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Abstract
Most 3D mesh generation techniques require simplification and mesh improvement stages to prepare a tetrahedral
model for efficient simulation. We have developed an algorithm that both reduces the number of tetrahedra in
the model to permit interactive manipulation and removes the most poorly shaped tetrahedra to allow for stable
physical simulations such as the finite element method. The initial tetrahedral model may be composed of sev-
eral different materials representing internal structures. Our approach targets the elimination of poorly-shaped
elements while simplifying the model using edge collapses and other mesh operations, such as vertex smoothing,
tetrahedral swaps, and vertex addition. We present the results of our algorithm on a variety of inputs, including
models with more than a million tetrahedra. In practice, our algorithm reliably reduces meshes to contain only
tetrahedra that meet specified shape requirements, such as the minimum solid angle.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling - volumetric simplification, tetrahedral models

1. Introduction

With the increased speed and availability of computing cy-
cles, physically-based simulations are becoming more prac-
tical and popular in computer graphics. We are interested in
modeling and rendering detailed solid objects with complex
internal structures and interactively sculpting or manipulat-
ing those models with physically-plausible simulations. Re-
cent developments in 3D scanning technology have made it
easy to acquire highly-detailed surface models of real-world
objects. These meshes are a natural starting point for the
creation of complex solid models; however, preparing inter-
esting volumetric models for simulation is a difficult task.
The initial models usually have too many tetrahedra, and the
shape of many of the tetrahedra is poor, making physical
simulations impossible. In this paper, we present an algo-
rithm that takes a complex volumetric model and makes it
viable for simulation.

1.1. Related Work

Below we describe previous research in mesh generation,
simplification, improvement and refinement. A more de-
tailed survey of these techniques has been compiled by
Owen [37], and the companion website includes a huge
database of the different meshing implementations currently

available. Unfortunately, we could not use any of these off-
the-shelf packages for our application because they are not
robust enough to handle complex scanned surface geometry
and cannot be used to design objects with layers of material
or internal structures.

Mesh Generation There are three basic techniques for
meshing the interior of a 3D surface. The Advancing Front
and Advancing Layers techniques directly tetrahedralize
a volume by adding well-proportioned (near equilateral)
tetrahedra, one at a time, to the interior of a triangle
mesh [30, 38]. This method works well when the initial tri-
angle mesh is manifold and consists of well-proportioned tri-
angles. However, it is non-trivial to implement, and in many
applications it is not necessary to match the input surface tri-
angulation. For example, scanned meshes and polygonized
implicit surfaces contain many triangles, which are evenly
distributed rather than concentrated in areas of high detail.

Another approach is to compute a Delaunay triangula-
tion of the vertices and then override the Delaunay prop-
erty by performing various element swaps to match the orig-
inal surface edges and faces [4, 8, 15, 41]. Unfortunately, in
3D and higher dimensions, the Delaunay property alone is
insufficient to guarantee well-shaped tetrahedra and often
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these models require further modifications to improve ele-
ment shape.

The most brute-force technique, structured grid or octree
tetrahedralization, is simple and straightforward to imple-
ment and will always produce a consistent mesh [36, 44].
However, the method produces a large number of tetrahedra,
and elements near a boundary often have near-zero volume
and very poor shape. This technique is best paired with sim-
plification and mesh improvement.

Mesh Simplification Motivated by the need for interac-
tive rendering and transmission of complex meshes, much
work has been done on simplifying triangular surface
meshes while maintaining surface fidelity [22, 40]. Some
of these techniques have been translated to volumetric
meshes [9, 10, 11, 42, 43]. Unfortunately, these techniques
focus primarily on simplification, and do not necessarily im-
prove the quality of the mesh elements. Work on nested hier-
archical coarsenings can guarantee bounds on element shape
in 2D triangulations [6, 32], but has not been demonstrated
on complex volumetric models.

