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Abstract

Thelinearstrainmeasuresthatarecommonlyusedin real-timean-
imationsof deformable objectsyield fast and stablesimulations.
However, they arenot suitablefor large deformations.Recently,
morerealisticresultshave beenachieved in computergraphicsby
usingGreen’s non-linear straintensor, but thenon-linearitymakes
thesimulationmorecostlyandintroducesnumericalproblems.

In this paper, we presenta new simulationtechnique that is sta-
ble andfastlike linearmodels,but without thedisturbingartifacts
that occur with large deformations.As a precomputation step,a
linear stiffnessmatrix is computedfor the system. At every time
stepof thesimulation,we compute a tensorfield thatdescribesthe
local rotationsof all the verticesin the mesh.This field allows us
to computetheelasticforcesin anon-rotatedreferenceframewhile
usingtheprecomputedstiffnessmatrix. Themethodcanbeapplied
to both finite elementmodelsand mass-springsystems.Our ap-
proachprovidesrobustness,speed, andarealisticappearancein the
simulationof largedeformations.

CR Categories: I.3.5 [ComputerGraphics]:Computational Ge-
ometry and Object Modeling – Physicallybasedmodeling; I.3.7
[ComputerGraphics]:Three-DimensionalGraphicsandRealism;
Additi onal Keywords: Deformations,PhysicallyBasedAnima-
tion.

1 Introduction

Mathematicalandphysicalmodelingof deformable objectshasa
long history in mechanical engineering andmaterialsscience. In
thosedisciplines,themainobjective is to modelthephysicalworld
asaccuratelyaspossible.In graphicsapplications,theprimarycon-
cernis usuallythecomputationalefficiency of generatingplausible
behaviors, ratherthantheaccuratepredictionof exact results.The
mostwidely usedtechnique to modeldeformableobjectsis to view
materialasa continuum. In this case,the constitutive laws yield
partial differential equations that describethe staticand dynamic
behavior of the material. Theseequationsareusually solved nu-
mericallyusingtheFinite ElementMethod(FEM) [1] or finite dif-
ferences[12]. Suchsimulationsaretypically doneoffline – that is,
computersspendminutesor hoursto arrive at a singleansweror a
simulationof a few seconds.

Real-timesimulationof deformableobjectsis a younger field.
The performance of modern computersand graphicshardware
have madephysically-basedanimationpossiblein real time. But
evenwith today’s besthardwareandmostsophisticatedtechniques

[3, 16, 17], only a few hundred elementswith small deformations
have beensimulatedin real-timeto date.Sincesimulatingthedy-
namicbehavior of deformable objectsin real time is an important
andchallengingtask,agreatdealof work hasbeendonein thefield
anda largevarietyof techniquesandmethodshave beenproposed
in the last two decades [5]. Typical applicationsfor real-timede-
formableobjectsincludevirtual surgery [3, 16], virtual sculpting,
gamesor any applicationrequiringan interactive virtual environ-
ment.A real-timesimulatorcouldoffer artiststheoptionto design
andtestanimationsinteractively beforerenderingtheirwork offline
in higherquality.

An interactive simulationsystemneedsto meet two main re-
quirements.It certainlyneedsto be fastenough to generate15 to
20 framespersecond. Speed,however, is not theonly requirement.
Ideally, we want to give the userof the systemcompletefreedom
of action.Thus,stabilityandrobustnessarejustasimportantasthe
framerate.

With theavailability of fastcomputers,therehasbeena trendin
real-timeanimationaway from simplemodelssuchasmass-spring
systemstoward the more sophisticatedFinite Elementapproach.
FEM is computationally moreexpensive, but it is physicallymore
accurate,andtheobject’sdeformationbehavior canbespecifiedus-
ing a few materialpropertiesinsteadof adjustinga largenumberof
springconstants.However, becauseof its computationalcost,only
the simplestvariantof FEM hasbeenusedso far – namelytetra-
hedralelementswith linearshapefunctions.While not suitablefor
engineeringanalysis,suchmodelsaresufficient to obtainvisually
plausibleresults.

Thereis an additionaloption whenchoosingan FEM model–
namelyhow stressis measuredwith respectto the deformationof
an object. Linearelasticityonly modelssmall deformationsaccu-
rately, but its computationalcost is much lower than the cost of
a non-linearstressmeasure.One important featureof the linear
approachis that the stiffnessmatrix of the systemis constantand
numericallywell-conditioned, yieldingafastandstablesimulation.
Underlarge rotationaldeformation,however, objectsincreaseun-
naturally in volumebecausethe linear model is only a first order
approximationat theundeformedstate(seeFigs.7 and8).

