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Multispectral Bilateral Video Fusion
Eric P. Bennett, John L. Mason, and Leonard McMillan

Abstract—We present a technique for enhancing underexposed
visible-spectrum video by fusing it with simultaneously captured
video from sensors in nonvisible spectra, such as Short Wave IR
or Near IR. Although IR sensors can accurately capture video in
low-light and night-vision applications, they lack the color and rel-
ative luminances of visible-spectrum sensors. RGB sensors do cap-
ture color and correct relative luminances, but are underexposed,
noisy, and lack fine features due to short video exposure times.
Our enhanced fusion output is a reconstruction of the RGB input
assisted by the IR data, not an incorporation of elements imaged
only in IR. With a temporal noise reduction, we first remove shot
noise and increase the color accuracy of the RGB footage. The
IR video is then normalized to ensure cross-spectral compatibility
with the visible-spectrum video using ratio images. To aid fusion,
we decompose the video sources with edge-preserving filters. We
introduce a multispectral version of the bilateral filter called the
“dual bilateral” that robustly decomposes the RGB video. It uti-
lizes the less-noisy IR for edge detection but also preserves strong
visible-spectrum edges not in the IR. We fuse the RGB low fre-
quencies, the IR texture details, and the dual bilateral edges into a
noise-reduced video with sharp details, correct chrominances, and
natural relative luminances.

Index Terms—Bilateral filter, fusion, image decomposition, IR,
multispectral, noise reduction, nonlinear filtering.

I. INTRODUCTION

ASIGNIFICANT problem in night vision imaging is
that, while IR imagery provides a bright and relatively

low-noise view of a dark environment, it can be difficult to
interpret due to inconsistencies with visible-spectrum im-
agery. Therefore, attempts have been made to correct for the
differences between IR and the visible-spectrum. The first
difference is that the relative responses in IR do not match
the visible spectrum. This problem is due to differing material
reflectivities, heat emissions, and sensor sensitivities in the IR
and visible spectra. These differing relative responses between
surfaces hinder the human visual system’s ability to perceive
and identify objects. The other difference is the IR spectrum’s
lack of natural color. Unfortunately, colorization (chromatic in-
terpretation) of IR footage and correction of relative luminance
responses are difficult because there exists no one-to-one map-
ping between IR intensities and corresponding visible-spectrum
luminances and chrominances.

Alternately, visible-spectrum video is easy to interpret due
to its natural relative luminances and chrominances, but vis-
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Fig. 1. Diagram of our prototype multispectral imaging system mounted on
an optical bench. The incoming optical path is split with a cold mirror which
provides an efficient separation of spectra.

ible-spectrum sensors typically fail in low-light and night-vision
situations due to poor sensor sensitivity. To achieve sufficient
responses, long exposure times must be used, making them im-
practical for video applications.

Because RGB video has the perceptual characteristics we de-
sire, we present a fusion technique that enhances visible-light
video using information from a registered and synchronized
IR video sensor (Fig. 1). Our goal is to create video that ap-
pears as if it was imaged only in the visible spectrum and under
more ideal exposure conditions than actually existed. This dif-
fers from most multispectral fusion approaches that combine
elements from all sensors, creating a mixed spectral represen-
tation [1]. It also differs from learning-based methods that rely
on sparse priors of the visible-light spectrum to enhance IR [2]
because we have an IR/RGB pair for every frame.

Our fusion decomposes the visible-spectrum and IR-spec-
trum videos into low frequencies, edges, and textures (detail
features). Specifically, we consider the visible spectrum as
400–700 nm and IR as either Short Wave Infrared (SWIR,
900–1700 nm) or Near Infrared (NIR, 700–2500 nm). Our de-
compositions are enhanced and fused in a manner that corrects
for their inherent spectral differences.

In this work, we present a series of contributions that enable
our fusion method as follows:

• an extention to the bilateral filter (the “dual bilateral”)
that preserves edges detected in multiple spectra under
differing noise levels;

• a per-pixel modulation (normalization) of the IR to transfer
visual-spectrum relative luminance responses;

• a video decomposition model that specifically considers
and processes edge components.