Mesh Improvement A variety of local transformations
can be used to improve the quality of individual ele-
ments [17, 24]. In practice, a combination of remeshing
techniques is more effective at improving shape than any sin-
gle type of operation [16]. We have expanded on this work
and show that the addition of aggressive simplification to
traditional mesh improvement techniques can achieve better
overall tetrahedral shape.

Mesh Refinement To increase the resolution of a mesh for
improved simulation accuracy and to implement geometry
modification operations such as fracture and the removal of
material, meshes can be locally refined. One approach is to
use regular subdivision (in 2D, simply bisect each edge to
create four self-similar triangles), which can be made adap-
tive with careful bookkeeping [5, 7]. Another approach is
to perform successive, local longest-edge bisections [1, 39].
This technique is effective for 2D planar triangulations; how-
ever, in higher dimensions it may not terminate, and in gen-
eral, it does not maintain element quality. Instead, each orig-
inal tetrahedron should be projected to a special reference
tetrahedron, upon which longest-edge bisection results in
finitely many congruency classes of tetrahedra [29]. Simi-
larly, vertex ordering [31] or edge marking [2] schemes may
be used. However, if the mesh is to be deformed or fractured,
local simplification and/or mesh improvement may also be
necessary to ensure well-proportioned elements [19].

1.2. Overview

Our work makes the following contributions:

• Simplification of complex tetrahedral models generated

from scanned surface meshes, while preserving the topol-
ogy and surface detail of exterior and interior material
boundaries.

• Improvement of tetrahedral shape/proportion to meet the
requirements of physical simulations such as the Finite
Element Method (FEM).

• New element quality metric that relies on just a few user-
specified parameters, which are intuitive and easy to set
based on the application.

• Robust and efficient implementation to simplify and im-
prove large tetrahedral models with more than a million
tetrahedra. We plan to make the implementation publicly
available.

We detail the tetrahedral mesh requirements of our target
application in Section 2. In Section 3, we present our algo-
rithm, which eliminates the most poorly-shaped elements by
using edge collapses and other local remeshing operations,
which are described in Section 4. In Section 6, we present
the results of the implementation on a variety of interesting
models. Finally, in Section 7, we compare the algorithm to
similar simplification and mesh improvement techniques.

2. Goals and Requirements

Often, the initial tetrahedralization of a volumetric model
has too many tetrahedra and many of the elements have poor
shape, making physical simulations impossible. There are
a number of objectives, described below, that must be ad-
dressed for these meshes to be useful in an interactive mod-
eling system and to behave correctly during simulation.

Reduce the Overall Number of Elements Generally, the
running time of a physical simulation is polynomial in the
number of elements. Our interactive FEM simulation en-
gine operates at interactive rates with models of 5,000 or
fewer tetrahedra [33, 34], so this is often the target tetrahe-
dral count for simplification.

Maintain the Shape and Topology of Boundaries One of
the main goals of any simplification algorithm is to preserve
the original data, though some small-scale features must be
sacrificed to achieve the target element count. For our appli-
cation, it is important to maintain the shape and topology of
both exterior (material/air) and interior (material/material)
boundaries. For example, if the object is covered by a thin
layer of material, the simplified object should also have this
layer. A naive implementation might allow a thin layer to
collapse, revealing the underlying material [25].

An alternate goal used in other applications is to preserve
a scalar/vector field defined throughout space. These goals
are related when we consider preserving multiple isosurfaces
embedded in a volume. However, in order to maintain the
visual appearance of a rendered isosurface it is necessary to
consider the normals of the boundary faces [20].
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needle & wedge cap sliver

Figure 1: Illustration of poorly-shaped tetrahedral ele-
ments. Unlike the 2D case, it is not sufficient to judge ele-
ment shape quality by the ratio of shortest and longest ele-
ment edges. While this test detects needle and wedge tetra-
hedra, it fails for sliver tetrahedra. A better metric in 3D is
the minimum solid angle. Illustration redrawn from [41].