Non-linearelasticity, on theotherhand, modelslargerotational
deformationsaccurately[10]. With anon-linearstressmeasure,the
stiffnessmatrix is no longer constant. For implicit integration it
mustbe reevaluatedat every time stepasthe Jacobianof the non-
linear function that describesthe internalelasticforces. This pro-
cessslows down thesimulationandintroducesnumericalinstabil-
ities whentheJacobianis evaluatedfar from theequilibriumstate.
This is why modelshave usuallyonly beensubjectedto smalldis-
placementsin demonstrations of real-timesystemsthus far. Dra-
maticdeformationsarenotpossiblewithouteitherslowing thesim-
ulatordown or risking numericaldivergence.

In this paper, we propose a new techniquethat is asfastandsta-
ble aslinear elasticitywhile avoiding the artifactsassociatedwith
large deformations.We do this by warpingthe stiffnessmatrix of
thesystemaccordingto a tensorfield thatdescribeslocal rotations
of the deformedmaterial. In this way, we canusea precomputed
stiffnessmatrix. Theevaluation of thetensorfield is muchcheaper
than the costof a single time step. Our technique is easyto un-
derstandandimplement,making it practicalfor a wide variety of
applications.
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1.1 Related Work

Many methodshave beenproposedto simulatedeformableobjects
in real time. We will discussjust a few recentpublications and
papersthatdescribethosetechniquessimilar to ours.

To improve thenumericalstability of thesimulation,Terzopou-
los et al. [13] proposeda hybrid modelthat breaksa deformable
objectinto arigid andadeformablecomponent. Therigid reference
body capturesthe rigid-body motion while a discretizeddisplace-
mentfunctiongivesthelocationof meshnodesrelative to their po-
sition within the rigid body. As in their approach, we handle the
rotationalcomponentof thedeformationseparately. However, they
useone single rotation matrix for the entiremodel – namelythe
oneassociatedwith the underlyingrigid body frame– even if re-
gionsof thedeformableobjectundergo largerotationswhile other
regionsdon’t rotateat all.

In ArtDefo (AccurateRealTimeDeformableObjects)[8], James
et al.usedlinear elasticity in connectionwith the Boundary Ele-
mentMethod(BEM) to deformobjectsin realtime. Becauseof the
linearityof themodel,many systemresponsescanbeprecomputed
andthencombined later in real time. However, the linearmodelis
not accuratefor largedeformations, aswe alreadymentioned.

In [4], Desbrunet al.split the forcesin mass-springnetworks
into linear andnon-linear(rotational)parts. The rotationalpart is
first neglectedto compute a rapidapproximationof theimplicit in-
tegration.Thenthey correcttheestimateto preserve momentum.

To guaranteea real-timeframerate,Debunneet al. [3] usean
automaticspaceandtime adaptive level of detail technique.The
body is partitionedin a multi-resolutionhierarchyof tetrahedral
meshes.The high resolutionmeshesare only usedin regions of
high stress.This reducesthe number of active elements,thus in-
creasingthe speedof the simulation. We alsousethis methodin
our systemto furtherincreasethespeedof our simulation.

Wu’sapproach[16] isverysimilartoDebunne’stechnique.They
useprogressive meshesto adaptthenumberof elementsaccording
to theinternalstresses.

1.2 Overview

In the next section,we introducelinear andnon-linearmodelsof
staticand dynamicdeformationanddiscusstheir advantagesand
disadvantagesfor real-timesimulation.Thismotivatestheneedfor
our techniquecalledStiffnessWarping, which we describein Sec-
tion 3. We propose two ways of computingthe rotation field of
a deformedmeshalong which the stiffnessmatrix is warped. A
comparisonof our techniquewith linearandnon-linearapproaches
shows theadvantagesof themethod.In thelastsection,we present
a collectionof our results.