1057-7149/$25.00 © 2007 IEEE
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II. RELATED WORK

Our fusion approach attempts to improve reconstruction of
the visible-spectrum footage with the assistance of registered IR
imagery, meaning that we do not include elements that appear
only in IR. Traditional multispectral fusions attempt to com-
bine elements from multiple spectra to communicate informa-
tion from all sources. Two classic multispectral applications are
remote sensing (aerial and satellite imagery) and night vision,
which both fuse visible and nonvisble spectra.

To fuse amplified night-vision data with multiple IR bands,
Fay et al. [3] introduce a neural network to create false-color
(pseudo-color) images from a learned opponent-color im-
portance model. Many other false-color fusion models are
commonly used in the remote sensing community, such as in-
tensity-hue saturation. A summary is provided in [1]. Another
common fusion approach is combining pixel intensities from
multiresolution Laplacian or wavelet pyramid decompositions
[4] [5]. Also, physically based models that incorporate more
than per-pixel image processing have been suggested [6].

Therrien et al. [7] introduce a method to decompose visible
and IR sources into their respective high and low frequencies
and processes them in a framework inspired by Peli and Lim
[8]. A nonlinear mapping is applied to each set of spectral bands
to fuse them into the result. Therrien et al. [7] also address nor-
malizing relative luminance responses between spectra. How-
ever, our technique attempts to match the IR response to the rel-
ative luminances of the visible spectrum while [7] matches both
spectra to a Sammon mapping [9].

The core of our fusion technique is the separation of detail
features (textures) from the large-scale features (uniform re-
gions) of an image. These features are then remixed between
spectra. This decomposition and recomposition is akin to the
high dynamic range (HDR) compression technique introduced
by Durand and Dorsey [10]. In HDR, the dynamic range of the
large-scale features is decreased, whereas the details are pre-
served within a single image source. This decomposition is ac-
complished via the edge-preserving bilateral filter [11], a non-
linear algorithm that filters an image into regions of uniform
intensity while preserving edges. The bilateral filter is a specific
instance of the SUSAN filter of Smith and Brady [12], which
performs edge detection with both range (intensity) and domain
(spatial proximity) metrics. Extending this idea, the trilateral
filter, discussed by Garnett et al. [13], uses a rank order abso-
lute difference metric to robustly detect and handle shot noise
within a bilateral filter formulation. The identically named trilat-
eral filter of Choudhury and Tumblin [14] is another extension
of the bilateral filter that targets a piecewise-linear result as op-
posed to piecewise-constant by adaptively altering the kernel.

A variant of the bilateral filter that uses a second image as the
edge identification source, called the “joint bilateral filter,” was
proposed by Petschnigg et al. [15] and by Eisemann and Du-
rand [16] (who refered to it as “the cross bilateral filter”). Both
of these papers consider the problem of combining the details
of an image captured with the use of a flash with the “look”
of an image captured under ambient illumination. These papers
discuss flash shadows, which account for edge differences be-
tween images. The multispectral relative luminance differences

we address are another source of edge differences seen at dif-
ferent wavelengths.

Image fusion and texture transfer have been explored in the
gradient domain, using Poisson solvers to reintegrate processed
gradient fields. Socolinsky [17] used a Poisson interpolation
formulation to match the output dynamic range to the desired
display range. Techniques such as Poisson image editing [18],
for texture transfer, and day/night fusion [19] generate gradient
fields that contain visual elements from all images. This differs
from our approach that seeks to enhance visible images without
introducing nonvisible elements.

IR colorization algorithms, such as [2] and [4], attempt to
learn a mapping from IR to chrominance and then construct a
plausible colorized output. For that reason, colorization can be
considered a class of fusion operator that fuses a chrominance
prior into IR footage. In our technique, we instead recover ac-
tual chrominance solely from registered, but noisy, visible-light
footage.

