
Vis Comput (2009) 25: 549–557
DOI 10.1007/s00371-009-0335-3

O R I G I NA L A RT I C L E

Towards multi-perspective rasterization

Xuan Yu · Jingyi Yu · Leonard McMillan

Published online: 19 March 2009
© Springer-Verlag 2009

Abstract We present a novel framework for real-time
multi-perspective rendering. While most existing approaches
are based on ray-tracing, we present an alternative approach
by emulating multi-perspective rasterization on the classical
perspective graphics pipeline. To render a general multi-
perspective camera, we first decompose the camera into
piecewise linear primitive cameras called the general lin-
ear cameras or GLCs. We derive the closed-form projec-
tion equations for GLCs and show how to rasterize triangles
onto GLCs via a two-pass rendering algorithm. In the first
pass, we compute the GLC projection coefficients of each
scene triangle using a vertex shader. The linear raster on
the graphics hardware then interpolates these coefficients at
each pixel. Finally, we use these interpolated coefficients to
compute the projected pixel coordinates using a fragment
shader. In the second pass, we move the pixels to their ac-
tual projected positions. To avoid holes, we treat neighbor-
ing pixels as triangles and re-render them onto the GLC im-
age plane. We demonstrate our real-time multi-perspective
rendering framework in a wide range of applications in-
cluding synthesizing panoramic and omnidirectional views,
rendering reflections on curved mirrors, and creating multi-
perspective faux animations. Compared with the GPU-based

Electronic supplementary material The online version of this article
(http://dx.doi.org/10.1007/s00371-009-0335-3) contains
supplementary material, which is available to authorized users.

X. Yu · J. Yu (�)
University of Delaware, Newark, USA
e-mail: jingyiyu@udel.edu

X. Yu
e-mail: xuanyu@udel.edu

L. McMillan
University of North Carolina at Chapel Hill, Chapel Hill, USA

ray tracing methods, our rasterization approach scales better
with scene complexity and it can render scenes with a large
number of triangles at interactive frame rates.

Keywords Multi-perspective rendering · Graphics
hardware · Real-time rendering · Rasterization

1 Introduction

A perspective camera captures the spatial relationships of
objects in a scene as they appear from a single viewpoint.
In art, the use of perspective cameras is surprisingly rare:
artists, architects, and engineers regularly combine what is
seen from several viewpoints into a single image. Despite
their incongruity of view, these multi-perspective images are
able to preserve spatial coherence. They can depict, within
a single context, details of a scene that are simultaneously
inaccessible from a single view.

In Computer Graphics, image-based approaches are com-
monly used to render multi-perspective images [3, 27, 30].
Their rendering quality depends on the sampling of the
plenoptic function [1] and aliasing artifacts can be intro-
duced during initial sampling and final reconstruction. Alter-
natively, ray tracing can be used to render high quality multi-
perspective cameras. However, ray tracing is often too slow
for interactive rendering. Recently, GPU-based ray tracing
techniques [4, 19] have been developed to efficiently de-
termine ray–object intersections. However, a fundamental
problem in GPU ray tracing is that it requires random ac-
cess to a database of scene triangles, which does not fit well
with the SIMD feed-forward graphics pipeline [11].

In this paper, we present a novel rasterization frame-
work for rendering multi-perspective images in real-time. To

http://dx.doi.org/10.1007/s00371-009-0335-3
mailto:jingyiyu@udel.edu
mailto:xuanyu@udel.edu

550 X. Yu et al.

Fig. 1 Our framework interactively renders a complex city scene of 15k triangles at 70 fps. A cross-slit camera is used to render the scene at an
1024 × 320 resolution

render a general multi-perspective camera, we first decom-
pose the camera into piecewise primitive multi-perspective
cameras. We use the recently proposed general linear cam-
eras (GLC) model that describes typical pinhole and ortho-
graphic cameras, as well as many commonly studied multi-
perspective cameras. We derive the closed-form projection
equations for GLCs and show how to rasterize triangles onto
the GPU via a two-pass rendering algorithm.