2 Modeling Deformation

Therearea variety of ways to model the behavior of deformable
objects.Mass-springnetworks arepopularin real-timesimulators
becausethey aresimpleto implement.However, modelsthat treat
objectsasa continuum have severaladvantagesover simplemass-
springnetworks.Thephysicalmaterialpropertiescanbedescribed
usinga few parameters,which canbe looked up in textbooks,and
the force coupling betweenmasselementsis definedthroughout
thevolumeratherthanaccording to thespringnetwork. As aresult,
continuousmodelsyield moreaccurateresults.Thedeformationof
anobjectin sucha modelis describedby a boundary valuepartial
differentialequation. For realisticobjects,this equationcannot be
solvedanalytically. A standardtechniqueto solve it numericallyis
theFiniteElementMethod[1]. UsingFEM,anobjectis subdivided
into elementsof finite size– typically polyhedra– andacontinuous

deformationfield within eachelementis interpolatedfrom the de-
formationvectorsat thevertices.Oncethe interpolationfunctions
for all the elementsarechosen, the deformationvectorsat all the
verticesdescribea piecewise continuous deformationfield. This
field incorporatedinto the partial differentialequationyields a set
of simultaneous algebraicequations for thedeformationvectorsat
thevertices.

Regardlessof thechoiceof elementtypeandshapefunctions,the
Finite ElementMethodyields an algebraicfunction

�
that relates

thedeformedpositionsof all thenodesin theobjectto the internal
elasticforcesat all thenodes:����� ����	�
��� ���������������

(1)

where
����� ����	�
��� � ��� � �� �"!#!#!#� ��$ ��%

containsthe internalforcevec-
tors of all & nodes, and

� � ��� � ���  ��!"!#!#�'� $ ��%
and

� � ���� � � �'� �  �#!#!#!��'� � $ � %
representtheir deformedandoriginal posi-

tions,respectively. This evenholdsfor mass-springnetworks. The
function

�)(+*-, $/. *0, $
is, in general, non-linearandencapsu-

latesthe materialpropertiesaswell as the type of meshanddis-
cretizationused.

2.1 Dynamic Deformation

In a dynamicsystem,thecoordinatevector
�

is a functionof time,�1�32��
. Thedynamicequilibriumequationhasthefollowing form:465�0798;:�-7<�������=� � � �>�

ext
�

(2)

where
:�

and
5�

arethefirst andsecondderivativesof
�

with respect
to time,

4
is themassmatrix and

8
thedampingmatrix [2]. Eqn.

(2) definesa coupledsystemof ?@& ordinarydifferentialequations
for the & positionvectorscontained in

�
. To solve them,thecon-

tinuous ?A& -dimensional function
�B�32'�

is approximatedby a series
of vectors

� � �'� � ��!#!"!'� 
 �#!"!#!
, where

� 

approximates

�B��CED@FG2'�
. In

a first step,(2) is transformedinto a systemof HJIK?A& equations of
first derivatives::� �>L4M:L � �N8 L �O�����P�=� � �Q7 �

ext
� (3)

where
L

is an additionalvectorof ?A& velocities. Although there
aremathematicallymoreaccurateintegrationmethods (see[11]),
Euler’s first ordermethodis known to betterhandle discontinuities
(caused,for instance,by collisions)thanhigherordermethods[4].
Theimplicit form of Euler’smethodapproximates(3) asfollows:

� 
SR � � � 
 79F�2 L 
SR �4 L 
SR � � 4 L 
 7TFG2#���N8 L 
�R � �O����� 
SR � �/�U���+7 � 
�R �
ext

��!
(4)

In order to find the positionsandvelocitiesat time
��CU7WV��'FG2

,
a coupledsystemof algebraicequationsneedsto be solved, be-
causethe unknown values

� 
SR �
and

L 
SR �
appearon both sidesof

Euler’s implicit equation. To computepositionsandvelocitiesat
time

��CQ7XV��'FG2
we useimplicit integrationbecause it is stablefor

much larger time stepsthan explicit integration [15], which only
usesquantitiesat time

CYF�2
. (For a detaileddiscussionof implicit

andexplicit methodssee[14].)
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Figure1: Quadraticstressapproximatestherealstress-deformation
curve betterthanlinearstress.It is not a full secondorderapproxi-
mationof therealcurve though.
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Figure2: With a methodto prevent materialfrom over-stretching,
thelinearmodelcanfit a realstresscurve appropriately.