Our IR normalization process parallels the ratio-image work
of Liu et al. [21]. Their work addresses reconstructing faces
under similar luminance conditions. Our technique transfers de-
tails between physical structures that appear different at varying
wavelengths.

Our work is also related to the topic of noise reduction in
night-vision sensors. One approach to noise reduction is to use
the bilateral spatial filters mentioned above [11], but this does
not guarantee temporal coherence. Simple frame averaging
for noise reduction is effective for static scenes, but it creates
ghosting artifacts in dynamic scenes. We suggested an algo-
rithm to reduce sensor noise without ghosting by adaptively
filtering temporally adjacent samples [22], but it is forced to
recover features in motion areas using only spatial filtering.
The NL-means noise reduction used in [23] uses similar neigh-
borhoods, which may not be spatially or temporally aligned,
to attenuate noise. Although we employ noise reduction in the
visible-light video to improve the quality of large-scale feature
fusion, we acquire detail features from the less-noisy IR video.

Our capture rig, which consists of two registered cameras
sharing a common optical path, is influenced by recent work
in multisensor matting [24]. Their system was configured using
similar cameras at differing focuses, while our rig uses cameras
with varying spectral sensitivities.

III. FUSION OVERVIEW

Our video fusion can be broken down into four distinct stages:
1) noise reduction of the RGB video;
2) IR video normalization using ratio images;
3) decomposition of input videos into RGB lumininace low

frequencies, edges, and IR detail features;
4) fusion of multispectral components into RGB output.
We reduce the visible spectrum’s noise using temporal-edge-

preserving bilateral filters (Section IV, “Prefilter” in Fig. 2).
This noise reduction improves the accuracy of the decomposi-
tions, particularly in static image areas. It also filters chromi-
nance, which is provided by the RGB and is processed in a sep-
arate pipeline (Fig. 5).

Many visible-spectrum textures are corrupted by video noise
and must instead be acquired from the IR video. However, the
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Fig. 2. Illustration of the luminance processing of our fusion technique. The RGB luminance signal (Y) provides the low frequencies. Assisted by the IR signal,
the edges are extracted as well. The IR signal is normalized by a ratio of bilateral filters (large-scale features) then its detail features (textures) are isolated. The
right side of the diagram demonstrates our linear combination of image components via and .

IR textures cannot be transferred directly due to relative lumi-
nance differences. Thus, we normalize the IR video to exhibit
similar relative luminances to the RGB image (Section V-A, “IR
normalization” in Fig. 2).

In order to extract sharp RGB edges we introduce a novel
filter called the “dual bilateral” (Section V-B, “Dual Bilateral”
in Fig. 2). This filter uses shared edge-detection information
from both spectra simultaneously while considering sensor
noise tolerances. It also enables more robust IR normalization.

Finally, we fuse the extracted components into a single video
stream that contains reduced noise, sharp edges, natural colors,
and visible-spectrum-like luminances (Section VI, “Fusion” in
Fig. 2).

IV. RGB VIDEO NOISE REDUCTION

We first filter the visible spectrum video to improve the
signal-to-noise ratio (SNR) of static objects and to provide
improved color reproduction. This allows for more accurate
decomposition and fusion later in the pipeline (Fig. 2).

We assume a noise model similar to that of [25]. At a high
level, an image can be decomposed into signal , fixed
pattern noise , and temporal Poisson noise which we
approximate with zero-mean Gaussian distributions. Thermal
sensor noise is modeled with constant variance while shot
noise is modeled with a variance dependent on exposure
time and intensity

(1)

We calculate a total noise variance, , for each sensor and
label the sum of temporal noise as

(2)

In the case of a fixed camera, static objects may be recon-
structed via temporal filtering and fixed pattern subtraction. The
fixed pattern image, , can be obtained by averaging many im-
ages taken with the lens cap on. Temporal filtering is achieved
by averaging multiple static frames, reducing the contribution
of the zero-mean noise from each frame

(3)

In our fusion pipeline, noise is decreased in static areas using
a temporal filter based on the bilateral filter [11] and the visible-
spectrum temporal filtering of [22]. In the following sections,
we describe our filter’s design.

