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Abstract 

As more and more human motion data are becoming widely used to animate computer graphics figures in 
many applications, the growing need for compact storage and fast transmission makes it imperative to 
compress motion data. We propose a data-driven method for efficient compression of human motion 
sequences by exploiting both spatial and temporal coherences of the data. We first segment a motion 
sequence into subsequences such that the poses within a subsequence lie near a low dimensional linear space. 
We then compress each segment using principal component analysis. Our method achieves further 
compression by storing only the key frames’ projections to the principal component space and interpolating 
the other frames in-between via spline functions. The experimental results show that our method can achieve 
significant compression rate with low reconstruction errors.  

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-dimensional 
Graphics and Realism  Animation; I.2.10 [Vision and Scene Understanding]: Motion.  

 

 

1. Introduction 

Human motion data have been used in many research fields 
and applications, such as animating human-like computer 
characters in video games, driving avatars in virtual reality 
environments, and generating special effects in movies. In 
particular, online video games often use motion data to 
interactively control the game characters from a remote site 
across the internet. As more and more motion data become 
available, the need to compress motion data for compact 
storage and fast transmission becomes imperative.  

Motion data are often acquired from human actors using 
a motion capture system. A common form of motion 
capture (mocap) uses optical sensing of strategically placed 
markers (Figure 1). A mocap system utilizes the 
triangulation from multiple cameras to estimate the 3D 
positions of markers. Typically, this requires a minimal set 
of 40-50 markers to capture a full skeleton human motion, 
although capturing subtler human movements necessitates 
as many as over 300 markers. The 3D trajectories of the 
markers constitute a motion sequence with each frame, i.e. 
pose, represented by a vector of the marker positions. As 
the number of markers or the number of frames increases, 
motion data may easily grow very large. It is very 

important to develop an effective compression method to
facilitate storage and transmission of motion data over the 
internet.  

 
Front                                     Back 

Figure 1: A human pose constructed from the mocap 
marker placements. The red dots indicate the marker 
positions. 
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As a special type of multi-dimensional time series, 
human motion capture data sequences exhibit considerable 
spatial as well as temporal coherence. Grochow et al. 
[GMHP04] and Safonova et al. [SHP04] demonstrated that 
one can accurately describe specific simple motions via a 
low-dimensional parameterization based on dimensionality 
reduction techniques. A long and complicated motion 
sequence exhibits local linearity, i.e. poses of each 
subsequence fall into a low dimensional linear subspace 
[LZWM06]. Besides the spatial coherence described above, 
temporal coherence in a human motion sequence manifests 
itself as a result of the strong correlations among 
temporally adjacent frames. Chai and Hodgins [CH05] 
utilized temporal coherence of the control signals to 
accelerate the nearest neighbor search for similar poses and 
dynamically constructed a local linear model for the poses 
to be estimated. 

In order to achieve greater compression while still being 
able to retain high fidelity to the original motion sequences, 
we propose a motion compression method by exploiting 
both spatial and temporal coherences inherent in the human 
motion sequence.  First, we segment a motion sequence 
into segments of simple motions, each of which falls into a 
space with low linear dimensionality. We then compress 
the segments individually by Principal Component 
Analysis (PCA). We compute PCA from each motion 
segment and approximate each pose position vector by its 
projection onto the space spanned by the leading principal 
components. Segment-based PCA compression typically 
needs fewer principal components than that of global PCA 
on a whole sequence to achieve similar accuracy. To take 
advantage of the temporal coherence and further compress 
the PCA projections of the poses of each motion segment, 
we adaptively select the key frames from each motion 
segment and use them as the control points for the cubic 
spline interpolations in the principle component space. Our 
compression method is efficient and easy to implement, 
with a corresponding decompression process that is simple 
and fast as well.  

The rest of the paper is organized as follows. We briefly 
review the related work in section 2, and then introduce our 
compression/decompression approach in section 3. We 
demonstrate the performance of our method through 
experimental results in section 4 and finally conclude the 
paper with discussions and future work. 

2. Previous Work 

Many techniques have been developed for compression of 
various types of data (see [Sal00] for a complete survey). 
Recently there have been more developments on 
compression of animation mesh data due to the increasing 

popularity of animation movies and video games [AM00, 
GSK02, IR03, GK04, KG04, SSK05].  