In the first pass, we compute the GLC projection coeffi-
cients of each scene triangle using a vertex shader. The lin-
ear raster on the graphics hardware then interpolates these
coefficients at each pixel. Finally, we use these interpolated
coefficients to compute the projected pixel coordinates us-
ing a fragment shader. In the second pass, we move these
pixels to their actual projected positions. To avoid holes, we
treat neighboring pixels as triangles and re-render them onto
the GLC image plane. We demonstrate our real-time multi-
perspective rendering framework in a wide range of applica-
tions including synthesizing panoramic and omnidirectional
views, rendering reflections on curved mirrors, and creat-
ing multi-perspective faux animations. Compared to GPU-
based ray tracing methods, our rasterization approach scales
better with scene complexity and can render highly complex
scenes with a large number of triangles at interactive frame
rates.

2 Previous work

Historically, multi-perspective images have been frequently
employed by pre-Renaissance and post-impressionist artists
to depict more than can be seen from any specific point
[29]. Escher uses highly curved projection models to gener-
ate “impossible” perspectives of a scene. Picasso and other
Cubism pioneers made effective use of rearranging differ-
ent parts of the depicted scene while maintaining their local
spatial relationships, which results in an incongruous spatial
system [8].

In Computer Graphics, multi-perspective images have
been widely used in cel-animations [27] and omnidirectional

visualizations [15, 20]. A commonly used technique for cre-
ating these images is to combine strips from different pin-
hole images. This approach, often called a strip camera, has
appeared quite often in Graphics literature. For example,
computer generated multi-perspective panoramas [27] com-
bined elements of multiple pinhole strips into a single image
using a semi-automatic image registration process. The con-
centric mosaics of [24] and [17] are another type of multi-
perspective image that is useful for exploring captured envi-
ronments.

Durand [6] suggests that specifying multi-perspective
cameras can also be an interactive process and uses them
as an example to distinguish between picture generation and
user interaction. Examples of such approaches include the
3D-based interactive rendering systems by Agrawala et al.
[3] and Hanson and Wernert [10]. Roman et al. [21, 22]
provide a semi-interactive system that uses a linear cam-
era to combine photographs into panoramas of street scenes.
Agrawala et al. [2] proposed to composite large regions of
ordinary perspective images. They reduce the degree of user
interaction by identifying the dominant plane and then use
graph cuts to minimize multi-perspective distortions.

Recently, real-time multi-perspective rendering tech-
niques have been developed based on polygonal graphics
hardware. These include techniques for supporting multiple
centers of projection in VR applications [12, 25], render-
ing general curved reflections or refractions [16, 28], and
synthesizing special panoramic effects [7, 29]. The work by
Hou et al. [11] decomposes an arbitrary multi-perspective
image into piecewise-linear multi-perspective primitives.
They then render each primitive camera by implementing a
non-linear beam-tracing using a pair of vertex and fragment
programs.

Finally, multi-perspective images have received attention
from the computer vision community for analyzing struc-
ture revealed via motion [17, 23] and generating panoramic
images with a wide field-of-view using mirrors [26]. Sev-
eral researchers have proposed alternative multi-perspective
camera models which capture rays from different points in
space. These multi-perspective cameras include pushbroom
cameras [9], which collect rays along parallel planes from

Towards multi-perspective rasterization 551

Fig. 2 A diagram showing the pipeline of our rendering algorithm

Fig. 3 (a) A General Linear Camera is described by three generator
rays parametrized under two parallel planes (2PP). (b) We can decom-
pose a reflection image of a curved mirror into piecewise GLCs

points swept along a linear trajectory, and two-slit cameras
[31], which collect all rays passing through two lines.

3 Multi-perspective decomposition

To render an arbitrary multi-perspective camera, we first de-
compose the camera into piecewise linear primitive multi-
perspective cameras whose projection models can be easily
characterized.

3.1 General linear cameras

Our decomposition is based on the recently proposed gen-
eral linear camera or GLCs [30]. GLCs unify traditional per-
spective, orthographic, and multi-perspective cameras mod-
els such as the pushbroom and the cross-slit cameras. In
the GLC framework, every ray is parameterized by its in-
tersections with the two parallel planes, where [s, t] is the
intersection with the first and [u,v] the second, as shown in
Fig. 3(a). This parametrization is often called a two-plane
parametrization (2PP) [13]. In this paper, we further sim-
plify the analysis of [30] by substituting σ = s − u and

τ = t − v and use [σ, τ,u, v] to represent rays. We also as-
sume the default uv plane is the default image plane and is
at z = 0 while st plane is at z = 1.