A. Spatial and Temporal Bilateral Filtering

Edge-preserving noise-reduction filters (e.g., anisotropic dif-
fusion, bilateral filtering, median filtering, and sigma filtering)
are the ideal filters for reducing noise in our circumstance.
Smoothing both spatially and temporally while preserving
edges enhances sharpness, preserves motion, and improves the
constancy of smooth regions.

The bilateral filter [11], shown in (4), is a noniterative edge-
preserving filter defined over the domain of some kernel . The
bilateral filter combines each kernel’s center pixel with the
neighboring pixels in that are similar to . In the original
bilateral formulation dissimilarity is determined by luminance
difference, shown in (5).

In addition to noise reduction, the bilateral filter is used be-
cause it decomposes images into two components which have
meaningful perceptual analogs [10] [15]. The bilateral’s filtered
image has large areas of low frequencies separated by sharp
edges, called the “large-scale features” [16]. The complement
image, found through subtraction, contains “detail features,”
which are the textures

(4)

(5)

(6)

In our noise filter, we choose to include temporally aligned
pixels in adjacent frames. The resulting filter is a temporal bilat-
eral filter, useful for removing noise from static objects without
blurring the motion. Edge-preservation in the spatial domain
translates to preserving “temporal edges,” or motion, in time.
In essence, detecting “temporal edges” is equivalent to motion
detection. However, due to the low SNR, it is difficult in practice
to choose a to differentiate noise from motion based solely
on a single pixel-to-pixel comparison.

To solve the problem of separating noise from motion when
temporally filtering, we use a local neighborhood comparison
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to determine dissimilarity, reminiscent of [22]. Instead of just
comparing the intensities of and , as in (5), we use a sum
of squared differences (SSD) between small spatial neighbor-
hoods (typically 3 3 or 5 5) around and , weighted to
favor the kernel’s center by the Gaussian . This reduces
the ambiguity between noise and motion because the larger
neighborhood reduces the impact of single-pixel temporal noise,
instead requiring the simultaneous change of many pixel inten-
sities indicative of motion

(7)

B. Robust Temporal Joint Bilateral Filtering

To further improve our filtering we incorporate ideas from
the joint bilateral filter introduced in [15] and [16]. Joint bilat-
eral filters allow a second image to shape the kernel’s weights.
Thus, all dissimilarity comparisons are made in one image, but
the filter weights are applied to another. In our temporal fil-
tering, this causes -neighborhood SSD motion detection in the
IR video to determine the visible image’s filter support. This is
accomplished by modifying (7) as follows:

(8)

Our complete noise reduction technique is a temporal-only
joint bilateral filter that uses SSD neighborhood dissimilari-
ties in the IR video to filter the visible video. This de-noises the
static regions of the RGB video and improves color reproduc-
tion.

In most cases, visible-spectrum motion can be detected in the
IR video even in the presence of significant relative luminance
differences between spectra. If the SSD neighborhood motion
detection fails, the system can be made more robust by replacing
(4) with (14) discussed in Section V-B.

V. VIDEO DECOMPOSITION TECHNIQUES

In this section, we describe methods to decompose prefiltered
visible and IR videos into separate components. These compo-
nents will be assembled (in Section VI) into our final fusion re-
sult. First, we discuss a per-pixel scaling of the IR video that
normalizes it to resemble the visible light video. This allows
the “detail features” to be acquired from the IR and appear cor-
rect when fused with RGB components. However, this normal-
ization mapping requires knowledge of the large-scale features
from the visible imagery, which cannot be robustly extracted
using existing bilateral filters because of the remaining con-
founding noise. Therefore, we present an extension to the bilat-
eral filter (the “dual bilateral”) to address this problem. Because
of its robustness, this new filter is also used to extract the image
components that provide sharp edges in the final fusion.