Improve or Maintain the Shape of Each Element Physi-
cal simulations and interactive manipulation such as sculpt-
ing or deformation move vertices of the mesh relative to
each other, and thus place restrictions on the shape of vol-
umetric elements. Errors related to the FEM approximation
increase when the elements have extremely large dihedral
angles, and the stiffness matrix is severely constrained when
these angles are very small [3, 26]. In general, such tetrahe-
dral elements are said to be degenerate or have poor shape
(Figure 1). To ensure mathematical stability of the simula-
tions and guarantee that the volume of each element remains
positive, the initial model should consist of only well-shaped
tetrahedral elements. If a mesh contains a sliver tetrahedron,
the slightest translation of one of its vertices can cause the
sign of its volume to flip, leading to errors when determin-
ing the exterior triangular skin of the model, and resulting
in incorrect renderings and missed collisions. Adding con-
straints to the simulation to prevent inverted volumes intro-
duces non-linearities to the system, making it expensive and
difficult to solve. It is much more efficient to begin the sim-
ulation with well-proportioned elements that can withstand
considerable deformation.

In 2D, the quality of a triangle’s shape can be measured as
a ratio of longest to shortest edges. However, in 3D, a tetra-
hedron with similar edge lengths is not guaranteed to have
good shape; e.g., a sliver tetrahedron. Instead, we chose to
measure the quality of a tetrahedron’s shape by its minimum
solid angle. Other 3D metrics that are equally effective in
judging tetrahedral shape include the surface area to volume
ratio and the minimum dihedral angle [28].

Maintain a Reasonable Distribution of Elements Simula-
tions on uniform density meshes, in which all elements have
similar volume and are nearly equilateral, are accurate and
stable, but slow, due to the high number of elements. For
many applications, the best compromise is to use a mesh
with comparable surface detail but a gradation in element
sizes; that is, larger tetrahedra on the interior of the model
and in areas of low detail and smaller tetrahedra near the

surface details. However, if the elements are too large, the
model may be over-constrained and will not behave realisti-
cally. Soft material deformations will look polygonal rather
than continuous and the choice of fracture planes for a brit-
tle material will be limited. These problems can be addressed
by adaptive refinement of highly strained elements; however,
refinement is expensive and often too slow for an interactive
simulation.

Scalability The simplification and mesh improvement strat-
egy should be scalable, and handle large models with more
than a million tetrahedra. It will be primarily used for offline
computation; though to be useful in an iterative design pro-
cess, the results should be available in about an hour, even
for the largest models. Additionally, the strategy could be
applied locally, for online remeshing.

3. Algorithm

Block Iteration The basic approach of our iterative sim-
plification and mesh improvement algorithm is to identify
and correct poorly-shaped tetrahedra by using well-known
atomic remeshing operations (Section 4). Poorer quality el-
ements have higher priority for these operations to ensure
their removal or improvement (if possible). However, we do
not insist on a total ordering of the operations, as this would
be expensive (see Section 7). Instead, as an acceleration, we
process a block of the poorest quality elements in arbitrary
order. The algorithm estimates q, a quality cutoff value, gath-
ers the tetrahedra with quality less than q, randomly reorders
the list, and then tries to perform one of the local mesh oper-
ations on each element. If an element has been modified by
a previous action on a neighbor, it is skipped.

Tetrahedral Shape Quality Metric To find the tetrahedra
targeted for elimination or improvement, a quality metric
Quality(t), ranging from 0.0 (very poor shape/volume) to
1.0 (near perfect shape/volume), is computed for each tetra-
hedron t. The metric is the geometric mean of three factors
that each range from 0.0 to 1.0. A geometric mean rather
than an arithmetic mean is used to ensure that a poor rating
for any one factor dominates the score for the element.

