

Another advantage of the FMIDCT is its suitability for VLSI implementation. The
FMIDCT can be accomplished using a simple accumulator block repeated ¥ x N
times as shown in Figure 1.

Input
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Control

el

.

8 x 8 Accumulator Array

Figure 1: Hardware Implementation

It is possible to precede the data-path described with a single multiplier to perform
both dequantization and scaling by the unit-reconstruction kernel. However, it is
probably more efficient for a supporting controller to perform this operation using
the caching techniques described earlier, given the infrequency of multiplies. Every
accumulator in the array could be made to share a common data input I, with
distributed control for each accumulator. Each accumulator is only required to
perform four distinct operations. A,, « I,A,, « Agy, Ay — Ay + I, Ayy — Ay — L

The IDCT applys the scaled unique values of the reconstruction kernel to the array
along with an appropriate control word, for each non-zero coefficient.

The amount of control circuitry can be reduced by recognizing that each recon-
struction kernel can be categorized into one of four possible forms.

lg m i@ - @ my o ie ]

(V] [D] (V] —I[D] —-[v] -I[D] —-[V] [D]
where:
0 0 0 1
H=QR, V=RQ, D=RQR and R is defined as R= g (1) é g
1 0 0 0

Therefore, independent control is only required for the accumulators within a single
quadrant of the array, with an addition two-bits to select the appropriate symmetry.



routines. About one fifth of a sequence’s playback time is spent in the bit-stream
parsing and Huffman decoding routines, while the remaining time is spent in various
bookkeeping routines.

Table 2 gives some statistics on a few sample image sequences. The “target” se-
quence is the 30 second Sun Microsystems, Inc. client-server computing commercial.
The “mifkin” sequence is a 60 second sequence with 19 scene changes. The {16,
Lenna, mandrill, and Zelda images are commonly studied in the image processing

field.

image | Resolution | Frames IDCTs | non-zero Coeffs| Mults| 22t
f16 512x496 1 5952 4.90 41830.703
Lenna | 512x496 1 5952 4.67 3726 0.626
mandrilll 512x496 1 5952 11.28 5328 0.895
Zelda | 512x496 1 5952 4.33 3336 0.560
target | 320x224 300 | 504000 5.08 5425|0.011
mifkin | 320x224 600 | 1008000 3.80 5167|0.006

Table 2:Result Table

4.1 Software Implementation Details

The FMIDCT uses table look-ups for most of its multiplications. The current
implementation has a separate table or cache for each DCT coefficient. The lower
bits of the quantized input value act as the index into the cache. If the last key-value
stored in the cache is the same as the current input value, the system simply uses the
results that are stored in the cache. If the values disagree, the system dequantizes
the value, performs the required multiplies needed for this DCT coefficient and loads
these results in the cache. Choosing the least significant bits of the quantized value
guarantees that the most probable values, (1, -1, 2, and -2) do not map to the same
cache location, and increases the likelihood that these values may stay in the cache
once they are calculated.

The values in Table 2 illustrate the effectiveness of this approach. For the sample
images, each DCT block has between 4 and 12 non-zero AC coeflicients on average.
Each of these coeflicients require between 1 and 10 multiplies to scale their respective
reconstruction kernels. Yet, the average number of multiplies per block is below 1
for all cases, and is approaching 0 for the long sequence.

The current cache implementation uses approximately 112 kilobytes of storage.
Since we use the least significant 7 bits as an index to the cache, there are 128
different cache locations for each of the 64 different caches. The size of the cache
can be reduced by using fewer bits as the index. Since the number of quantization



would require 63 adds per result, typically the algorithm requires less than 20% of
that number, and in the best case, where the DC coeflicient is the only non-zero
coeflicient, requires no adds. The highly uncorrelated data sequences which are
necessary to generate a large number of adds are rare in practice and furthermore,
they are generally ill-suited for DCT coding.

One of the most important properties of the DCT that is often exploited in
compression algorithms is the high probability, after appropriate quantization, of
zero valued coefficients [Wallace91|[LeGall91][Liou91]. These coeflicients imply no
work for the FMIDCT. Table 2 gives the average number of non-zero AC coeflicients
occurring in a variety of images out of a possible 63. Since each non-zero coeflicient
implies the accumulation of a scaled reconstruction kernel, this number indicates
the average number of additions required for each pixel. This data suggests that
the FMIDCT required only 6% to 17% of the additions implied by the worst case.
Futhermore, based on the multiplier equivalence arguments presented earlier, this
algorithm is between 2 to 6 times faster than other well known approachs.