2.2 Non-Linear Elasticity

In orderfor a strainmeasureto beaccuratefor largedeformations,
it should not include the rigid body motionsof the simulationel-
ements.This canbe achieved by definingstrainasthe changein
lengthof an infinitesimalmaterialvectorgoing from the original
configurationto thedeformedconfiguration.In 3D, it is moreprac-
tical to measurethe changeof the squared lengthof a vector, be-
causethesquaredlengthis merelythedot product of a vectorwith
itself. This is why the Green-Lagrangestraintensor[1] is defined
via theexpression ���h�����  �����h���  �

(5)

where
�h� �

and
�h�

are corresponding infinitesimal vectorsin the
undeformed and deformedconfigurationrespectively. The omis-
sion of the squareroot when measuringthe length of a vector
yields quadratic strain-displacementandstress-displacementrela-
tionships. This is a nice side effect becausefor somematerials,
quadraticstressapproximatesthe real displacement-stresscurve
betterthan linear stress(Fig. 1). Green-Lagrangestrain is not a
full secondorderapproximationof therealstresscurve though,be-
cause,aswith the linear model, thereis only onecoefficient (i.e.
Young’s modulus� ) to fit thecurve.

In [4], Desbrundescribesa methodto prevent material from
over-stretching.Heapproximatestherealstresscurvewith apiece-
wise linear function (seeFig. 2). When combined with a linear
stressmeasure,thismethodyieldsrealisticresults.Thus,thereason
why onewould usea quadraticstraintensorin computergraphics
andreal-timesimulationsis notbecausealineardeformation-stress
relationshipwould not yield plausibleresults,but becauselinear
stresstensorsare not invariant underrigid body transformations,
and thereforeare inappropriate for renderingrotational deforma-
tionscorrectly.

With a quadratic stresstensor, thefunction
�

describingthe in-
ternalelasticforcesbecomesnon-linear. Thus,in bothstatic(1) and
dynamic(2) simulations,anon-linear algebraicsystemof equations
hasto be solved. This generallyinvolves the computationof the
Jacobian� of

�
. Since

�
is ?A& -dimensional, � is a matrix of di-

mension?@&�I�?A& . Eventhough � is usuallysparse,its evaluation is
computationally expensive. Moreover, thenumericalconditioning
of � deteriorateswhenevaluatedfar from theequilibriumstate.

2.3 Linear Elasticity

In linearelasticity,
�

is replacedby a first orderapproximation:���������U�#� ��� Dv�������U�#��7<������� ���=���v���  ���
(6)

where
�

is the Jacobian� ��� � � of
�

evaluatedat
� �

, usually
called the stiffnessmatrix of the system. The stiffnessmatrix is
computedonly oncebeforethe simulationis run. At every time
step,a linear system(usuallywell conditioned) hasto be solved.
This is why a linear simulation is fasterand more stablethan a
simulationbasedon non-linearelasticity. Thedrawbackof this ap-
proach,however, is that large deformationsarenot renderedcor-
rectly. More precisely, linear elastic forces are invariant under
translationsbut not under rotations. This raisesthe questionof
whetherit is possibleto work with aconstantlinearstiffnessmatrix
and extract the rotationalpart of the deformation. The next sec-
tion describesournew techniquecalledStiffnessWarping, which is
basedon this idea.

3 Stiffness Warping

In linearelasticity, theelasticforcesfor asingletetrahedralelement
in 3D areevaluatedasfollows:�Y�Y� ����	3
������ D �����/� � ���

(7)

where
�¢¡ * �� �£+�� 

is theelement’sstiffnessmatrixand
�¤��� �#��	3
�� �'�

and
� � ¡ * �� 

containthe elasticforces,the displacedpositions
andtheoriginalpositionsof thefour verticesof thetetrahedron. As
long asthedeformedshape

�
is only stretchedandtranslatedwith

respectto theoriginalshape
�¥�

, thelinearapproachyieldsplausible
results.If the transformationfrom

� �
to
�

containsa rotation,the
artifactsassociatedwith a linearmodelemerge.