From this point on, we will use the term “Y” to refer to
only the luminance channel of the visible-spectrum input. The
chrominance channels, U and V, are separated from the RGB
video in YUV color space after prefiltering (Section IV) and
processed separately in Section VI.

A. Y and IR Video Normalization

Before decomposing the input videos for fusion, we adjust
their characteristics to more closely resemble the desired system
output. To prepare the dark and underexposed Y, its histogram
stretched to the display’s full range, often 0–255, or to an HDR
range.

Since our goal is to combine IR detail features with visual
elements from the visible image, the IR video, from which those
detail features are extracted, is remapped to better resemble the
stretched Y video. These sources differ in both absolute and
relative luminances, so features transferred from IR to visible
may not smoothly fuse. Therefore, we correct these luminance
differences by modulating the IR per-pixel image statistics to
resemble those of the Y video.

The concept of ratio images, discussed by Liu et al. [21],
resembles our normalization. In their application, images were
captured of two faces in neutral poses ( and ). By assuming a
Lambertian illumination model, given a new expression on the
first person’s face a similar expression could be simulated
on the face of the second person at each pixel with
the following modulation:

(9)

In our normalization, we do not have access to a neutral pose
image standard. Instead, to correct differing relative responses,
our ratio is the surface-to-surface luminance ratio. Since relative
response differences are characteristic of surface types, it fol-
lows that their ratios in uniform image regions are ideal for nor-
malization. Uniform regions of the Y and IR videos can be ap-
proximated with the spatial bilateral result, the large-scale fea-
tures ( and ).

Thus, the following formulation normalizes the IR video:

(10)

This normalization is also similar to the per-pixel log-space
texture transfers in both [10] and [16] and to the linear-space
modulation in [15]. However, our normalization is applied to
the original images, not to just a single component (such as
their detail features). Normalization is crucial because of the sig-
nificant relative luminance differences between image sources.
Normalizing the entire image before decomposition may sub-
stantially change the image structure, meaning that prenormal-
ized large-scale features may become detail features after nor-
malization, and vice versa.

We run spatial bilateral filters on both the visible and IR
videos to obtain and , respectively. For the well-ex-
posed, relatively noise-free IR video, spatial bilateral filtering
extracts the large-scale features as expected. However, directly
recovering the large-scale features from the Y video using spa-
tial bilateral filtering fails because it is confounded by the re-
maining noise. Recall, from Section IV, that many samples are
required to significantly reduce noise and sufficient samples
were unavailable in moving regions. To solve this problem, we
use sensor readings from both video sources to accurately re-
construct the visible video large-scale features.
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Fig. 3. Illustration of two common image decomposition methods and how
those components are combined by our fusion method. Gaussian smoothing of
an image extracts its low frequencies while the remainder of the image consti-
tutes the high frequencies. Similarly, edge preserving filtering extracts large-
scale features and details. We separate out the edges (the image components
present in the high frequencies but not in the details) and use them in the output
fusion.

B. Dual Bilateral Filtering

To filter the visible video while preserving edges in order to
extract the large-scale features, we employ the registered IR
video. We cannot, however, simply use the IR joint bilateral
filter, discussed in Section IV-B, because of the inherent dif-
ferences in spatial edges between the two sources (Fig. 10). As
noted in Section I, features often appear in one spectra but not
the other. We attempt to maintain all features present in the vis-
ible spectrum to avoid smoothing across edges. Therefore, we
use multiple measurements to infer edges from our two non-
ideal videos sources: the IR video, with its unnatural relative
luminances, and the noisy Y video.

We use a bilateral filter which includes edge information from
multiple sensors, each with its own estimated variance, to ex-
tract the Y large-scale features. Sensor noise variance estimates
are determined through analysis of fixed-camera, static-scene
videos. In the noisy visible video, edges must be significantly
pronounced to be considered reliable. The less-noisy IR edges
need not be as strong to be considered reliable.