3.3 Quality versus Speed Trade-off

This formulation of the IDCT is unique in providing a quality versus computation-
time trade-off. Since each input is handled independently, we can accumulate
the various spatial frequency inputs in a priority order. Such an ordering can
be approximated by zig-zag ordering. The accumulation of reconstruction kernels
can be stopped at any point in order to achieve a given performance level. We call
this approach incremental evaluation. This notion is similar to that of progressive
transmission of images [Wang88][Tzou87], where an approximate reconstruction of
an image is gradually built up with increasing fidelity while a viewer controls how
long the process should continue. The motivation for progressive transmission is to
make effective use of channel bandwidth at the cost of requiring many invocations
of the IDCT. In contrast, the incremental evaluation approach places a upper limit
on the computational cost for the IDCT, trading off image quality for decoding
speed. These two techniques may be combined, where each successive component
in the progressive scheme implies one additional accumulation in the FMIDCT.

4. Results
We have implemented a baseline JPEG decoder in software that utilizes the
FMIDCT which can perform in excess of 50,000 8 x 8 transforms per second on
a 40 Mhz Sun SparcStation 2. This implementation is capable of decoding and
displaying 320 x 240 image sequences at rates in excess of 10 frames per second.
In our implementation, each 16 x 16 pixel macroblock is represented by 4 8 x 8
blocks of luminance values and 2 8 x 8 blocks of subsampled chrominance values.
These frames have 280 macroblocks, so each image requires 1680 8 x 8 IDCT's. Less
than one third of a sequence’s playback time is spent in the IDCT and related
routines. Another third of a sequence’s playback time is spent in the conversion
of the luminance/chrominance representation to red, green, blue and dithering



of unique coeflicients of the unit-valued reconstruction kernels in each of the 8 x 8

caseEs.

v/u 0 1 2 3 4 5 6 7
0 1 4 2 4 1 4 2 4
1 4 10 8 10 4 10 & 10
2 2 8 3 8 2 8 3 8
3 4 10 8 10 4 10 & 10
4 1 4 2 4 1 4 2 4
5 4 10 8 10 4 10 & 10
6 2 8 3 8 2 8 3 8
7 4 10 8 10 4 10 & 10

Table 1:Unique entries for each DCT coefficient

This suggests that an 8 x 8 IDCT can be accomplished with just 384 multiplies
instead of the 4096 implied by the matrix equation. This reduction is less impressive
than the 128 required multiplies achievable through other fast 2-D algorithms
[Kamangar82], however, the computation requirements of the FMIDCT can be
further reduced using techniques which are not amenable to other fast algorithms.

In most applications the IDCT is preceded by a dequantization process. This
leads to a finite limit on the actual number of reconstruction levels. Generally,
dequantization is performed prior to the IDCT. In the FMIDCT, the dequantization
and the scaling may be combined into a single step. Since there are a finite
number of reconstruction levels for each coefficient and each coefficient is treated
independently, this step may be realized as a table look-up, as described in the
Software Implementation Detail section.

The fact that existing fast implementations of the IDCT do not treat each input
value independently limits the usefulness of performing multiplications by table-
look-ups. In these algorithms, linear combinations of several input values, generated
by the matrix products of the previously applied matrix decompositions, are
multiplied by scalar constants. While these linear combinations are also constrained
to take on a finite number of unique values, this number quickly becomes impractical
for implementation by table look-up, since it is proportional to the product of the
number of reconstruction levels for each of its constituent inputs.

3.2 Special Case of Zero Coefficients

Well known fast IDCT algorithms [Kamangar82| require as few as 400 adds and
128 multiplies per 8 x 8 block. If we assume each multiply is equivalent to 5 adds,
(allowing 12-bits per scalar constant and assuming the use of Booth’s algorithm),
this results in more than 1024 adds per block or approximately 16 adds per result.
More commonly used approaches, where the 2-D IDCT is separated into 2N 1-D
IDCTs, require on the order of 128 additional multiplies resulting in 26 adds per
output. While, in the worst case, a FMIDCT that utilizes table-driven multiplies,



domain coefficients are frequently quantized to a small number of reconstruction
levels, this multiply can be replaced by a table-look-up. Second, zero-valued
coeflicients will make no contribution to the output vector, thereby eliminating the
scaling and accumulation steps. Since there is a high incidence of these zero-valued
coeflicients, due to the decorrelation properties of the DCT and the subsequent
quantization, this results in a significant reduction in computation. Finally, the
FMIDCT provides a continuous quality versus computation time trade-off.