Let usassumenow thatwe know a global rotationalcomponent¦¨§
of the rigid body transformationof the element,where

¦�§ ¡* , £ ,
is a 3D (orthogonal)rotationmatrix. We canthenconstruct¦ � ¡ * �� �£+�� 

, whichcontainsfour copiesof
¦�§

alongits diagonal
andzeroseverywhereelse:

¦ � � ©ª
«
¦ § ¬¦N§ ¦N§¬ ¦ §

 ®
¯ (8)

Thismatrix rotatesquantitiesof all four nodesof thetetrahedron
by thesamematrix

¦�§
. If we compute theelasticforcesas����� ����	�
��� ¦ � � D �°¦²± �� ���=� � ���

(9)

we get thesameforcesasif
¦ §

wasnot presentin
�

(Fig. 3). We
first rotatethe deformedpositions

�
backto their original coordi-

nateframeusingtheinverse
¦ ± ��

. Theforcesarethencomputedin
this coordinateframeas

� D³�°¦ ± �� �´�9� � �
andthenrotatedback

using
¦ �

.
Let µ 
 ¶ be the ?�I�? sub-matrixof

�
containingentries

�G·�¸
,

with ? C¥� H²¹Tº-¹9? C and ?#» � H²¹T¼W¹9?#» . Using(9), wegetfor
theforce

� 

atvertex

C
:

� 
 � ¦ § $½¶�¾ � µ 
 ¶ �°¦²± �§ � ¶ ����� ¶ ��� (10)

where
C ¡ ��V¿!#!�!'Às�

and
� ¶

and
� � ¶

arethe displacedandoriginal
positionsof vertex » . If we usethe sameapproachfor the entire
mesh,we getthefollowing formulafor theelasticforceatvertex

C
:

� 
 � ¦¨Á $½¶"¾ � µ 
 ¶ �°¦²± �Á � ¶ ��� � ¶ ��� (11)
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Figure3: If the rotationalpart
¦ §

of the deformation
�

is known,
the forcescanbe computedwith respectto a deformation

¦ ± �§ �
thatonly containstranslationandstretching.Here,theoriginal el-
ement(a) is deformed(b), andthenrotatedback into the original
coordinateframe(c).
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Figure4: Insteadof usinga singlerotationmatrix

¦ Á
from anun-

derlying rigid body frame(a), we computelocal matrices
¦ 


for
every vertex (b).

where
C ¡ ��V1!#!#! & � . The µ 
 ¶ ’s are now sub-matricesof

�ç¡* , $³£ , $
, the stiffnessmatrix of the entire mesh. This raisesthe

questionof what
¦èÁ

– themesh’s rotation– shouldbein this case.
If we kept track of a global rigid body frameassociatedwith the
deformablebody as in Terzopoulos’model [13], we could derive¦¨Á

from this rigid body rotation. For stiff materialswith little de-
formationbut arbitraryrigid body motion, this modelwould yield
acceptableresults. Large deformationsother than the rigid body
modeswould still yield thetypical artifactsof a linearmodel,such
asgrowth in volume.

A naturalextensionof the rigid body approach is to useindi-
vidual rotationmatrices

¦ 

for every vertex

C
in themesh(Fig. 4).

Hence,insteadof rotatingthestiffnessmatrix
�

, we warp it along
a rotationfield describedby thematrices

¦ 
 �'C � ��V¿!#!#! & � . For
� 


,
we now get:

� 
 � ¦ 
 $½¶�¾ � µ 
 ¶ �°¦ ± �
 � ¶ �=��� ¶ ��! (12)

The only nonzeroµ 
 ¶ in (12) arethosefor which thereis an edge��C'� » � in the mesh. Thus,the quantitiesusedto compute
� 


areall
locatedat verticesimmediatelyadjacentto vertex

C
. Therefore,the

rotationmatrix
¦ 


is only usedin thelocal neighborhoodof vertexC
. In this way, theforceat vertex

C
is computedexactly asin linear

FEM, but asif thelocalneighborhoodof vertex
C

wererotatedback
by
¦ ± �


.
Wealsotried to usetheindividual

¦ ¶
’s to compute

� 


� 
 � ¦ 
 $½¶"¾ � µ 
 ¶ �°¦G± �¶ � ¶ ��� � ¶ ���
(13)

but observed thatinstability mayemergewhenmorethanonerota-
tion matrix is involvedin thecomputationof

� 

andthatthestability

dependson themethodusedto compute
¦ 


.
Computingtheelasticforcesasin Eqn. (12) yields fastandro-

bust simulations.However, the forcesarenot guaranteedto yield
zero total momentumaselasticforcesshould. Errorscomefrom
the fact that the samerotationmatrix is usedin a finite sizeenvi-
ronmentandalsodepend on theway therotationmatricesarecom-
puted(seenext section).Eventhoughtheerrorsin theforcevectors
at individual verticesaretiny anddon’t show aslong asobjectsare
anchored,their sum – if non-zero– actsasa ghostforce on free
floating objects. In [4] Desbrunshows how to solve this problem
by performinga simpleandcomputationallycheapcorrectionstep
afterevery timestep.Weusedthesametechniquein our simulator.