A typical animation mesh has at least thousands of 
vertices with fixed connectivity among vertices. An 
animation data sequence consists of the vertex positions for 
each frame/mesh. To exploit the spatial correlations among 
animation vertices, Alexa and Müller [AM00] constructed a 
compact representation of an animation sequence by 
conducting PCA out of a whole animation sequence. Karni 
and Gotsman [KG04] built upon their method and further 
compressed the PCA projections of frames with the linear 
predictor coding (LPC), which also exploited the temporal 
coherence. Both of these methods applied global PCA on 
the whole data sequence, and therefore may not be very 
efficient when a data sequence shows local linearity. As 
discussed previously, human motion capture data especially 
exhibit local linearity. Simple motions in fact lie near a 
linear subspace with much lower dimensionality. Global 
PCA in compression of motion capture data tends to 
require more principal components to be retained and thus
may fail to achieve a higher compression rate. In contrast, 
our method starts with motion segmentation to identify the
local linearity of motion sequence and then compute PCA 
for each segment individually. Ibarria and Rossignac 
[IR03] introduced a Dynapack algorithm to exploit inter-
frame coherence and uses two predictors to encode the 
mesh motion. We exploit the temporal coherence using the 
spline interpolations to further compress the PCA 
projections of the frames.  

Lengyel [Len99] proposed the decomposition of the 
mesh into subparts and described these parts as rigid-body 
motions, while only a heuristic solution to segmentation 
was provided. Recently Sattler et al. [SSK05] proposed a 
new geometry method for compressing animation 
sequences based on clustered principal component analysis 
(CPCA). They considered the trajectory of a vertex as a 
data point and clustered the trajectories into parts that 
moved almost independently. These mesh parts could then 
be compressed separately by PCA. Both methods attempted 
to break down a whole data sequence into simpler parts in 
the spatial domain. We, on the other hand, segment data 
sequences in the temporal domain. We take into account 
the fact that the local linearity exists with simple motions 
and hence choose to divide the long motion sequence into 
simple segments along the temporal axis. Since motion 
capture data sequences are usually much longer than the 
mesh data sequences and the number of markers is smaller 
than that of vertices in the animation mesh, our approach is 
more applicable for compression of motion data. 

3. Proposed Method 

In this section we describe the proposed compression and 
decompression methods in detail. Throughout the paper we 
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treat each pose of motion data as a data point represented 
by a 3m-dimensional column vector, y R3m, containing 3D 
positions (x, y and z coordinates) of m markers. Thus a 
motion data set with N pose instances can be represented by 
a 3m N data matrix Y=[y1, y2, …, yN], where yi is a 
column vector of marker positions (i=1,…, N).  

Typical motion data are captured in an absolute world 
coordinate system. However, we describe the relative 
motions in a model-rooted coordinate system where poses’ 
differences in orientation and translation are ignored. We 
refer to this transformation as normalization and the new 
coordinate system as a normalized coordinate system. 
Analyzing motions in a normalized coordinate system may 
result in a more compact but accurate PCA model that leads 
to better compression. In our experiment, we select three 
special markers (i.e., normalization markers) to normalize 
the remaining non-normalization markers.  

Figure 2 shows a flow chart of the compression and 
decompression pipeline. Note that we compress 
normalization markers and non-normalization markers 
separately. An overview of each component in the 
compression process is given below.  

Normalization. We select the normalization markers and 
use them to normalize motion data with a model-rooted 
homogeneous coordinate system, where the poses that 
differ by translations and rotations are treated as the same.  

Motion segmentation. We segment the normalized motion 
data sequence into subsequences of simple motions that lie 
near a low dimensional linear space. 

Compression of segments by PCA. For each motion 
segment, we approximate the pose position vectors by their 
projections onto the space spanned by the leading principal 
components. 

Key frame selection for spline interpolation. Given PCA 
projection data of each frame of a motion segment, we 
adaptively select the key frames as control points such that 
the spline interpolation of the rest frames yields an 
approximation error below a preset threshold. 

Since the accuracy of normalization markers is crucial 
to the de-normalization process, we only compress the 
positions of these markers by selecting the key frames 
without PCA approximation. In other words, normalization 
markers are only involved in the key frame compression 
while the rest markers go through the whole compression 
pipeline. 

 

 
Figure 2: Flow chart of motion data compression. 

The decompression is quite straightforward. We use 
spline interpolation to recover the positions of the 
normalization markers, as well as the PCA projections of 
the non-key frames for the non-normalization markers. We
then reconstruct the positions of the non-normalization 
markers from the PCA data and finally de-normalize the 
non-normalization markers to obtain the marker positions 
in the original absolute world coordinate system. 

3.1. Normalization 

We select three markers located at the C7 vertebrae, left 
shoulder and right shoulder as the normalization markers. 
We use the marker at the C7 vertebrae as the origin. We 
define the x, y and z axes in the normalized coordinate 
system as follows.  We retain the z-axis of the original 
world coordinate system.  We compute a vector from the 
left shoulder marker to the right shoulder marker and then 
project it onto the horizontal plane. The projected vector is 
considered as our x-axis. The cross product between the 
newly defined z- and x- axes yields our y-axis.  