3.1 Table Driven Multiplication

Although the unit-valued reconstruction kernels are composed of N? values, the
magnitude of at most NEJ’T"’N of these values is unique. This repetition allows the
scaling multiply to be calculated only once and accumulated into the output vector
at each repeated position. This is demonstrated by the following example 8 x 8

IDCT kernels. Let
Cay = f(2)f(y)cos (25 ) cos (L),

16 16

[Cor Cos Cos Cor —Cor —Cos —Cos —Co1]]
Coi Coz Cos Cor —Cor —Cos —Coz —Co1
Coi Coz Cos Cor —Cor —Cos —Coz —Co1
k(0,1) = Coi Coz Cos Cor —Cor —Cos —Coz —Co1 ,
Coi Coz Cos Cor —Cor —Cos —Coz —Co1
Coi Coz Cos Cor —Cor —Cos —Coz —Co1
Coi Coz Cos Cor —Cor —Cos —Coz —Co1
LCo1  Cos Cos Cor —Cor —Cos —Cos —Co1
r Cu Cis Cis Cir —-Cir —Cis —Ci3 —Ci1]]
Cis Css Css Car —C37 —Css —Cs3 —Ci3
Cis Css Css Ckr —Csr —Cps  —Css —Cip
K(1,1) = Cir Car Ckr Crr —-Crr —Cyr  —C37 —Ci7 and
—-Cir —Csr —Csr —Cr¢ Crr Ckr Car Cir
—Cis  —Css —Css —Cosr Ckr Css Css Cis
—Ci3 —Cs3 —Cs5 —Csr Car Css Css Cis
L-Ci1  —Ci3 —Cis —Ci7 Cir Cis Cis Cu1 |
[ Cas —Cas  —Cus Cus Cus —Cas  —Cus Cas 7
—Caq Cus Cus —Cas  —Cus Cus Cus —Caq
—Caq Cus Cus —Cas  —Cus Cus Cus —Caq
K(4,4) = Cus —Cas  —Cus Cus Cus —Cas  —Cus Cus
Cus —Cas  —Cus Cus Cus —Cas  —Cus Cus
—Caq Cus Cus —Cas  —Cus Cus Cus —Caq
—Caq Cus Cus —Cas  —Cus Cus Cus —Caq
L Cas —Cas  —Cus Cus Cus —Cas  —Cus Cas

Notice that only 4 unique multiples are necessary for the accumulation of the (0, 1)
kernel, 10 for the k(1,1) kernel, and only 1 for k(4,4). Table 1 depicts the number



As a matrix equation, this is written as:

000 200
001 7;01
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When using the forward-mapping approach, the output vector is formed by the
successive accumulation of each system matrix column scaled by the corresponding
input value.
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)
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with
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As a matrix equation, this is written as:

00 01 LL
000 Co Co )
00 01 LL
001 . C1 . C1 . 1
= 200 + 201 . +...+uL
00 01 LL
OoLL CM CM CM

[Westover90] [Westover91| has demonstrated the efficiency of the forward-mapping
approach for volumetric reconstruction. The advantages are pronounced when the
input vector is sparse. The forward-mapping process incrementally accumulates
the energy contributed from each input element into the output vector. Each
transform domain coefficient scales the corresponding matrix column. We call this
matrix column vector the reconstruction kernel of the input coefficient. The scaled
reconstruction kernel is then accumulated with the output vector, O.

3. Properties of FMIDCT

Previous algorithms have been formulated to be computed in some minimal, yet
constant, number of operations. This leads to constant time evaluation, which is
independent of the input sequence applied. However, the FMIDCT is input sequence
dependent, since the amount of computation required is proportional to the number
of non-zero coeflicients. This situation is similar to that of the well known quicksort
algorithm [Knuth73], in which its worst case behavior varies significantly from its
average case behavior. In such cases it is useful to not only discuss the average
behavior, but also the likelihood of the worse case scenario.