This information is combined in the bilateral kernel as fol-
lows. The Gaussian distributions used by the bilateral filter’s
dissimilarity measures, shown in (5) and (8), can each be recast
as the Gaussian probability of both samples and lying in the
same uniform region given a difference in intensity, which we
denote

(11)

(12)

We wish to estimate the probability of samples and being
in the same uniform region (i.e., no edge separating them) given
samples from both sensors, . If we consider the
noise sources in (11) and (12) to be independent, we can infer

(13)

From (13), it is clear that will be low if either (or
both) or are low due to detection of a

Fig. 4. Illustration of images at various stages of our processing pipeline as-
sociated with the variables used in Section VI. Specifically note the quality of
the dual bilateral, the proper relative luminances of the normalized IR, and the
image components which constitute the final fused output. For comparison, we
show spatial bilateral-only noise reduction. Note that although at this size the
normalized IR and dual bilateral Y images appear similar, the dual bilateral lacks
texture details found in the .

large radiometric difference (an edge). We substitute (11), (12),
and (13) into (4) to derive a “dual bilateral” filter which uses
sensor measurements from both spectra to create a combined
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Fig. 5. Diagram of chrominance processing in our pipeline. After the RGB temporal noise prefiltering, the signal is converted to YUV. The Y component goes
through the pipeline in Fig. 2, while the U and V channels are Gaussian smoothed to remove any noise where it was not removed by the prefiltering (i.e., in areas
of motion). Note, prefiltering is shown in both figures to illustrate when in the overall pipeline the luminance and chrominance signals are split, but prefiltering is
performed only once.

dissimilarity metric

(14)
This dual bilateral is now used to extract the large-scale

features from the visible-spectrum video. The advantages of
this approach beyond joint bilateral filtering are illustrated in
Fig. 10.

In the presence of appreciable single-pixel shot noise, the
measure can be confounded, resulting in edges

being detected where none exist. We, therefore, assume that no
single-pixel detail in the noisy Y video should be considered an
edge. To incorporate this notion, we calculate the
term in (14) using a median-filtered Y video that eliminates
this shot noise (the Y video filtered by the dual bilateral is
unaffected). If desired, any remaining Gaussian temporal noise
in the Y edge-detection source can be further attenuated via
bilateral filtering. This additional filtering is depicted prior to
the dual bilateral in Fig. 2.

Our framework supports additional sensors by multiplica-
tions of in both the numerator and denomi-
nator. Because of the bilateral form, any associated scalars will
cancel out.

VI. MULTISPECTRAL BILATERAL VIDEO FUSION

The final step is to gather the necessary image components
and fuse them together into our result. However, first we will dis-
cuss the optimal fusion for creating enhanced RGB visible-spec-
trum images. To reiterate, our goal is to reconstruct the RGB
source in an enhanced manner with the assistance of the IR im-
ager only as needed.

Fig. 3 shows two methods for decomposing images: Gaussian
decomposition into low and high frequencies and edge-pre-
serving decomposition into large-scale features and detail
features. The image’s sharp edges lie in the area indicated by
the dashed lines. To construct the fusion, we combine RGB
luminance low frequencies, IR detail features, edges, and
chrominance. We now summarize our rationale for our filtering
and fusion choices.

Even in the presence of noise, the RGB luminance video
contains low frequencies of sufficient quality. These provide

correct relative luminances for large, uniform image regions. We
extract the low frequencies by Gaussian smoothing
the prefiltered RGB luminance from Section IV-B .

Because the Y details are most corrupted by visible-spec-
trum sensor noise, we seek evidence for them in the normalized
IR footage . Detail features are obtained
by subtracting the IR spatial bilateral’s large-scale features

from its unfiltered image (Fig. 3). We
use detail features for the entire output image, including
static regions because we know from [26] that the minimum
signal recoverable from a video source is the mean of the dark
current noise at any pixel. Therefore, there are textures in dark
areas of the visible-spectrum video that luminance averaging
cannot reconstruct. In our case, the better-exposed footage
provides those unrecoverable details.

