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Abstract. Recombination plays an important role in shaping the ge-
netic variations present in current-day populations. We consider popula-
tions evolved from a small number of founders, where each individual’s
genomic sequence is composed of segments from the founders. We study
the problem of segmenting the genotype sequences into the minimum
number of segments attributable to the founder sequences. The minimum
segmentation can be used for inferring the relationship among sequences
to identify the genetic basis of traits, which is important for disease
association studies. We propose two dynamic programming algorithms
which can solve the minimum segmentation problem in polynomial time.
Our algorithms incorporate biological constraints to greatly reduce the
computation, and guarantee that only minimum segmentation solutions
with comparable numbers of segments on both haplotypes of the geno-
type sequence are computed. Our algorithms can also work on noisy data
including genotyping errors, point mutations, gene conversions, and miss-
ing values.

1 Introduction

Recombination plays an important role in shaping the genetic variations present
in current-day populations. Understanding the genetic variations and the ge-
netic basis of traits is crucial for disease association studies. In this paper, we
assume an evolution model (previously proposed and studied in [U,WG]) where
a population is evolved from a small number of founder sequences. A real-world
biological scenario is the Collaborative Cross (CC). The CC [THW,C] is a large
panel of 1000 recombinant inbred (RI) mouse strains that were generated from
a funnel breeding scheme initiated with a set of 8 founder strains followed by
20 generations of inbreeding. These 8 genetically diverse founder strains capture
nearly 90% of the known variations present in the laboratory mouse. The result-
ing RI strains have a population structure that randomizes the known genetic
variation, which will provide unparallel power for disease association studies.

Given a set of founder haplotype sequences, a sequence in the generated pop-
ulation is composed of segments from the founders. It is of interest to identify
and label these segments according to their contributing founder.. Although the
segmentation for a haplotype sequence may be straightforward to compute, in
many cases the sequence to be segmented is a genotype sequence for which the
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two haplotypes are not known completely and they may have different segmen-
tations. For example, the genotype sequence for the strains generated during
the intermediate generation in a 20 inbreeding generations of the CC contains
two different haplotypes. In this paper, we study the segmentation problem of
genotype sequences with the optimization for the minimum number of segments
contained in the two associated haplotypes. Furthermore, we extend this basic
model to include additional biologically-motivated constraints as well as noise.
Since each autosome undergoes, on average, one recombination per meiosis, one
expects that the number of founder switches per haplotype at a given gener-
ation of breeding to be comparable. Moreover, noise may exist in the founder
sequences and the genotype sequence to be segmented. Sources of genotyping
noise are both technical and biological. They include point mutations, gene con-
versions, genotyping errors, etc. Missing genotyping values are also very common
in biological data sets.

Similar but different models were studied in [U,WG]. Ukkonen [U] first pro-
posed the founder set reconstruction problem under the assumption that the
sample set is evolved from a small set of founders. A dynamic programming
algorithm was proposed which computes a minimum number of founders with
a given set of sample haplotype sequences, where a segmentation of all the se-
quences in the sample set can be derived which contains the minimum number
of founder switches. Wu and Gusfield [WG] proposed improved polynomial time
algorithms for haplotype as well as genotype sample sequences for the special
case where there are only two founders. Different from the problems considered
in [WG,U], we study the problem where the set of founder sequences are already
known, and compute the minimum segmentation for genotype sequences under
biologically-relevant constraints and noise. A motivating biological example is
the segmentation of the genotype sequences obtained from immediate genera-
tions of the CC to estimate the location of the recombination breakpoints. There
is other related work on inferring the structure of the variation of the sequences,
which include identifying haplotype blocks [DRSHL,GSNM,SHBCI], computing
the phylogenies [GEL,G], etc.

In this paper, we propose two dynamic programming algorithms to com-
pute the minimum segmentations for genotype sequences. Our algorithms run in
polynomial time and consider biological constraints of the genotype segmenta-
tion problem, i.e., the number of segments in both haplotypes are comparable.
Moreover, our algorithms account for the potential noise sources in the data
including point mutations, gene conversions, genotyping errors, and missing val-
ues.