There are three ways in which the FMIDCT reduces computation. First, the re-
construction kernels exhibit considerable symmetry thereby reducing the number of
unique multiplies required in the scaling process. Furthermore, since the transform



elements independently. This formulation is referred to as a forward-mapping
system [Wolberg90]. A system can calculate a weighted average by either gathering
energy from each contributing input to calculate each output, or by spreading the
energy from each input to all affected outputs. The final result is independent of
the evaluation order of these energy contributions.

We will introduce a forward-mapping derivation of a fast IDCT algorithm
(FMIDCT) which exploits the statistical properties of its input sequence. Although
the discussion will concentrate on the 2-D IDCT algorithm, the techniques described
are easily adapted to other dimensions and other orthogonal transforms with similar
statistical properties. We also discuss a further optimization to the FMIDCT which
takes advantage of the quantization of the transform domain coefficients. Finally, we
will demonstrate the unique capability of the FMIDCT to trade-off reconstruction
quality in exchange for reductions in computation.

2. FMIDCT Evaluation
A type II, N x N, 2-D IDCT, which is commonly used in image compression, is
expressed as

P (22 + 1u T2y + 1)v
z:: z:: ’U, ’U X €Os (T) Cos (T) , (1)
V2 C Q.
sy ad g ={ IS

This equation expressed as a linear system is O = CI, where I and O are N2-
dimensional vectors constructed from the row-ordered enumeration of the N x N
transform domain input sequence, i(u,v), and the reconstructed output sequence,
o(z,y), respectively. The N2 x N? system matrix, C, is composed of the input
weighting terms and 1s defined as follows:

c(yN + z,vN +u) = f(u)f(v)cos (W) cos (W) .

Equation (1) may be evaluated using either matrix decompositions, inverse-
mapping procedures, or forward-mapping procedures. Previously, fast algorithms
[Chen77|[Lee84][Ligtenberg87|[Kamangar82] have concentrated almost exclusively
on matrix decomposition evaluation procedures, where the system matrix, C, is
factored into a set of sparse matrices.

Inverse-mapping procedures are equivalent to calculating each element of the output
vector, O, by taking the inner-product of a corresponding row in the system matrix,
C and the input vector, I. Let L=N -1 and M = N? -1, then

O=RI or Ogy = R™1, where R = [rg¥r7¥...73Y]

with

89— £(k mod N)f(k div N)cos (7r(21:—|— 1)(k mod N)) - (7r(2y—|— 1)(k div N)) ‘

2N 2N
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Abstract

This paper presents a new realization of the Inverse Discrete Cosine Transform
(IDCT). It exploits both the decorrelation properties of the Discrete Cosine
Transform (DCT) and the quantization process that is frequently applied to
the DCT’s resultant coefficients. This formulation has several advantages
over previous approaches, including the elimination of multiplies from the
central loop of the algorithm and its adaptability to incremental evaluation.
The technique provides a significant reduction in computational requirements
of the IDCT, enabling a software-based implementation to perform at rates
which were previously achievable only through dedicated hardware.

1. Introduction
Since its introduction, the DCT [Ahmed74| has found widespread use in the field
of image processing. [Jain79] has demonstrated that for data exhibiting high
correlation, the DCT performs close to the ideal Karhunen-Loeve Transform. The
DCT representation of a data sequence tends to concentrate the most variance
(energy) into the fewest transform coefficients. This results in a transform domain
description which is sparse compared to the original input sequence.

The application of the DCT to many interesting classes of data, particularly con-
tinuous tone images, has motivated the search for fast and efficient algorithms. The
earliest fast algorithms were based on approaches originally developed for the Fast
Fourier Transform, in which the periodicity and recursive nature of the underlying
basis functions were exploited [Narasimha78|[Tseng78][Vetterli84]. Later, other fast
algorithms were developed by considering various factorizations of the DCT’s basis

matrix [Chen77]|[Lee84|[Ligtenberg87].

The structural similarities of the DCT to its inverse, the IDCT, has enabled each
of the fast DCT algorithms to be easily adapted to their dual IDCT formulation.
As a consequence, there has been little concentration on specific formulations of the
IDCT and the unique statistical properties of this transform domain description.

Both IDCT and the DCT are easily expressed as a constant-coeflicient linear
system in which each output element is expressed as a finite weighted sum of
input elements. Systems where each output value is directly evaluated in this
fashion are called inverse-mapping systems [Wolberg90]. An alternate evaluation
approach is to express each input element’s contribution to the entire set of output