Quality(t) = 3
√

Qangle(t) · Qvolume(t) · Qedge(t)

Qangle(t) =
minimum solid angle(t)

0.55

Qvolume(t) = clamp
(

volume(t)
ideal volume

)

Qedge(t) = clamp
(

β · ideal edge length
longest edge(t)

)

The first two terms, Qangle(t) and Qvolume(t), reward el-
ements that are near equilateral (minimum solid angle ≈
0.55 steradians) and have volume greater than or equal to
the ideal volume (total model volume / target tetrahedral
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1,050K tetras 461K tetras 10K tetras
(133K faces) (108K faces) (3K faces)

Figure 2: The meshes generated from a uniform distance field (top left) and an octree version of the same distance field (top
middle) have similar boundary quality. The simplified version (top right) maintains the exterior and interior interfaces. Below
each mesh is a histogram of the element quality. The leftmost corner of each plot represents the worst quality elements (near
zero volume, near zero minimum solid angle), and the rightmost corner represents the best elements.

count). The final term, Qedge(t), penalizes a tetrahedron
whose longest edge is much greater than the ideal edge
length ( 3

√
ideal volume). This last term may appear redun-

dant, but we found it necessary to discourage the creation
of tetrahedra with poor angles but reasonable volume due to
their large overall size (long edges). These elements can be
difficult to remove in later iterations. In our examples we use
β = 5. Larger values for β allow a wider range in element
size; that is, larger elements on the interior of the model.
Each factor is clamped to [0,1]. A visualization of initial and
final element quality is shown in Figure 2.

Surface Preservation Metric On each iteration, the algo-
rithm considers many possible actions but does not perform
any that introduce negative volume elements, worsen the lo-
cal minimum element quality, or significantly modify the ex-
terior or interior boundary surfaces relative to the allowable
boundary error, E. Our initial value for E is the expected
average edge length in the simplified model, the ideal edge
length. We define Error(op), the boundary error introduced
by operation op, with a volume conservation metric [27],

which preserves these boundaries by penalizing change in
volume of any material (computed separately).

Error(op) = γ · ∑
materials

3
√

abs(∆ volume)

If Error(op) > E then op is not performed. Larger values
for γ result in increased retention of surface detail but poorer
element quality. We found γ = 10 to be an effective param-
eter setting and use this value for all examples shown in
this paper. Other surface preservation metrics can be sub-
stituted [20].

Minimum Solid Angle Requirements Often it is impos-
sible to both maintain the boundary surface of a particular
model and enforce a minimum shape requirement on all ele-
ments. Thus we do not place a hard requirement on the min-
imum solid angle; rather, the algorithm works to improve
element shape as much as possible. In general, the algorithm
only performs operations that locally improve the model;
that is, the poorest-quality tetrahedron after the operation
should be no worse than the poorest-quality tetrahedron be-
fore the operation. However, several consecutive operations
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E = ideal edge length
percent = 10%
while (tetrahedral count > target tetrahedral count)

q = estimate cutoff for poorest percent
T = { t | Quality(t) ≤ q }
randomly reorder T
foreach t ∈ T , try these actions:

• tetrahedral swaps
• edge collapse
• move a vertex
• add a vertex

percent += 10%

E ∗ = 3

√

tetrahedral count
target tetrahedral count

Figure 3: Pseudo-code for our algorithm.

may be necessary to remove/improve a particular element.
These operations may temporarily create worse quality ele-
ments, trapping a greedy approach in a local minima. So in
the spirit of simulated annealing, early in computation we
allow some operations that worsen the local quality of the
mesh and decrease the chance of taking these steps to zero
as we approach our target tetrahedral count.

Algorithm Summary Pseudo-code for the algorithm is
shown in Figure 3, and a visualization of the number of op-
erations performed during each iteration is shown in Fig-
ure 4. Two variables are updated after each block itera-
tion: the quality cutoff, q, is updated to select an additional
10% of the poorest quality elements in the next iteration,
and the boundary error, E, is scaled by the (dimension-
corrected) tetrahedral-count reduction remaining. The only
user-specified parameters to the algorithm are the target
tetrahedral count and the target solid angle. Application-
specific controls may be added; for example, the internal pa-
rameters β and γ could be exposed to the user.

4. Mesh Operations

Below we briefly describe the well-known local mesh op-
erations that are used to simplify and improve tetrahedral
meshes. Our algorithm attempts to perform these operations
in the order listed to improve connectivity, remove vertices,
adjust vertex positions, and add vertices. Further studies are
needed to determine if this is the optimal order, or if perhaps
a random choice would be more effective.