A GLC is defined as the affine combination of three rays:

GLC = {
r : r = α · [σ1, τ1, u1, v1] + β · [σ2, τ2, u2, v2]

+ (1 − α − β) · [σ3, τ3, u3, v3],∀α,β
}
. (1)

We treat the problem of multi-perspective rendering as
one of specifying the set of rays collected by the camera.
Yu and McMillan [29] have shown that these GLC cam-
eras, when constrained by an appropriate set of rules, can
be laid out on the image plane, thereby generating arbitrary
multi-perspective renderings. In fact, to a first order, the
GLC-based framework can describe any multi-perspective
image that is consistent with a smoothly varying set of
rays. In Sect. 5.1, we demonstrate rendering 180 or 360
degree panoramas by stitching piecewise cross-slit GLCs.
In Sect. 5.3, we show, by dynamically composing a multi-
perspective camera from smoothly varying specific GLCs,
that it is also possible to create faux animations from static
models.

GLCs can also be used to render reflections on arbitrar-
ily curved mirrors (Sect. 5.2). Given a mirror surface rep-
resented as a triangle mesh, we can associate the reflection
ray with each vertex so that each triangle corresponds to a
ray triplet, as shown in Fig. 3(b). We then specify the uv

parametrization plane for each ray triplet as the plane of the
triangle itself and render each GLC individually. Finally, we
can compose multiple GLC images into a single reflection
image.

Next, we derive the GLC projection equation. To further
simplify our analysis, we assume the uv plane is the im-
age plane of the GLC. We also assume the three generators
have the form [σ1, τ1,0,0], [σ2, τ2,1,0], and [σ3, τ3,0,1],

552 X. Yu et al.

Fig. 4 (a) Projecting a point P to a ray in the GLC. (b) The projection
of P can be computed using the affine coordinate on the sweeping plane
Πz

i.e., these three generator rays originate from pixels [0,0],
[1,0], and [0,1], respectively. Under these three generator
rays, every ray r in the GLC can be written as the following
affine combination:

r[σ, τ,u, v] = (1 − α − β) · [σ1, τ1,0,0]
+ α · [σ2, τ2,1,0] + β · [σ3, τ3,0,1]. (2)

It is easy to see that α = u and β = v under this simplifi-
cation. Therefore, computing the affine coefficients of r is
equivalent to projecting r onto the image plane.

To compute the projection of a 3D point P(x, y, z) in
the GLC, we sweep a plane Πz parallel to the uv plane and
passing through Ṗ . The three generator rays will intersect
Πz at Ṫ1, Ṫ2, Ṫ3, where

Ṫ1 = (0,0,0) + z · (σ1, τ1,1) = (σ1z, τ1z, z),

Ṫ2 = (1,0,0) + z · (σ2, τ2,1) = (σ2z + 1, τ2z, z), (3)

Ṫ3 = (0,1,0) + z · (σ3, τ3,1) = (σ3z, τ3z + 1, z).

Our goal is to compute the affine combination [α,β] of
the three generator rays that pass through P . Notice, the
same affine coefficients should apply to point P with respect
to triangle �Ṫ1Ṫ2Ṫ3, i.e.,

Ṗ = (1 − α − β) · Ṫ1 + α · Ṫ2 + β · Ṫ3. (4)

Recall that [α,β] can be computed using the ratio of
the signed areas formed by triangle �Ṫ1Ṗ Ṫ3, �Ṫ1Ṫ2Ṗ over
�Ṫ1Ṫ2Ṫ3 as shown in Fig. 4(b); we have

u = �Ṫ1Ṗ Ṫ3

�Ṫ1Ṫ2Ṫ3
=

∣∣∣
∣∣∣

zσ1 zτ1 1
x y 1

zσ3 1 + zτ3 1

∣∣∣
∣∣∣

∣∣∣∣∣∣

zσ1 zτ1 1
1 + zσ2 0 + zτ2 1

zσ3 1 + zτ3 1

∣∣∣∣∣∣

,

v = �Ṫ1Ṫ2Ṗ

�Ṫ1Ṫ2Ṫ3
=

∣∣∣∣∣
∣

zσ1 zτ1 1
1 + zσ2 zτ2 1

x y 1

∣∣∣∣∣
∣

∣∣∣∣∣∣

zσ1 zτ1 1
1 + zσ2 0 + zτ2 1

zσ3 1 + zτ3 1

∣∣∣∣∣∣

. (5)