2 The Minimum Segmentation Problem

Assume that we have a set of founding haplotypes FS = {F1, . . . , Fn, . . . , FN}.
Each haplotype sequence is of length L: Fn = fn1 f

n
l . . . f

n
L , where fnl ∈ {0, 1}.

Given an input sequence from a population which is derived exclusively from
the founder set FS, we are interested in finding a possible segmentation of the
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sequence, where each segment is inherited from the corresponding region of one
of the founders. We first consider the simple case where the input sequence is a
haplotype, and then investigate the more interesting case where the input is a
genotype sequence.

Given a haplotype sequence, H = h1 . . . hL, (hl ∈ {0, 1}), a segment of H
is denoted as Hk = hsk

hsk+1hsk+Lk−1, where sk is the starting position of
Hk, and Lk is the length of Hk. We consider a segmentation of H which di-
vides the entire sequence into an ordered list of disjoint segments Seg(H) =
{H1, . . . ,Hk, . . . ,HK}, where each segment Hk is identical to the correspond-
ing region of one of the founders and K is the number of segments in Seg(H). In
other words, for each segment Hk = hsk

hsk+1hsk+Lk−1, there exists a founder
Fn = fn1 f

n
l . . . f

n
L such that hsk+li = fnsk+li

, for li = 0, 1, . . . , Lk − 1. Further-
more, a minimum segmentation is defined as the segmentation which contains
the minimum number of segments. We denote the minimum segmentation as
MinSeg(H) = {H1, . . . ,HKmin}, where Kmin = |MinSeg(H)| is the number of
segments in MinSeg(H).

If the input is a genotype sequence, we know that it represents two copies
of different haplotype sequences, Ha and Hb. Assume that the genotype se-
quence is G = g1 . . . gL, where gl ∈ {0, 1, 2}. A site l is homozygous if gl = 0
(hal = hbl = 0) or gl = 1 (hal = hbl = 1); a site l is heterozygous if Ha and
Hb take different alleles, in which case, gl = 2. The process of determining
whether hal = 0, hbl = 1 or hal = 1, hbl = 0 for a heterozygous site l is called
phasing. The procedure of determining the two haplotype sequences from the
genotype sequence by phasing all the heterozygous sites is called Haplotype In-
ference. For the genotype input case, a segmentation Seg(G) consists of seg-
mentations for both haplotype sequences: Sega(Ha) and Segb(Hb). The number
of segments in Seg(G) is the sum of the numbers of segments in Sega(Ha)
and Segb(Hb): |Seg(G)| = |Sega(Ha)| + |Segb(Hb)|. The minimum segmenta-
tion is the segmentation which contains the minimum total number of segments:
|MinSeg(G)| = min{|Seg(G)|}. Let MinSeg(G) = {Seg∗a(Ha), Seg∗b (Hb)}.

In this paper, we develop efficient algorithms for the minimum segmentation
problem especially for the genotype input case. In addition to the basic models,
there are other issues we may need to consider, such as genotyping errors, point
mutations, missing values, the balance of the number of segments in both hap-
lotypes, etc. We will explain later how we model these biological constraints and
noise in our solutions.
Solutions for Haplotype Input: Computing the minimum segmentation for
the haplotype input sequence is relatively easy and has been discussed in pre-
vious studies [WG,U]. A simple greedy algorithm can be applied to compute
a minimum segmentation solution by scanning from left to right. Assume that
the current site is i (initially it is site 1), and we have a minimum segmentation
solution for the part of the input sequence from site 1 to site i. Starting from
site i, we try to find the segment shared by the input sequence and one of the
founders which extends furthest to the right. This greedy algorithm generates
one of the minimum segmentation solutions.
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A graph-based dynamic programming algorithm can be used to compute
all minimum segmentation solutions given the input haplotype sequence and
the founder set. At a high level, we first compute all maximal shared intervals
between the input sequence and each founder sequence. The maximal shared
interval between the input sequence and founder n is a region where the input
sequence is exactly the same as founder n. We consider each shared interval
as a node and connect two intervals with an edge if they overlap. In this way,
a minimum segmentation solution corresponds to a shortest path from a node
starting at the first site to a node ending at the last site. The complete set of the
shortest paths can be computed, which are all possible minimum segmentation
solutions.