Obtaining accurate edges is crucial to the sharp-
ness of our fusion output image, but the visible-spectrum edges
were corrupted by noise during capture. Alternately, not all the
edges are present in the IR footage, preventing a direct IR edge
transfer. However, the dual bilateral filter in Section V-B can
extract enhanced visible-spectrum large-scale features with ad-
ditional IR measurements . The edge compo-
nents are isolated by subtracting a Gaussian with matching sup-
port . Considering our image deconstruction model
(Fig. 3), the edges complete the fusion along with the RGB lu-
minance low frequencies and the IR detail features.

The equations below detail the entire luminance fusion
process. This pipeline is also shown in Fig. 2 and depicted with
step-by-step images in Fig. 4

(15)

(16)

A linear combination of the image components determines
the final reconstruction. For our examples, was set at 1.0
and was varied between 1.0 and 1.2 depending on the tex-
ture content. Values of greater than 1.0 result in sharper edges
but would lead to ringing artifacts. When , it is un-
necessary to decompose LowFreq and Edges, as
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Fig. 6. Result 1–From top to bottom: A frame from an RGB video of a person
walking, the same frame from the IR video, the RGB frame histogram stretched
to show noise and detail, and our fusion result. Notice the IR video captures
neither the vertical stripes on the shirt, the crocodile’s luminance, nor the plush
dog’s luminance. Furthermore, note the IR-only writing on the sign. These
problem areas are all properly handled by our fusion.

contains both. Subsequently, (16) becomes

(17)

The UV chrominance is obtained from the prefiltered RGB
from Section IV-B. Gaussian smoothing is used to remove

Fig. 7. Result 2–From top to bottom: A frame from an RGB video of a moving
robot, the same frame from the IR video, the RGB frame histogram stretched to
show noise and detail, and our fusion result.

chrominance noise (especially in the nonstatic areas not signifi-
cantly improved by prefiltering). The full chrominance pipeline
is shown in Fig. 5. Although it is possible to filter the UV in the
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Fig. 8. Photograph of our capture setup with a Point Grey Color Flea capturing
the visible-spectrum RGB and a filtered Point Grey Grayscale Flea capturing the
nonvisible IR spectrum.

same manner as the luminance (i.e., using the detected edges to
limit filtering across edges) doing so limits each pixel’s support
size compared to Gaussian smoothing. Insufficient support
leads to noise artifacts and local “blotchiness.” We trade off
sharpness for lower chrominance noise and, thus, rely on the
low spatial chrominance sensitivity of the human visual system
to limit blurring artifacts.

VII. RESULTS

Our RGB and IR videos are captured using two synchronized
(genlocked) video cameras sharing a common optical path. Two
PointGrey Flea cameras (one grayscale and one RGB) are used
with the grayscale camera covered by a longpass filter passing
only IR light (780 nm 50% cutoff, Edmund Optics #NT32-767).
The two cameras are arranged as shown in Figs. 1 and 8. A cold
mirror (reflects % of the visible spectrum, transmits %
of the IR spectrum, Edmund Optics #NT43-961) is used as a
beamsplitter because the spectral sensitivities of our sensors are
mutually exclusive. Thus, we increase the number of photons
reaching the appropriate CCD over traditional beamsplitting.
Since each camera has its own lens and sensor alignment, their
optical paths may differ slightly. Therefore, a least-squares fea-
ture-based homography transform is used to register the RGB
video to the IR video prior to processing. The RGB sensor has a
higher resolution, so some downsampling occurs during the ho-
mography registration. A benefit of this two sensor setup is that
in well-lit environments, this same capture rig can also capture
visible RGB footage.