For GLC-based decompositions, the smoothness is guar-
anteed if all cameras are parameterized under the same
2PP. However, when GLCs are used to model more com-
plicated phenomenons such as reflections, it is common
practice to use different parametrization planes (e.g., local
tangent planes), for minimizing the approximation errors.
Therefore, the projection continuity for two adjacent GLCs
is not guaranteed in a general configuration [18]. In [11],
Hou et al. proposed a similar multi-perspective camera de-
composition scheme. Their approach used the normalized
vector [nx,ny, nz] to represent the ray direction instead of
the 2PP. Their parametrization naturally maintains smooth-
ness across the camera boundaries. However, their projec-
tion equation is more complicated and it may have multiple
(up to 4) solutions, and hence, additional steps are needed to
determine the actual solution. Popescu et al. [18] extended
GLCs to a continuous form, but at the cost of a cubic projec-
tion equation. For multi-perspective rasterization, the linear
projection not only has the advantage of simpler computa-
tion, but also the more important advantage of single projec-
tion.

4 Multi-perspective rasterization

Our goal is to emulate GLC-based triangle rasterization on
the perspective camera graphics pipeline. In this section, we
first briefly review the perspective-camera based linear ras-
terization and then identify the difficulty in implementing
GLC rasterization. Finally, we present a simple and efficient
technique for emulating GLC rasterization on the GPU.

4.1 Linear rasterization

In a perspective camera, 3D lines project to 2D lines via
perspective projection. Therefore, to render a triangle, we
can simply first project the vertices of the triangle onto the
image plane of the camera and then linearly interpolate the
pixels between the projected vertices. Therefore, the raster
on the graphics hardware serves simply as a linear interpola-
tion engine. In contrast, a triangle maps to a curved triangle
in a multi-perspective camera. Thus, the linear raster cannot
be directly used to rasterize the triangles.

Modern graphics hardware has been focused on adding
programmable shading to their capabilities, to allow each
vertex or pixel be processed by a short program [5, 14]. For

Towards multi-perspective rasterization 553

example, it is easy to write simple vertex and fragment pro-
grams to support Phong shading using per-pixel-based light-
ing, surface normal and positions. However, very little effort
has been made to change the linear raster. In fact, rasteri-
zation of curved triangle still remains an open problem in
computer graphics.

4.2 Emulating GLC rasterization

We present a simple and efficient GLC rasterization scheme
on the GPU. Our goal is to use the raster to interpolate the
linear components in the GLC projection equation and rely
on the fragment shader to conduct the nonlinear operations.

Recall that both the numerator and the denominator in the
GLC projection equation (5) can be written as the determi-
nant of matrices. Furthermore, all entries in the two matrices
are linear in the x, y, and z coordinates of 3D points. There-
fore, we can linearly interpolate these projection coordinates
within the triangle. Specifically, to render each scene trian-
gle, we first compute the per-vertex-based projection coef-
ficients (i.e., each entry in the numerator and denominator
matrices) using a vertex shader. The raster then interpolates
these coefficients. On the fragment shader, we then com-
pute the projected pixel coordinates using the GLC projec-
tion equation and store them in a source texture S. Next, we
need to move these pixels from S to their actual projected
positions in the GLC image T . A simple solution is to map
each pixel in S to a pixel in T . However, this simple map-
ping will introduce holes in the target GLC image, i.e., some
pixels in T may not correspond to any pixels in S due to
discretization. To resolve this problem, we treat every three
neighboring pixels in S as a triangle and re-render these tri-
angles onto T . Similar to frustum culling for perspective
cameras, we also discard triangles that lie completely out-
side the image plane in the second pass. Fig. 2 shows the
complete pipeline of our approach.

To maintain correct depth ordering, we also compute per-
pixel ray depth. Specifically, once we compute the projected
pixel coordinate [u,v] of a 3D point P(x, y, z) in the GLC,
we calculate the ray depth dP as ‖(x − u)2 + (y − v)2 +
z2‖1/2. This step can be efficiently combined with the GLC
projection at the end of the first pass in the same fragment
shader. When we re-rasterize the triangles from S to T in the
second pass, we simply use z-buffer to resolve the visibility
problem.

4.3 GLC projection equation

To render the complete 3D scene, it is important that we
rasterize each scene triangle without overlapping in the first
pass. We benefit from the large texture memory size on
commodity graphics card. In our experiment, we use up
to 1K × 1K textures and each scene triangle is set to have
10×10 image resolution. This allows us to interactively ren-
der complex scenes with over 10K triangles.