3 Solutions for Genotype Input

The greedy algorithm and the graph-based algorithm for segmenting haplotype
input sequences cannot be easily applied on genotype input. The major issue
is that we do not know the exact sequences of the two haplotypes due to the
multiple possible allele pairs at heterozygous sites. Second, the minimum segmen-
tation solution for the genotype may not consist of the minimum segmentation
solutions for each haplotype sequence.

In the following discussion, we describe two dynamic programming algorithms
for solving the minimum segmentation problem for genotype input sequences.
The first algorithm considers each site separately, the second algorithm considers
a region of sites simultaneously, and is thus more efficient.
Site-based Dynamic Programming Algorithm: We consider for each site
l, the possible founders for the two haplotype sequences Ha and Hb. If site l
is a homozygous site, assuming gl = 0 (without loss of generality), we have
hal = hbl = 0. Let ofa,l be the original founder where hal was inherited from
at site l. Then ofa,l must be one of the founders which also take 0 at site
l: ofa,l ∈ {Fn|fnl = 0}. Similarly, we have the founder where hbl was inherited
from as: of b,l ∈ {Fn|fnl = 0}. Let fpl = 〈ofa,l, of b,l〉 denote the possible founder
pair at site l, we have the set of all possible founder pairs as FP l = {fpl|fpl ∈
{Fn|fnl = 0} × {Fn|fnl = 0}}. If site l is a heterozygous site where gl = 2,
there are two possibilities: hal = 1 ∧ hbl = 0 or hal = 0 ∧ hbl = 1. Therefore, the
possible founder pairs for heterozygous site l is FP l = {fpl|fpl ∈ {Fn|fnl =
0} × {Fn|fnl = 1} ∪ {Fn|fnl = 1} × {Fn|fnl = 0}}. We compute the founder pair
set FP l for each site l.

Assigning a founder pair from FP l to each site l generates a segmentation
of the input genotype sequence. The number of segments of both haplotypes (of
the genotype) are the total number of founder switches between founder pairs
of every consecutive sites plus 2. Consider two neighboring sites l and l + 1. If
the corresponding founder pairs are fplql

= 〈ofa,lql
, of b,lql

〉 (1 ≤ ql ≤ |FP l|) and
fpl+1

ql+1
= 〈ofa,lql+1

, of b,lql+1
〉 (1 ≤ ql+1 ≤ |FP l+1|), the number of founder switches

between these two founder pairs FounderSwitch(fplql
, fpl+1

ql+1
) can be computed

as:
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FounderSwitch(fpl
ql
, fpl+1

ql+1) =


0 : if ofa,l

ql
= ofa,l+1

ql+1 ∧ of
b,l
ql

= ofb,l+1
ql+1

1 : if ofa,l
ql

= ofa,l+1
ql+1 ∧ of

b,l
ql
6= ofb,l+1

ql+1 or

ofa,l
ql
6= ofa,l+1

ql+1 ∧ of
b,l
ql

= ofb,l+1
ql+1

2 : if ofa,l
ql
6= ofa,l+1

ql+1 ∧ of
b,l
ql
6= ofb,l+1

ql+1

(1)

Let Kmin(g1 . . . gl−1|fplql
) be the minimum number of segments in any seg-

mentation solution over the subsequence g1 . . . gl which at site l takes the founder
pair fplql

. The minimum number of segments over the entire genotype sequence
Kmin(g1 . . . gL) can be computed as:

Kmin(g1 . . . gL) = minfpL
qL
∈FP L{Kmin(g1 . . . gL−1|fpL

qL
)} (2)

The main recurrence of the dynamic programming algorithm is as follows:

Kmin(g1 . . . gl−1|fpl
ql

) = min
fpl−1

ql−1
∈FP l−1{Kmin(g1 . . . gl−2|fpl−1

ql−1)+

FounderSwitch(fpl−1
ql−1 , fp

l
ql

)}
(3)

And initially,

Kmin(Φ|fp1
q1) = 2, ∀fp1

q1 ∈ FP
1 (4)

The solutions for this dynamic programming problem can be easily computed
by populating a table T of L rows where row l has at most |FP l| entries. The
entry T (l, ql), 1 ≤ ql ≤ |FP l| is filled with Kmin(g1 . . . gl−1|fplql

) during the
computation. Row 1 is initialized according to Eq.(4), and row i+1 is computed
after row i. During the computation of T (l, ql) according to Eq.(3), we keep
the backtracking pointers from entry T (l, ql) to any T (l − 1, ql−1) where the
minimum values are obtained. In this way, we are able to obtain all the minimum
segmentation solutions.

There are at most N2 founder pairs for each site l, i.e., |FP l| ≤ N2,∀l.
Therefore, the table we populate is of size O(LN2). It takes constant time to
compute FounderSwitch(fplql

, fpl+1
ql+1

), then filling out a single entry in the ta-
ble takes O(N2) time. Therefore, the computational complexity for the entire
algorithm is O(LN4). The space complexity is O(LN2). For very long sequences
and a small number of founders, i.e., L � N4, the algorithm has linear time
and space complexity in terms of the length of the input sequence. If we keep
multiple backtrack pointers for each entry while populating the table, we are
able to obtain all the minimum segmentation solutions.
Region-based Dynamic Programming Algorithm: For very long sequences,
we propose a more efficient algorithm which considers a subregion of the entire
sequence instead of a site at a time.

We first consider the homozygous regions, which are the regions of homozy-
gous sites between any two consecutive heterozygous sites. Within a homozygous
region, both copies of the haplotype sequences are the same and we know the
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Fig. 1. An example subregions. F1-F4 are four founder sequences. G is the genotype
sequence to be segmented. There are 15 sites in all sequences, where site 10 is the only
heterozygous site. R1 : [1, 9] and R2 : [11, 15] are the homozygous regions. ∆1-∆5 are
the maximal shared intervals in R1. ∆6 and ∆7 are the maximal shared intervals in R2.
r1 − r8 are the subregions for the entire sequence, out of which r6 is the heterozygous
subregions, and the remaining are the homozygous subregions.

exact allele at each site. Fig. 1 illustrates an example of a set of four founders
(F1 − F4) and a genotype input sequence G to be segmented. The length of
each founder and the genotype sequence is 15, with 14 homozygous sites and
1 heterozygous site (site 10). The homozygous regions are R1 = [1, 9] and
R2 = [11, 15]. For each homozygous region, we compute all the maximal shared
intervals between each founder and the haplotype sequences. A maximal shared
interval ∆i is an interval over which a haplotype and a founder shares the same
allele at each site and the region cannot be extended further on either side. We
represent each maximum shared interval as a triple, for example, ∆i : (Ii, Ha, Fn)
is a maximal shared interval between haplotype Ha and founder Fn over in-
terval Ii. Since both haplotypes are the same, a maximal shared interval for
haplotype Ha is also a maximal shared interval for haplotype Hb, therefore, the
maximal shared interval for the homozygous regions can also be represented as
∆i : (Ii, ∗, Fn). In Fig. 1, ∆1−∆5 are the maximal shared intervals within region
R1 for both haplotype sequences. We divide each homozygous region Rj into a
set of subregions using the two end points of all maximal shared intervals inside
Rj . For example, in Fig. 1, R1 is divided into subregions r1, r2, r3, r4, and r5.
If we consider each heterozygous site as a 1-site subregion (e.g. r6 in Fig. 1),
together with all the subregions for the homozygous regions, we have a complete
set of subregions {rp} which cover the entire sequence (e.g., r1 − r8 in Fig. 1).