3.1 Rotation Tensor Field

We now have to answerthe questionof how to estimatethe local
rotationsof a deformedmesh. Extractingthe rotationalpart of a
mappingbetweentwo arbitrary setsof vectorsis not straightfor-
ward andnot uniqueif the two setsarenot relatedvia a pure3D
rotation. Oneapproachto finding an optimal rotationmatrix is to
minimizeanerrorfunctionusingaleastsquaresmethod.This,how-
ever, requirestheability to takederivativeswith respectto amatrix.
Lasenbyet al.[9] describean elegantalternative thatusesgeomet-
ric algebra[7]. In thegeometric algebranotation,rotationscanbe
representedby multivectors(rotors).Giventwo setsof vectors,the
theory allows for minimizing with respectto suchrotorsand for
finding optimalrotations.

For two givensetsof vectorséAê 
Yë and é L 
Yë with cardinality ì
amatrix

� ¡ * , £ ,
is formed:

� 
 ¶ �îí½ï ¾ � �°ð 
 D ê
ï �"�°ð ¶ D L ï ��!

(14)

wherethe vectors
ð � ��ð  

and
ð , areorthonormalbasisvectorsof*0,

. In a secondstep,
�

is decomposedby SVD (singularvalue
decomposition[6]), whichyields

� �cñóò1ô %
. Therotationmatrix¦

is thensimply givenby theproduct¦ �õô²ñ % !
(15)

For our simulator, we have alsouseda simplerandfastertech-
niqueto computelocalrotations.Wefoundthatthestabilityof Eqn.
(12) is notsensitiveto thechoiceof therotationfield andthatevena
very simpleapproachcanyield stableandfastsimulations.Figure
5 illustratesour fasterapproximationprocedure.

For corresponding vertices in the undeformed and deformed
mesh,wecomputeorthonormal framesof vectors

�°ð � ��ð  ��ð , � and�°ðUö � �'ðUö ��ðUö, � basedon a selectionof outgoingedges÷ 
 and ÷ ö 
 , re-
spectively. More specifically,

ð �
is computedas the normalized

averageof threedeterministicallychosen edges.Thesecondvectorð  
is evaluatedas the crossproduct of

ð �
and the directionof a

chosenedge.Thelastvector
ð , is thecrossproduct of

ð �
and

ð  
.

Thesethreevectorsform a matrix ì � �°ð � �'ð  ��ð , � . The same
procedureappliedto the deformedmeshyields a matrix ì ö . It is
importantthat ì ö is computedusingthe exact sameedges, but in
their deformeddirections ÷ ö 
 . The rotationmatrix we are looking
for cannow beevaluatedas¦ � ì ö ì % ! (16)
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Figure5: A fastway of estimatingtherotationalpartof thedefor-
mationat a nodeis to computethe relative rotationbetweentwo
orthonormal vectorframesthatarebasedon thedirectionsof adja-
centedges.

In the caseof a rigid body, wherethe two meshesare related
via rotationsandtranslationsonly, this simpleapproachyields the
correctconstantrotationmatrix for all thevertices.

3.2 The Algorithm

Let ussummarizetheentiresimulationalgorithm:

I �KJHLNML�O � O ¾ O�P (
� ¡ * , $Ñ£ , $

)

I � �
 J �U� 

;
L �
 JRQ

for all
C ¡ ��V¿!#!"! & �

I 2 J ¬
I loop

– evaluate
¦ 


for all
C ¡ ��V¿!#!#! & �

– solveL 	�R �
 �>L 	
 7TS 	UWVYX �[Z 
 L 	3R �
 �´¦ 
�\ $¶�¾ � µ 
 ¶ �°¦ ± �
 ��� 	¶ 7FG2 L 	�R �¶ �E��� � ¶ ��7 � 	�R �� § 	^]
for all unknown

L 	�R �
 ,
C ¡ ��V¿!#!#! & �

– set
� 	�R �
 J � 	
 7TFG2 L 	�R �
 for all

C ¡ ��V¿!�!#! & �
–
2 J 2�7�V

I endloop

The function
�����U��( * , $ . * , $

describesinternal elastic
forcesgiventhedeformedcoordinates

�
of all & verticesof amesh.