Swapping The first actions attempted are tetrahedral swaps,
which can dramatically improve tetrahedral shape by switch-
ing inter-element connectivity. We have implemented the
two most common types of tetrahedral swapping, shown in
Figure 5, but other tetrahedral swaps are possible [16]. The
2 → 3 swap is performed by removing two adjacent tetra-
hedral elements and replacing them with three tetrahedra

no action available
vertex smoothing
edge collapse
swap
already modified
not in block
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Figure 4: Each bar in this visualization represents an itera-
tion of the algorithm. The height of the bar is the number of
tetrahedra at the beginning of the iteration, with the poorest
tetrahedra at the top, where early computation is focused.
The number of elements is quickly reduced and then levels
off to allow the model to settle into the best compromise
between element quality and surface detail for the desired
number of tetrahedra.

that share the edge connecting the two opposite vertices. The
3 → 2 swap is performed in reverse. Although the configura-
tion with two tetrahedra contains fewer elements, the config-
uration with three tetrahedra is often selected because it has
a better local minimum element quality. The 2 → 2 swap
allows re-triangulation of the exterior boundary.

Point Deletion Next, the algorithm attempts to eliminate
the target tetrahedron by performing a half-edge collapse
(Figure 7), which removes one vertex and all tetrahedral ele-
ments surrounding the collapsed edge. Elements that pointed
to the removed vertex are stretched to instead point to the
vertex at the other end of the edge. There are two directions
in which each of a tetrahedron’s six edges may be collapsed.
Some of these collapses may be disallowed because they in-
troduce negative-volume tetrahedra or change the topology
of the exterior or interior boundary surfaces (Figure 6). Other
methods for identifying topology-preserving collapses may
be used [14, 43]. Certain collapses are more desirable be-
cause they more accurately preserve the details of bound-
aries. Like Progressive Meshes [22], we use an edge weight-
ing function, Weight(e), to prioritize edge collapses that best
maintain surface details.

Weight(e) = length(e) + Error(collapse(e))

If no e exists such that Weight(e) < E, then no collapse will
be performed on this tetrahedron, during this iteration.
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Figure 5: Two tetrahedra that share a face may be replaced
with three tetrahedra that share an edge (or vice versa). Sim-
ilarly, two tetrahedra that share a face and have neighboring
boundary faces that are nearly parallel can be replaced with
two tetrahedra that essentially swap the edge between these
two boundary faces. Illustration redrawn from [16].

Vertex Smoothing If the procedures outlined above are un-
able to improve the shape of the targeted tetrahedron, the
algorithm will move each vertex of the element to the cen-
troid of its connected vertex neighbors [17, 16]. A vertex is
moved only if the new position does not introduce any tetra-
hedra of negative volume and Error(smooth(v)) < E.

Point Addition A final remeshing option is the addition of
new vertices at the center of a tetrahedron, the center of a
boundary face, or at the midpoint of a boundary edge [41].
Although these actions will increase the total number of
tetrahedra, they can provide significant help when the mesh
contains roughly the target number of elements, but the
shape requirements have not been met.

5. Implementation

To achieve a constant running time for the mesh operations
described above, inter-element neighbor pointers must be
maintained. We have implemented the algorithm using a 3D
analog of the half-edge data structure. A hash table is used to
pair the faces of neighboring elements from “polygon soup”
in constant time. For efficiency, we cache element quality
and edge collapse weights. After each operation, we update
the element neighbor pointers and invalidate cached values,
as appropriate. To ensure the robustness of our implemen-
tation, we found it necessary to perform the following de-
generacy checks on the resulting mesh when considering a
particular operation:

• Exactly two tetrahedra or one tetrahedron and one exterior
triangle share each triangular face.