4.4 Results

We have implemented our algorithm using DirectX 9.0c
with Shader model 3.0. All experiments are recorded on a
PC with 2.13 GHz intel Core2 Duo CPU, 2 GB memory,
and an NVidia 8800 GTX graphics card. Figure 10 summa-
rizes the performance data. The computational overhead in
our GLC rasterization pipeline is comparable to the classical
perspective rendering. This is because to render a pinhole
camera, all scene vertices need to be transformed via per-
spective transformation and tested for view frusturm culling
whereas our GLC rasterization scheme separates the pro-
jection and culling in two separate passes. Our approach,
however, will incur larger overhead due to context switch-
ing between the two passes. When rendering cameras using
a single or a small number of GLCs, the overhead caused
by context switching is negligible and our algorithm scales
linearly with the resolution used to render each scene trian-
gle. However, when rendering a large number of GLCs, this
overhead can severely affect the performance of our algo-
rithm (Sect. 6).

In Fig. 5, we render a cross-slit camera and compare
the rendering result with ray tracing. We have modified the
PovRay ray-tracer to support all types of GLCs. Our test
scene consists of geometric primitives like spheres, cylin-
ders, and boxes. We discretize the sphere by 260 triangles,
the cylinder by 40 triangles, and the box by 12 triangles. In
Fig. 5(b), we set the scene triangle resolution to be 5 × 5
pixels and we observe slight polygonization artifacts on the
ground plane. However, since we re-render the projected
pixels as triangles in the second pass, the final rendering
does not contain holes. Furthermore, as we increase the reso-
lution for rasterizing the scene triangles, the polygonization
artifacts disappear.

5 Applications

5.1 Multi-perspective panoramas

Multi-perspective panoramas attempt to combine a series of
views into a single image that is viewed in pieces. One way
to construct multi-perspective panoramas is to stitch GLCs
together. In Fig. 7(a), we approximate a circular cross-slit
panorama [31] by stitching piecewise linear cross-slit GLCs.
Specifically, all these GLCs share a common slit that passes
through the center of the circle. We then discretize the circle
using a sequence of slit segments. In Fig. 6(b), we render a
360 degree view of a cow model of 5800 triangles. We are
able to fuse both the head and the tail of the cow into a single
multi-perspective image. Our system renders at 47 fps and
we can interactively rotate the cow as shown in the supple-
mentary video.

554 X. Yu et al.

Fig. 5 (a) Rendering a cross-slit camera using ray tracing. (b)–(d)
show the rendering result of our approach using 5 × 5 (b), 10 × 10 (c),
and 20 × 20 (d) rasterization resolution for scene triangles. Notice at

a low rasterization resolution, polygonization artifacts can occur in the
final rendering (e.g., the ground plane in (b))

Fig. 6 Real-time rendering of 360 degree panoramas using GLC rasterization. (a) A perspective image of a cow model that consists of 5800
triangles. (b) Our panoramic rendering of the cow model at 47 fps at an 800 × 600 resolution

In Fig. 7, we render an omnidirectional view of a teapot
model that consists of 14k triangles at 32 fps at a 800 × 600
resolution, reminiscent of an MCOP image [20]. The classi-
cal pinhole camera 7(b) cannot simultaneously illustrate the
nose and the handle of the teapot. Using multi-perspective
rendering, we can fuse both the nose and the handle in a
single image 7(c) while maintaining low image distortions.
Figure 7(d) shows the top view of the teapot.

5.2 Real-time reflection

A special class of multi-perspective images are reflections
on curved mirrors. To render reflections, we reuse the de-
fault triangulation of the reflector and compute per-vertex
reflection rays. We then treat each individual triangle as a
GLC and use the triangle plane as the parametrization plane
of the GLC. Finally, we render each GLC separately and
stitch them to generate the final reflection image.

In Fig. 8, we render reflections from a mirror sphere.
The butterfly scene contains 1100 triangles. We tessellate
the sphere with 960 GLC triangles and render each GLC at

a 256 × 256 resolution. We set each scene triangle to be ras-
terized at a 6 × 6 resolution. Our approach is able to render
at 10 fps and the reflections appear highly smooth.