For each homozygous subregion rp, let fprp = 〈ofa,rp , of b,rp〉 be a possible
founder pair for subregion rp. We know that the set of possible founder pairs
is FP rp = {〈ofa,rp , of b,rp〉| ∃∆i1 = (Ii1 , ∗, ofa,rp), ∆i2 = (Ii2 , ∗, of b,rp), where
Ii1 ⊇ rp, Ii2 ⊇ rp}. For example, the founder pair for the subregion r2 in Fig.
1 could be 〈F1, F1〉, or 〈F1, F2〉, or 〈F2, F1〉, or 〈F2, F2〉. For each heterozygous
subregion which is composed of a heterozygous site l, since hla and hlb take
different alleles, any possible founder pair should consist of a founder taking
allele 1 and a founder taking allele 0. For example, in Fig. 1, the possible founder
pairs for r6 are 〈F1, F2〉, 〈F2, F1〉, 〈F2, F3〉, 〈F2, F3〉, 〈F2, F4〉, and 〈F4, F2〉.

Instead of considering each site, we consider each subregion in the dynamic
programming solution. Assign fp

rp
qp = 〈ofa,rp

qp , of
b,rp
qp 〉 to be the founder pair for
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subregion rp, where 1 ≤ qp ≤ |FP rp |, and fp
rp+1
qp+1 = 〈ofa,rp

qp+1 , of
b,rp
qp+1〉 to be the

founder pair for subregion rp+1, where 1 ≤ qp+1 ≤ |FP rp+1 |. Similarly, we count
the number of founder switches between fp

rp
qp , fp

rp+1
qp+1 as:

FounderSwitch(fp
rp
qp , fp

rp+1
qp+1) =


0 : if of

a,rp
qp = of

a,rp+1
qp+1 ∧ ofb,rp

qp = of
b,rp+1
qp+1

1 : if of
a,rp
qp = of

a,rp+1
qp+1 ∧ ofb,rp

qp 6= of
b,rp+1
qp+1

of
a,rp
qp 6= of

a,rp+1
qp+1 ∧ ofb,rp

qp = of
b,rp+1
qp+1

2 : if of
a,rp
qp 6= of

a,rp+1
qp+1 ∧ ofb,rp

qp 6= of
b,rp+1
qp+1

(5)

Let Kmin(r1 . . . rp−1|fp
rp
qp) be the minimum number of segments in any seg-

mentation solution over the subsequence covered by r1 . . . rp which takes the
founder pair fprp

qp at subregion rp. The minimum number of segments over the
entire genotype sequence Kmin(r1 . . . rP ) where rP is the last subregion can be
computed as:

Kmin(r1 . . . rP ) = minfp
rP
qP
∈FP rP {Kmin(r1 . . . rP−1|fprP

qP
)} (6)

The main recurrence of the dynamic-programming algorithm is as follows:

Kmin(r1 . . . rp−1|fprp
qp) = min

fp
rp−1
qp−1

∈FP p−1{Kmin(r1 . . . rp−2|fp
rp−1
qp−1)+

FounderSwitch(fp
rp−1
qp−1 , fp

rp
qp)}

(7)

And initially,
Kmin(Φ|fpr1

q1) = 2, ∀fpr1
q1 ∈ FP

r1 (8)

We can also solve this dynamic programming problem by populating a ta-
ble T which contains P rows where row p has at most |FP rp | entries. Entry
T (p, qp), 1 ≤ qp ≤ FP rp is filled with Kmin(r1 . . . rp−1|fp

rp
qp) during the computa-

tion. There are at mostN2 founder pairs for each subregion rp, i.e., |FP rp | ≤ N2.
The table we populate is of size O(PN2). The computation of all the maximal
shared intervals is O(LN), and filling out each entry in the table costs O(N2).
Thus the computational complexity of region-based dynamic programming al-
gorithm is O(LN +PN4). Compared with the site-based algorithm which has a
time complexity of O(LN4), if P is much smaller than L, we can greatly reduce
the running time, especially for large L.

3.1 Enforcing the Constraints and Modeling Noise

Comparable Number of Founder Switches on Both Haplotypes: During
each meiosis autosomes undergo one recombination on average. Thus, during the
development of an recombinant inbred-line (RIL), one expects that the number
of founder switches per haplotype at each generation to be comparable.