• Exactly two exterior triangles share each exterior edge.
• At least three exterior triangles meet at each exterior ver-

tex.
• At least three elements meet at each edge.
• All elements sharing a vertex can be reached by following

a chain of tetrahedral neighbor pointers.
• Two tetrahedra that share a face must share exactly three

vertices (a naive edge collapse implementation may create
an illegal situation where a pair of tetrahedra also share
the fourth vertex).

Figure 6: 2D illustration showing different edge collapses.
Interior edges (solid white) are completely surrounded by
one type of material and can be collapsed since they do
not affect the material boundaries. Boundary touching edges
(dashed white) are surrounded by one material at their inte-
rior endpoint and two or more at their boundary endpoint.
They should be collapsed to the boundary endpoint. Span-
ning edges (dashed black) are surrounded around the edge
by a single material type, but have at least one other ma-
terial at each endpoint. They should never be collapsed, as
this would cause a point of zero thickness in a material layer.
Boundary edges (solid black) can be collapsed as long as the
boundary is not unacceptably modified.

Some of these checks are guaranteed if all elements have
positive volume; however, they should be consistently per-
formed due to limited floating point precision and rounding
errors. Our implementation is tolerant of negative- and zero-
volume elements that are often present in the input meshes
or at intermediate stages of a deformation simulation.

6. Performance and Results

Our example meshes are generated using structured, grid-
based mesh generation [12], although the algorithm can also
be applied to output from other techniques. A sufficiently
high resolution grid is chosen to adequately capture the de-
tails of the input surface. Unfortunately this also results in
a large number of tetrahedra evenly distributed throughout
the volume of the model without regard to the complexity
of surface detail. The models may be composed of different
materials, arranged in layers or other patterns [13]. A mate-
rial layer that is thick relative to the grid leads to extrane-
ous tetrahedral sampling within the layer (Figure 2). Prior to
tetrahedralization, grid cells that are adequately represented
by interpolation of the coarser grid or do not contain an inter-
face crossing are collapsed. Tetrahedralization of this octree
or Adaptive Distance Field results in fewer tetrahedra [18].
Cells on the boundary between differing octree resolutions
are triangulated to avoid T-junctions and cracks.

Our simplification and mesh improvement implementa-
tion has been stable and effective, even on very large meshes
(Figures 8 and 9). Simplifications with smaller target tetrahe-
dral counts often have faster running times (Table 1) because
the initial boundary error value, E, is higher. This results in a
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Figure 7: When an edge is collapsed (black arrow), the tri-
angles or tetrahedra that share the edge are removed (dark
gray) and the elements that touch the deleted vertex are de-
formed (light gray). Since the collapse weight of an edge
includes data about element shape, the weight of all edges
that share a vertex with a deformed element (dashed lines)
must be recomputed.

faster reduction of the tetrahedral count and fewer elements
to process in later iterations. The actual times vary due to
the general difficulty of estimating the boundary error, E,
needed to represent a complex object with a given number
of elements. If the model can be represented with large tetra-
hedra on the interior (saving more elements for the surface)
the final boundary error will be smaller.

In practice, all tetrahedra exceed the minimum quality re-
quirements for simulations. The simplified models have been
tested in an interactive volumetric editing, visualization and
simulation environment and perform quite well. Tradition-
ally, creating models for use in such systems has been chal-
lenging due to the fixed time steps and minimum required
refresh rates.

7. Comparison to Previous Work

We considered using a Progressive Mesh (PM) ap-
proach [9, 22, 42] for the simplification phase of our sys-
tem. In a PM, each edge is given a weight that indicates
how its collapse will affect various mesh properties such
as connectivity, conformity to the original mesh, etc. The
edges are stored in a priority queue, and after each edge is
collapsed, neighboring edge weights are recomputed and re-
heaped as necessary. However, maintaining a total ordering
of the edges is expensive, as well as unnecessary for many
applications, such as extreme simplification of very large
models. After a single edge collapse operation is performed
on a tetrahedral mesh, an average of over 100 edge weights
must be recomputed and re-heaped (see Figure 7). Further-
more, the cost of actually performing an edge collapse is
small compared to the cost of recomputing the weight of an
edge collapse to determine whether it is legal and desirable.