Since our algorithm uses two passes to render each GLC,
context switching between each pass can introduce addi-
tional overhead. In particular, with very fine triangulation
of the reflector (∼1K triangles), our algorithm is slower than
the GPU ray-tracing approach [11] where scene triangle pro-
jection and ray tracing are combined in a single pass. The
main advantage of our approach over ray tracing is that it
scales well with scene complexity whereas the performance
of GPU ray-tracing can significantly decrease when render-
ing thousands of triangles.

5.3 Multi-perspective faux-animation

Finally, it is possible to use multi-perspective rendering
to create fake or faux-animations from static models by
dynamically constructing the multi-perspective images. In
Fig. 9, we show three frames from a synthesized animation.

Towards multi-perspective rasterization 555

Fig. 7 (a) We construct the multi-perspective panorama by stitching a
sequence of cross-slit cameras. (b) shows a perspective view of the
teapot. (b) shows a 270 degree view of the teapot. Notice the CGI

textures near the handle and side can be simultaneously seen in the
panorama. (d) shows a top-down view of the teapot. Our system ren-
ders at 32 fps at an 800 × 600 resolution

Fig. 8 Rendering reflections using the GLC rasterization framework. We decompose the mirror sphere into 960 triangles, each corresponding to
a GLC. (a) We render the sphere in a butterfly scene at 10 fps. The rendering results (b) are highly smooth. (c) shows a close-up view of (b)

Fig. 9 (a) shows a perspective view of the cow model. (b), (c) Multi-perspective renderings were used to turn the head quarters of the cow in a
fake animation

We first construct a multi-perspective camera composed of
two GLCs. The first GLC, a cross-slit camera, captures the
torso and the tail of the cow model. The second cross-slit
GLC hinges on the first one and can rotate towards or away
from the head of the cow. As we rotate the second camera,

we are able to synthesize realistic head rotations of the cow
model while maintaining continuity across the two GLC
cameras. Zomet [31] used similar approach by using single
cross-slit camera to achieve rotation effects from a sequence
of images.

556 X. Yu et al.

Fig. 10 The performance of our algorithm in reflection rendering.
(a) We fix the number of the scene triangles and each triangle’s ras-
terization resolution while changing the number of GLCs used to ap-

proximate the mirror sphere and each GLC’s image resolution. (b) We
fix the number of GLCs and the GLC image resolution while changing
the scene complexity and each scene triangle’s rasterization resolution

6 Discussions and future work

Our GLC-rasterization framework has several advantages.
First, our method is very easy to implement: the mapping
from a 3D point to its image in the GLC is unique and
can be directly computed on the GPU whereas other multi-
perspective cameras such as the ones used in [11] require
solving higher-order polynomial equations and selecting the
proper solution. Second, since we use rasterization in place
of ray tracing, the performance is expected to ride in pro-
portion with advances in commodity graphics hardware. Fi-
nally, our framework will naturally support fully dynamic
scenes since it does not rely on acceleration data structures
commonly used for ray tracing.

The main limitation of our framework is that it does not
scale well with the number of the GLCs. In our experiments,
we find that this is caused by context switching between
the two passes. When rendering multi-perspective cameras
composed of a large number of GLCs, the overhead due
to context switching can significantly decrease the overall
performance of our algorithm. Although the ray-tracing ap-
proach [11] also used multi-perspective decomposition and
stitching, it is not an issue for their method as the authors
combined the bounding triangle computation and ray trac-
ing in a single pass. In the future, we plan to investigate
how to combine the ray-tracing and rasterization methods
into a single framework to handle both complex scenes and
complex camera compositions. It may also be possible to
combine our technique with existing GPU-based algorithms
for rendering more sophisticated visual phenomenons such
as glossy reflections, refractions and caustics under subscat-
tering. Finally, we will explore efficient methods to extend
the GLCs to support both linear projection and projection
continuity.

We envision our proposed multi-perspective rendering
framework will serve as conceptual inspiration for designing
new graphics hardware. Specifically, we anticipate that our
framework would motivate the hardware community to de-
velop nonlinear rasterization units to support general multi-
perspective rendering. Notice that any multi-perspective

camera can be locally approximated by the GLCs. There-
fore, if the rasterization unit can support the GLC projection
model (i.e., quadratic rational functions), it may be used to
directly render arbitrary multi-perspective effects.

Acknowledgements This work has been supported by the National
Science Foundation under grant MSPA-MCS-0625931.