During each mating in the evolving history, each of the two haplotypes may
be generated by a new recombination. Therefore, we may expect that for the
given genotype to be segmented, the number of segments for the two haplotype
sequences are comparable.
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For a segmentation Seg(G) of genotype sequence G, which is composed of
a segmentation Sega(Ha) on haplotype Ha and a segmentation Segb(Hb) on
haplotype Hb, we put an extra constraint on the minimum segmentation as
follows: the difference of the numbers of the segments in the two haplotypes is no
more than a threshold α: ||Sega(Ha)|−|Segb(Hb)|| < α, where α is a nonnegative
integer. The definition of the minimum segmentation for G is then modified as:
|MinSeg(G)| = min{|Seg(G)|}, where MinSeg(G) = {Seg∗a(Ha), Seg∗b (Hb)}
and ||Seg∗a(Ha)| − |Seg∗b (Hb)|| < α.

To compute the minimum segmentation solution with constraints, we pro-
pose an efficient heuristic which prunes out solutions that do not satisfy the
constraint before they are fully computed during the table population process.
This greatly reduces the computation, especially when there are a lot of mini-
mum segmentation solutions that do not satisfy the constraint. We will explain
how it works with the region-based algorithm. Assume that we have a founder
set {F 1, . . . , FN}, and a genotype sequence G. For any minimum segmentation
solution MinSeg(G) = {Seg∗a(Ha), Seg∗b (Hb)}, we have the following lemma:

Lemma 1. For any homozygous region R on G, and any minimum segmenta-
tion solution {Seg∗a(Ha), Seg∗b (Hb)}, let the set of segments in Seg∗a(Ha) which
completely fall inside R be Seg∗a(Ha) ∩ R, and the set of segments in Seg∗b (Hb)
which completely fall inside R be Seg∗b (Hb) ∩R, then we have

||Seg∗a(Ha) ∩R| − |Seg∗b (Hb) ∩R|| ≤ 2 (9)

Proof. Details of the proof are presented in [ZWMPVT].

Lemma 2. For a genotype sequence G containing Z heterozygous sites, any of
its minimum segmentation {Seg∗a(Ha), Seg∗b (Hb)} satisfies:

||Seg∗a(Ha)| − |Seg∗b (Hb)|| ≤ 3Z + 1 (10)

Proof. For more details, please refer to [ZWMPVT].

We can use Lemma 2 in the dynamic programming algorithm when we are
populating the table. Assume currently we are filling out the entry T (p, qp), i.e.,
we are computing Kmin(r1 . . . rp−1|fp

rp
qp) according to Eq.(7), which is the min-

imum segmentation for the subsequence from r1 to rp with fp
rp
qp as the founder

pair for rp. In addition to computing the minimum segmentation, we also keep
track of the difference between the number of segments over two haplotypes in
the minimum segmentation we have computed, δ(p, qp) = ||Seg∗a(Ha[r1, rp])| −
|Seg∗b (Hb[r1, rp])||. Let the number of heterozygous sites in the remaining part
of the sequence be Z([rp+1, rP ]). Then if δ(p, qp) − (3Z([rp+1, rP ]) + 1) > α,
according to Lemma 2, we know that the corresponding solution will not be
able to generate a minimum segmentation solution for the entire sequence where
the difference between the number of segments on both haplotypes is less than
α. If the minimum segmentation solution we consider is from T (p − 1, qp−1) to
T (p, qp), then if δ(p, qp)−(3Z([rp+1, rP ])+1) > α, we will not add the backtrack
pointer from T (p, qp) to T (p− 1, qp−1).
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Modeling Point Mutation, Genotyping Errors and Gene Conversions:
There are both biological and technical resources of noise in genotyping, which
include point mutations and gene conversions, and genotyping errors. We con-
sider these potential noise sources in the data in our segmentation algorithms.