This function doesnot necessarily needto stemfrom a Finite El-
ementdiscretization,it can also be definedby a spring network.
First, theJacobian

�
of
�

is evaluated.Thenthepositionsandve-
locitiesof all theverticesareinitializedandthetime is setto zero.

In thesimulationloop,therotationtensorfield is evaluatedbased
on theactualcoordinates

� 	

asdescribedin section3.1. Then,the

linearsystemfor theunknownnew velocities
L 	�R �
 is solved. This

systemis derivedby substitutingEqn.12into Eqn.4for implicit in-
tegration.Notethatthe µ 
 ¶ are ?²IP? sub-matricesof

�
containing

entries
�-·"¸

with ? C � H�¹Xº/¹W? C and ?#» � H�¹X¼6¹ ?"» . Note
alsothatwe lump themassmatrix

4
in Eqn.4to thevertices,i.e.

replaceit by its diagonal entries_ 
 . The positionsof the vertices
arethenupdatedusingthe new velocitiesbeforegoing to the next
time step.

4 Results

4.1 The Bars

To demonstratethe advantagesof our approach, we compareit to
a linearanda non-linearmodel. In all threecases,we useimplicit
Eulerintegrationandlumpedinertiaanddampingmatrices.A Con-
jugateGradientssolver [11] is usedfor Eqn.4.

We animatea rectangularbarof
À I À I V@V verticescontainingÀ�` ¬

tetrahedralelements.The block is fixed to a wall on oneside
anddeformsunder the influenceof gravity (Fig. 7). In the linear
case,the stiffnessmatrix of the object is evaluatedonceandused
throughout thesimulationto computetheinternalelasticforces.In
thewarpedstiffnesscase,weusethesameconstant stiffnessmatrix
andwarp it alonga rotationfield. This field is computedasshown
in Fig. 5. In thenon-linearcase,anew stiffnessmatrix is computed
at every time stepasthe Jacobianof the non-linearforce function�

basedon Green’s straintensor. We useanelasticmodulusa ofV ¬�b ì � _  anda Poissonratio of
¬ ! ?@? , meaningthevolumeof the

materialshouldnot change substantiallyduringthesimulation.
Fig. 6 depictsthe volumeof the block versustime. The linear

modelshowsthetypicalgrowth artifactunderdeformation.As with
the non-linear model, our methoddoesnot exhibit this problem.
The time to compute one time stepis 5 ms in the linear case,6
ms for stiffnesswarpingand12 ms for the non-linearsimulation.
The simulatedtime stepis 10 ms. The experiment shows thatour
approachis nearlyasfastasthelinearmodelbut asaccurateasthe
non-linearmodelin termsof volumeconservation.

To demonstratethe stability of stiffnesswarping, we repeated
the simulationwith a longerbar of

À I À I V�c verticesand dNe `
tetrahedra(Fig. 8). The linear andwarpedstiffnessmethodsstill
yield stablesimulationswith a time stepof 10 ms while the non-
lineartechniquesdivergesevenwith barsslightly longerthanin the
previousexample.

4.2 A Simple Tube

Thetubedepictedin Fig. 9 andFig. 10 is composedof a thousand
tetrahedraand it is 50 cm x 13 cm in size. For its materialwe
chosea densityof 1 f �gZ _ , anda PoissonRatioof 0.33. In a first
experiment,we drop the tubefrom a diagonallyorientedposition
50 cm above theground andlet it hit thegroundplane.Theimpact
causesdeformationsthatcanleadto instabilitiesin thesimulation.
The following table shows the largest time step we could use
beforethesystemgot instable.This valuedependson thestiffness
(Young’s Modulus a ) of thematerial.

a [
V ¬�h ì � _  ] 2.0 1.0 0.5 0.2 0.1

Warp 30 ms 20 ms 10 ms 10 ms 10 ms
Non-Linear 5 ms 5 ms 2 ms 1 ms 1 ms

As the resultsshow, the simulationusing the warpedstiffness
techniquecanbe furtheracceleratedby choosing larger time steps
than in the non-linearcase. Smallerelasticmoduli causelarger
deformationsafter the impact and smaller time stepsneedto be
taken. Fig. 9 shows theeffect of changingtheelasticmodulusand
divergencecausedby too largea timestep.