Because our IR sensor is an unmodified off-the-shelf imager,
it is significantly less sensitive to IR than specialized IR sensors,
such as InGaAs SWIR sensors. Such high-end sensors would
be ideal for our fusion algorithm. Yet even under our circum-
stances, our IR sensor is sensitive up to roughly 1000 nm and
provides sufficiently bright imagery for fusion. Also, we benefit
from having similar Flea camera bodies, allowing for accurate
alignment between imagers.

The noise reduction filters in Sections IV-A and V-B rely
upon values (6) derived from sensor noise characteristics in

Fig. 9. Comparison of the mean spatial variance within a 3 3 window and
power spectrum of each of our input images and the fused output. (Upper left)
The original noisy RGB luminance input is shown with its mean variance and
spectral noise. As in our fusion, it is histogram stretched to use more of the
display’s range. (Upper right) The less-noisy IR input exhibits less high-fre-
quency noise and a lower mean variance than the visible spectrum sensor. For
a fair comparison, the histogram of the IR was also stretched to match the vis-
ible-spectrum mean, a step not part of our fusion. (Bottom) Our fusion result
is significantly improved with reduced noise and mean variance while still pre-
serving high-frequency content. These statistics are similar to the IR video, yet
we achieve them with a visible-spectrum-like response.

static environments. Experimentally, we found an average
of 8.78 for the RGB sensor and of 2.25 for the IR sensor.
However, we chose values of and to
account for subsequent median and bilateral processing.

Our first example, shown in Fig. 6, shows a frame from a
video sequence processed using our method. In the video, a
person walks across the camera’s view. Note that the plaid shirt,
the plush crocodile, the flowers, and the writing on the paper
in the IR video do not match the RGB footage (Fig. 10). With
our approach, we preserve details and also show noise reduction
in all image regions. Fig. 9 shows the improvement in signal
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Fig. 10. Illustration of the difference in quality between the joint bilateral filter
[15], [16] and our dual bilateral filter, each configured for the best output image
quality. The desired output is a enhanced version of the RGB luminance (Y) that
preserves all edges. Because the joint bilateral filter relies on IR edges to filter
the Y, it cannot correctly handle edges absent in the IR due to relative luminance
response differences. This results in blurring across the nondetected edges in the
result. However, our dual bilateral filter detects edges in both inputs (weighted
by sensor noise measurements) and is, thus, better at preserving edges only seen
in the Y video. Again, note that our desired filter output should resemble the
visible spectrum, meaning objects visible only in IR should not be included.

quality (mean variance) without loss of sharpness for a frame of
this video. Our second example, shown in Fig. 7, shows the re-
construction of a moving robot video. This video poses similar

problems to the previous example in addition to proper handling
of specular highlights.

Finally, Fig. 4 illustrates the stages of our processing pipeline
by showing images as they are filtered and fused through our
system. The images were taken from a 20 frame video with no
motion.

VIII. FUTURE WORK

The primary area for future work is in improved color recon-
struction. The chrominance in our model relies entirely on the
RGB video and does not consider any of the IR information.
However, in areas of motion, our temporal-only filter cannot
significantly improve the chrominance quality. Thus, a supple-
mental learned model might help reduce the blotchiness of the
chrominance in those areas.

Second, the large filter kernels necessary to remove low-fre-
quency image variations due to slight heat variations on the
CCD or CMOS sensor cause our approach to be slow. Increasing
the speed of these filters, possibly using the techniques of Du-
rand and Dorsey [10], would be beneficial.

Finally, we have focused on bilateral functions to help
classify edges, texture, and smooth areas while also providing
de-noising. Wavelet decompositions might also provide similar
functionality, possibly at reduced computational cost.

IX. CONCLUSION

We have shown how RGB and IR video streams captured
using the same optical path can be fused into an enhanced ver-
sion of the RGB video. This is accomplished by initially de-
noising the RGB video, normalizing the IR video, decomposing
each, and then fusing select components back together. By using
a variety of filters derived from the same root bilateral filter, we
are able to reduce noise, preserve sharpness, and maintain lumi-
nances and chrominances consistent with visible-spectrum im-
ages.
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