A point mutation or genotyping error can be treated as a single site mis-
match that falls within a shared interval between a copy of haplotype sequence
and a founder sequence. A gene conversion can be treated as a short sequence
of mismatches that fall within a shared interval between a copy of haplotype
sequence and a founder sequence. In the following, we explain how we model
these noise sources in our region-based dynamic programming algorithm. We
first consider the point mutation, gene conversion, and genotyping error which
happen side a homogeneous range. During the computation of maximal shared
intervals between sequence G and each founder Fn over a homozygous region R,
assume that we have two maximal intervals ∆1, ∆2 between G and Fn which
are over the intervals I1 = [b1, e1] and I2 = [b2, e2]. We know that I1 and I2 are
not overlapping or touching. Let I1 be the interval on the left, i.e., e1 < b2 − 1.
If e1 = b2 − 2, then there is a single mismatch at site e1 + 1 within the com-
bined region [b1, e2]. Assume that both I1 and I2 are of enough length, then
this single mismatch may be a point mutation or genotyping error. Therefore,
we create another shared interval ∆3 between G and Fn over the single-site in-
terval I3 = [e1 + 1, e1 + 1]. This interval has a probability of β < 1 to be a
shared interval between G and Fn. β is defined as the probability of a single
mismatch inside a shared interval being a point mutation or genotyping error.
Similarly, if e1 < b2 − 2 but b2 − 1 − e1 < gc, which means the gap between
interval I1 and I2 is shorter than a maximal possible length gc of a typical gene
conversion, then this short sequence of mismatches may be a gene conversion,
assuming both I1 and I2 are of enough length. We create another shared interval
∆4 between G and Fn over the short interval I4 = [e1 + 1, b2 − 1]. This interval
has a probability of γ < 1 to be a shared interval between G and Fn. γ is defined
as the probability of a short sequence of mismatches inside a shared interval
being a gene conversion. We can consider the point mutation and genotyping
error that happen at a heterozygous site in a similar manner, where we check
whether the heterozygous site is a single mismatch falling into a shared interval,
i.e. the shared interval to the left of the heterozygous site and to the right of
the heterozygous site are from the same founder. The maximal shared intervals
computed without considering noise are of probability 1. By modeling the noise
using intervals with probability less than 1, we can compute the minimum seg-
mentation solution with desired noise tolerance θ < 1. When we compute each
entry T (p, qp) in the table, we keep track of the accumulated probability which
is the multiplication of the probabilities of the intervals in the founder pairs on
the minimum segmentations solution so far. We only keep the solution with the
accumulated probability no less than θ.

Modeling Missing Values: Besides noise and incorrect values, there can also
be missing values in the data. Assume that the missing value is in founder Fn,
at site l, and the value at the same site on the sequence G is not missing. If l is a
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Fig. 2. Running time with varying parameters.

homozygous site, we fill out fnl using gl. If l is a heterozygous site, we consider fnl
can be either 0 or 1 when we create the founder pairs for this heterozygous site.
If the missing value is on G at site l, we consider it to be either 0 or 1, which
means this site can be in a maximal shared interval with any of the founder,
no matter whether the founder has a missing value at the same site or not. In
this way, we can generate the minimum segmentation solution with the smallest
possible number of segments. The missing values in both founders and genotype
sequences are filled with values in each solution (it may be filled with different
values for different minimum segmentation solutions).

4 Experimental Results

We tested the performance of our region-based dynamic programming algorithm
on the simulated data. As we presented earlier, the region-based algorithm has
less computational complexity than the site-based algorithm. We only demon-
strate the results on region-based algorithm.

The set of the founder sequences {Fn} and the genotype sequence G (corre-
sponding two haplotype sequences Ha, Hb) are generated so that: (a) The set
of founders are generated randomly, except that, at each site, there is at least
a founder taking 0 and at least a founder taking 1, (b) The number of the het-
erozygous sites in G is h rate× L where h rate is a parameter representing the
occurrence rate of the heterozygous sites, L is the total number of sites, and (c)
Ha and Hb are generated by randomly patching up n seg random segments from
the founders.