References

1. Adelson, E.H., Bergen, J.R.: The plenoptic function and the
elements of early vision. In: Computational Models of Visual
Processing, pp. 3–20 (1991)

2. Agrawala, M., Zorin, D., Munzner, T.: Artistic multiprojection
rendering. In: Proceedings of the Eurographics Workshop on Ren-
dering Techniques 2000, pp. 125–136 (2000)

3. Aseem, A., Agrawala, M., Cohen, M., Salesin, D., Szeliski, R.:
Photographing long scenes with multi-viewpoint panoramas. In:
SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, pp. 853–861
(2006)

4. Carr, N.A., Hall, J.D., Hart, J.C.: The ray engine. In: Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware (2002)

5. Diefenbach, P.J., Badler, N.I.: Multi-pass pipeline rendering: real-
ism for dynamic environments. In: Proceedings of the Symposium
on Interactive 3D Graphics, pp. 59–ff. (1997)

6. Durand, F.: An invitation to discuss computer depiction. In: NPAR
’02: Proceedings of the 2nd International Symposium on Non-
photorealistic Animation and Rendering, pp. 111–124 (2002)

7. Gascuel, J.D., Holzschuch, N., Fournier, G., Péroche, B.: Fast
non-linear projections using graphics hardware. In: SI3D ’08: Pro-
ceedings of the 2008 Symposium on Interactive 3D Graphics and
Games, pp. 107–114 (2008)

8. Glassner, A.S.: Cubism and cameras: Free-form optics for com-
puter graphics. Tech. Rep. MSR-TR-2000-05, January (2000)

9. Gupta, R., Hartley, R.I.: Linear pushbroom cameras. IEEE Trans.
Pattern Anal. Mach. Intell. 19(9), 963–975 (1997)

10. Hanson, A.J., Wernert, E.A.: Image-based rendering with occlu-
sions via cubist images. In: VIS ’98: Proceedings of the Confer-
ence on Visualization ’98, pp. 327–334 (1998)

11. Hou, X., Wei, L.Y., Shum, H.Y., Guo, B.: Real-time multi-
perspective rendering on graphics hardware. In: SIGGRAPH ’06:
ACM SIGGRAPH 2006 Sketches, p. 79 (2006)

12. Kitamura, Y., Konishi, T., Yamamoto, S., Kishino, F.: Interactive
stereoscopic display for three or more users. In: SIGGRAPH ’01:
Proceedings of the 28th Annual Conference on Computer Graph-
ics and Interactive Techniques, pp. 231–240 (2001)

Towards multi-perspective rasterization 557

13. Levoy, M., Hanrahan, P.: Light field rendering. In: SIGGRAPH
’96: Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, pp. 31–42 (1996)

14. Lindholm, E., Kligard, M.J., Moreton, H.: A user-programmable
vertex engine. In: SIGGRAPH ’01: Proceedings of the 28th An-
nual Conference on Computer Graphics and Interactive Tech-
niques, pp. 149–158 (2001)

15. Mei, C., Popescu, V., Sacks, E.: The occlusion camera, In: Proc.
of Eurographics 2005. Comput. Graph. Forum. 24(3), pp. 335–342
(Sept. 2005)

16. Ofek, E., Rappoport, A.: Interactive reflections on curved objects.
In: SIGGRAPH ’98: the 25th Annual Conference on Computer
Graphics and Interactive Techniques, pp. 333–342 (1998)

17. Peleg, S., Ben-ezra, M., Pritch, Y.: Omnistereo: Panoramic stereo
imaging. IEEE Trans. Pattern Anal. Mach. Intell. 23, 279–290
(2001)

18. Popescu, V., Dauble, J., Mei, C., Sacks, E.: An efficient error-
bounded general camera model. In: 3DPVT ’06: Proceedings of
the Third International Symposium on 3D Data Processing, Vi-
sualization, and Transmission (3DPVT’06), pp. 121–128. IEEE
Computer Society, Washington (2006). DOI: 10.1109/3DPVT.
2006.26

19. Purcell, T.J., Donner, C., Cammarano, M., Jensen, H.W., Hanra-
han, P.: Photon mapping on programmable graphics hardware. In:
ACM SIGGRAPH 2005 Courses, p. 258 (2005)

20. Rademacher, P., Bishop, G.: Multiple-center-of-projection im-
ages. Comput. Graph. 32, 199–206 (1998) (Annual Conference
Series)