Fig. 10 depictsa seriesof experimentswherethe userinteracts
with thesystemby grabbing the tubeat onevertex. This vertex is
then attachedto the mousevia a spring. In the first experiment,
only the upperpart of the tubeis includedin the simulationwhile
the lower part remainsfixed to theground plane. Whenthe entire
modelis animated,theusercanpick it up. It bendsdueto collisions
with thegroundplaneor inertial forces.The tubeshows deforma-
tionsandvibrationswithout theartifactsof a linearmodel.
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4.3 The Bunny

To generatetheanimationdepictedin Fig.12,weusedavolumetric
meshof

` ¬ ¬ ¬
tetrahedra.Themeshis composed of abonecoreand

a layer of skin tetrahedra(Fig. 11). Only the bunny’s head,com-
posedof HNdNe bonetetrahedraand

ci`sV
skin tetrahedrais animated.

We treatall bonetetrahedraasonerigid body. This rigid skull can
rotateabouta fixedaxisandis attachedto themousevia a spring.
Theskin tetrahedrafollow themovement of theskull dynamically.

We usethedeformationfield of thetetrahedralmeshto animate
atrianglesurfacemeshwith higherresolution(

` ¬ ¬ ¬
triangles).Ev-

eryvertex in thesurfacemeshis associatedwith atetrahedronin the
volumetricmeshandusesits barycentriccoordinatewith respectto
thattetrahedronto interpolateits position.

4.4 The Great Dane

As our last example,we animatethe floppy skin of a GreatDane
(Fig. 13). As in thebunny example, we simulatethebone coreasa
rigid bodyandlet theskin layerfollow its movements(Fig.11),but
in this case,theentiremodel(i.e. d ` ? boneand

V H À@À skin tetrahe-
dra) is animated.Theelasticmodulus a of theskin in the Dane’s
faceis

V ¬ , ì � _  – much lower than in the previous examples–
whichmakesthesurfacelagnoticeablybehindtheskull movement.
Thevisiblesurfacemeshis formedwith

` ¬ ¬@¬
triangles,thevertices

of which areinterpolatedusingtheunderlying tetrahedralmesh.

5 Conclusions

In this paper, we have presenteda new technique to animatede-
formableobjectsin real-time. By warping the constantstiffness
matrixof thesystemusedin linearapproachesalongarotationfield,
weeliminatethevisualartifactswhile thesimulatorremainsassta-
ble andfastasa linearone,evenfor largerotationaldeformations.
In contrastto anon-linearapproach, thestiffnessmatrixneedsonly
to becomputedonce.Thesamematrix canbeusedthroughout the
entire simulationfor implicit integration, making the systemfast
androbust. We have alsoproposed a fastway of estimatinga rota-
tion field alongwhich the stiffnessmatrix is warpedat every time
step.

Our examplesshow that stiffnesswarpingmakespossiblereal-
time animationof detailedmodelsin aninteractive environment.

In thefuture,we would like to incorporatematerialfractureinto
our simulator. Stiffnesswarpingworkswith a constantsystemma-
trix. Thismatrixchangeswhenthestructureof theunderlyingmesh
changes. Fortunately, local changes in the meshonly causelocal
changes in thecoefficientsof theglobalstiffnessmatrix. Suchup-
datescanbedoneincrementallyandwill not slow down thesimu-
lation significantly.
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Figure7: Threebarsattachedto a wall underthe influenceof gravity. They aresimulatedusingnon-linear
(green),warped(blue)andlinear(red)stressmeasures.

Figure8: Longerbarsmorenoticeablyshow theartifactswith linearFEM. Non-linearFEM divergeswith thelongbars
whenthesametime stepis used.

(a) (b) (c) (d)

Figure9: A tubebeforeimpactwith theground plane(a). With a high elasticitymodulusit doesnot deformmuchaftercollision (b). A low
elasticitymodulus leadsto largedeformations (c) thatcancauseinstabilities(d).

(a) (b) (c)

Figure10: A tubeis bentunder user-appliedforces(a),collision forces(b) andinertial forces(c).
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Figure11: Wedivideourmeshesinto askin layerandabonelayer. Thebonetetrahedra
areanimatedasonerigid body, while the tetrahedrain theskin layer follow thecore’s
movement.

Figure12: Thebonecoreis animatedasa rigid bodywhile thebunny’sskin follows it dynamically.

Figure13: Thegreatdane’s skin hasa low elasticmodulus,which makesthesurfacelag noticeablybehindthe
skull movement.
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