Note that, the segmentation during the generation provides a lower bound on
the number of segments in the minimum segmentation. The computed minimum
segmentation may not have the same number of segments on both haplotypes.
The code is implemented using Matlab, and the experiments are performed on
an Intel Core 2 Duo 1.6GHz machine with 3GB memory.
Running Time We evaluated the running time by varying the number of
founders (N), the number of sites (L), the number of segments (n seg), and
the heterozygous sites occurrence rate (h rate).

Fig. 2(a) highlights the running time by varying the number of founders from
2 to 10. Other parameters are fixed to be L = 1000, n seg = 30, h rate = 0.01.
The complexity of the algorithm is O(LN + PN4), which is demonstrated by
the superlinear increase in the running time with increasing N . Fig. 2(b) shows
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the running time with varying number of sites. All data sets contain 6 founders.
n seg for 10, 100, 1000, 5000, and 10000-site data sets are chosen to be 3, 8,
30, 150, 300, respectively. h rate is 0.01 for all the data sets except for the
10-site set where the h rate is set to be 0.1 to guarantee 1 heterozygous site.
Both X-axis and Y-axis are in log scale, we can observe that the running time is
linear to the number of sites L. In Fig. 2(c), the running time decreases as n seg
increases. The reason is due to the increased number of founder pairs generated
from large shared intervals when n seg is small. The data sets have 1000 sites, 6
founders, and h rate is set to 0.01. Fig. 2(d) shows the increase of the running
time with increasing h rate. More heterozygous sites introduce more subregions
which cause the running time to increase. The data sets contain 1000 sites, 4
founders and n seg is set to 50.
Effect of Enforcing the Constraint Table 1 shows the results on three
datasets where different constraints are applied. As shown in the table, enforcing
the constraint greatly reduces the number of minimum segmentation solutions
generated. The running time also decreases with the application of the con-
straints. For dataset #1, there are 28 minimum segmentation solutions where
both haplotypes take the same number of segments. However, the number of
solutions increases to 40 when the number of segments over the two haplotypes
can differ by 1. Similarly, for dataset #2, the number of solutions increased 5
times, and the run time also doubled. A similar trend is observed for dataset
#3.
Error Tolerance We tested our algorithms on simulated data with point mu-
tation, genotyping errors, and missing values. Fig. 3 shows two example segmen-
tation results. In Fig. 3(a), the data set contains four founders {F1, F2, F3, F4}
each of which has 20 sites. The two copies of the haplotypes Ha and Hb, and
the corresponding genotype G is shown in the figure as the ground truth. A
random site chosen to take a genotyping error. The resulting genotype G′ has a
genotyping error (1 is mistaken as 0) at site 16. Our segmentation solution on
G′ is shown at the bottom of Fig. 3(a). Although F1 does not match G at site
16, F1 is still chosen as the founder in Sega and Segb, since site 16 is a single
mismatch inside a long shared interval with F1. Fig. 3(b) shows the result on a
data set with missing values. Two random sites (site 6 and site 10) are chosen
to be the sites with missing values. As shown at the bottom of the figure, our
algorithm still generates the correct minimum segmentation with the values at
both sites filled in. Fig. 3 is better to be viewed in color.

5 Conclusions

In this paper, we studied the minimum segmentation problem for genotype se-
quence given a set of founders. We proposed dynamic programming algorithms
which run in polynomial time. The algorithms can effectively handle the con-
straint which requires comparable number of founder switches on both haplo-
types. Moreover, the algorithms can deal with the noise in the data such as
genotyping errors, point mutations, missing values, etc.
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Fig. 3. Segmentation results (better viewed in color).

dataset #1 #2 #3
parameters N = 4, L = 20 N = 2, L = 50 N = 6, L = 20

n seg = 4, h = 0.1 n seg = 8, h = 0.05 n seg = 6, h = 0.05
α 0 1 0 1 2 0 1

# solutions 28 40 92 276 460 6 356
running time (sec) 0.515 0.718 0.453 0.656 0.812 1.09 1.437

Table 1. Effect of Enforcing the Constraint
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