In contrast to a PM, with our algorithm the edge weights
are computed only for the current block of low-quality tetra-
hedra, and it is very likely that if a legal collapse exists, it
will be performed. In the initial iterations of our algorithm,

tetra # of min angle min
model count iters mm:ss < 0.1 after

bunny 461K→ 2K 18 07:10 41.7%→ 18.5% 0.02
→ 10K 16 10:44 → 10.1% 0.02
→ 50K 15 23:12 → 5.6% 0.01

dragon 825K→ 5K 18 14:31 39.7%→ 25.9% 0.02
→ 100K 13 35:32 → 4.4% 0.01

hand 1,596K→ 10K 18 29:01 40.5%→ 24.8% 0.02
→ 100K 16 58:32 → 4.7% 0.02

gargoyle 792K→ 10K 17 15:29 39.4%→ 11.4% 0.02
→ 30K 15 22:15 → 6.7% 0.01
→ 50K 14 25:19 → 5.5% 0.01
→ 200K 12 29:30 → 5.4% 0.01

Table 1: Statistics for the meshes shown in Figures 8 and 9
run on a Pentium 4 Xeon 2.4 GHz machine with 4 GB of
RAM. From left to right: the number of tetrahedral elements
in the initial and final meshes; the number of block itera-
tions performed; the running time; the percent of elements
in the initial and final meshes with solid angle < 0.1 stera-
dians; and the minimum solid angle of all elements in the
final mesh. In each example, the target solid angle was 0.1
steradians.

many operations are performed in an arbitrary order, sav-
ing considerable computation. The change in the boundary
error, ∆E, is decreased as the target tetrahedral count is ap-
proached. In the limit, as ∆E → 0, our method (restricted
to edge collapses) is equivalent to the continuous simplifi-
cation of a Progressive Mesh. We found that our algorithm
required only 5-15% as many edge collapses as an equivalent
PM. This is considerable since about 80-90% of the running
time is spent recomputing edge weights.

Overall, our algorithm has much in common with the
Mesh Optimization [23] approach, in that we also use ele-
ment swaps, vertex smoothing, and vertex addition. These
operations are necessary to improve meshes that are al-
ready near their target tetrahedral count or contain very poor
inter-element connectivity. We select local remeshing opera-
tions with a greedy strategy (to ensure well-proportioned el-
ements), and use the boundary error, E, to control the global
optimization of the mesh.

By combining mesh improvement operations with ag-
gressive simplification, our technique achieves higher el-
ement quality in practice than mesh improvement alone.
As expected, our algorithm is somewhat slower than the
simplification-only algorithms, mostly due to the consis-
tency and topology checks required for robustness. Our run-
ning times are comparable to the simplification and mesh
improvement strategy of [35]; although they focus on pre-
serving a scalar field defined throughout space rather than
the boundary surfaces and therefore the extracted isosurfaces
contain significant visual artifacts.
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8. Conclusions and Future Work

Simplification is a necessary component in modeling to pro-
duce meshes at a resolution appropriate for interactive explo-
ration, manipulation, and simulation. Our strategy focuses
aggressive simplification and mesh improvement operations
on the poorest-quality elements to ensure that these mod-
els are also viable for physical simulations. Our technique
is efficient enough to be used during iterative modeling. The
algorithm could easily be adapted for local mesh improve-
ment, targeting areas where simulation or sculpting have
modified the mesh and created poorly-shaped tetrahedra.

In our implementation, the topology of the object and
the materials within the object are strictly preserved. How-
ever, noise and alignment errors in the acquisition of 3D
scanned meshes often lead to digital models with higher
genus than the original object. Topological simplification of
surface meshes [21] can be used to pre-process the input sur-
face prior to mesh generation. Alternatively, topological sim-
plification of the tetrahedral model could be performed when
erroneous or extraneous topology is identified.
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Figure 9: Renderings of representative results. The original bunny and dragon meshes are from Stanford University and the
original hand mesh is from Clemson University.

c© The Eurographics Association 2004.