21. Roman, A., Lensch, H.: Automatic multiperspective images. IEEE
Trans. Pattern Anal. Mach. Intell. 25, 741–754 (2003)

22. Roman, A., Garg, G., Levoy, M.: Interactive design of multi-
perspective images for visualizing urban landscapes. In: VIS ’04:
Proceedings of the Conference on Visualization ’04, pp. 537–544.
IEEE Computer Society, Washington (2004)

23. Seitz, S.M., Kim, J.: Multiperspective imaging. IEEE Comput.
Graph. Appl. 23(6), 16–19 (2003)

24. Shum, H.Y., He, L.W.: Rendering with concentric mosaics. In:
SIGGRAPH ’99: the 26th Annual Conference on Computer
Graphics and Interactive Techniques, pp. 299–306 (1999)

25. Simon, A., Smith, R.C., Pawlicki, R.R.: Omnistereo for panoramic
virtual environment display systems. In: VR ’04: Proceedings of
the IEEE Virtual Reality 2004, p. 67 (2004)

26. Swaminathan, R., Grossberg, M.D., Nayar, S.K.: Non-single
viewpoint catadioptric cameras: Geometry and analysis. Int. J.
Comput. Vis. 66(3), 211–229 (2006)

27. Wood, D.N., Finkelstein, A., Hughes, J.F., Thayer, C.E., Salesin,
D.H.: Multiperspective panoramas for cel animation. In: SIG-
GRAPH ’97: Proceedings of the 24th Annual Conference on Com-
puter Graphics and Interactive Techniques, pp. 243–250 (1997)

28. Wyman, C., Davis, S.: Interactive image-space techniques for ap-
proximating caustics. In: Proceedings of the 2006 Symposium on
Interactive 3D Graphics and Games, pp. 153–160 (2006)

29. Yu, J., McMillan, L.: A framework for multiperspective rendering.
In: Rendering Techniques (2004)

30. Yu, J., McMillan, L.: General linear cameras. In: the 8th European
Conference on Computer Vision (ECCV) (2004)

31. Zomet, A., Feldman, D., Peleg, S., Weinshall, D., Society, I.C.:
Mosaicing new views: The crossed-slits projection. IEEE Trans.
Pattern Anal. Mach. Intell. 25, 741–754 (2003)

Xuan Yu is a graduate student in
Computer and Information Sciences
Department at the University of
Delaware. He received his B.Sc.
from Shanghai Jiaotong University
and is currently pursuing his Ph.D.
with Dr. Jingyi Yu at the University
of Delaware.

Jingyi Yu is Assistant Professor
in Computer and Information Sci-
ences Department at the University
of Delaware. He received his B.Sc.
from Caltech in 2000, and M.Sc.
and Ph.D. degrees in EECS from
MIT in 2005. His research interests
span a range of topics in computer
graphics, computer vision, and im-
age processing, including computa-
tional photography, medical imag-
ing, non-conventional optics and
camera design, tracking and surveil-
lance, and graphics hardware.

Leonard McMillan is Associate
Professor of Computer Science at
the University of North Carolina
in Chapel Hill. Leonard received
his Bachelor’s (1983) and Master’s
(1984) degrees in Electrical Engi-
neering from Georgia Institute of
Technology. Leonard received his
Ph.D. in Computer Science from
the University of North Carolina
at Chapel Hill (1997). Leonard has
been a Member of Technical Staff
at AT&T Bell Laboratories where
he worked in the Digital Signal
Processing Architecture Group and

was a coarchitect of the AT&T Pixel Machine. Leonard has also
worked as a Senior Staff Engineer at Sun Microsystems where he
helped developing several visualization and multimedia products.
Leonard is a pioneer in the field of image-based rendering. Image-
based rendering is a new approach to computer graphics where scenes
are rendered directly from a collection of reference images rather than
a geometric model. Leonard is also interested in a wide range of re-
lated topics, including computer graphics rendering, imaging methods
and technologies, three-dimensional display technologies, computer
graphics hardware, and the fusion of image processing, multimedia,
and computer graphics.

http://dx.doi.org/10.1109/3DPVT.2006.26
http://dx.doi.org/10.1109/3DPVT.2006.26

	Towards multi-perspective rasterization
	Abstract
	Introduction
	Previous work
	Multi-perspective decomposition
	General linear cameras

	Multi-perspective rasterization
	Linear rasterization
	Emulating GLC rasterization
	GLC projection equation
	Results

	Applications
	Multi-perspective panoramas
	Real-time reflection
	Multi-perspective faux-animation

	Discussions and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