Motion capture data 

Normalization 
marker data

3. De-Normalization

1. Normalization

Non-Normalization 
marker data

2. Motion Segmentation 
3. PCA compression 
4. Key frame selection 

Compression: 

Key frame selection 

Decompression: 

1. Spline interpolation to 
recover non-key frames 
2. Frame reconstruction 
from PCA data 

Spline interpolation 
to recover non-key 
frames 
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3.2. Motion Segmentation 

The goal of segmentation is to divide a long and 
complicated motion sequence into segments of simple 
motions, which typically lie in a space with much lower 
dimensionality than the whole sequence. Compressing each 
motion segment individually enables us to achieve a higher 
compression rate and retain a reasonable reconstruction 
quality at the same time.  

There have been studies on motion segmentation 
[PRM00, LWS02, BSP*04]. We apply the probabilistic 
PCA (PPCA) approach presented in [BSP*04] to segment a 
motion sequence into segments of distinct behaviors. As an 
extension of the traditional PCA, PPCA is based on a 
probabilistic model [TB99] and models the residual 
variance discarded by PCA. Motion data are considered as 
an ordered sequence of poses and are modeled with 
Gaussian distributions in PPCA. A motion sequence is 
segmented where there is a local change in the distribution 
of the poses.  

 
Figure 3: Plot of Mahalanobis distance H as K is 
repeatedly increased by  in PPCA segmentation. 

For clarity, we briefly review how to implement PPCA 
for motion segmentation as described in [BSP*04]. We 
perform PPCA to model the first K frames of a motion 
sequence with a Gaussian distribution, where the 
covariance is determined by the intrinsic dimensionality 
estimated from PCA, as well as the average of discarded 
variance in PCA.  We choose the intrinsic dimension as p 
such that the leading p principal components in PCA cover 
the portion of the variance not less than a preset threshold . 
We then estimate how likely motion frames K+1 through 
K+T belong to the Gaussian distribution defined by the first 
K frames. We do this by calculating an average 
Mahalanobis distance H. Next we increase K by a small 
number of frames  and repeat the estimation of 
distribution for the first K frames (K:= K+ ), and compute 

the distance H with respect to the new distribution. Figure 3 
shows a plot of H as K repeatedly increases by . In the 
plot, a cut is declared at the peak following a valley and 
when the difference in H between the valley and the peak is 
greater than a threshold R. In general, increasing R results 
in fewer segments and decreasing R results in a finer 
segmentation. When a cut is made, the first K frames 
constitute one segment and are removed from the sequence.  
We continue to segment the rest subsequence until the 
length of the remaining subsequence is less than the sum of 
the initial value of K and T. In our experiments, we set the 
initial value K=200,  = 0.95, T=150, =10, and R=500. 
The segmentation results are not very sensitive to the minor 
adjustment of K, T or , although bigger adjustments 
would certainly affect the size of the segments. 

3.3. Compression of Segments by PCA 

PCA is a dimensionality reduction technique, which retains 
those characteristics of a dataset that contribute most to its 
variance.  For a motion segment whose pose position 
vectors lie near a much lower dimensionality, PCA is a 
very effective method to find the low dimensional space. 
We compute PCA for each motion segment and keep the 
first k eigenvectors such that the residual variance covered 
by the discarded eigenvectors is less than a preset 
threshold.  The projections of the pose position vectors onto 
the k-dimensional principle component space are used as 
the approximations of the original poses. A motion segment 
is represented by k-dimensional trajectories over time, with 
k being varied in different motion segments. 

The reconstruction errors of all the markers are not 
perceived on the same scale by our sensing system. Human 
vision tends to be more sensitive to errors on certain body 
parts. For example, even a very small error on the positions 
of foot markers could be detected and perceived as a major 
artifact called sliding feet [KGS02, IAF06]. To address this 
issue, we compress the foot markers separately from the 
rest markers with a tighter PCA error tolerance. 

3.4. Key Frame Selection for Spline Interpolation 

Human motion capture data demonstrate strong temporal 
coherence as most time series do. We can reliably estimate 
a frame with its temporally adjacent neighbours. We opt to 
select and store only the PCA projections of the key frames 
from a motion segment to achieve further compression. In 
decompression we can apply the cubic spline interpolation 
to recover the non-key frames using the saved key frames 
as control points for the spline function. 

We adopt the cubic spline interpolation approach 
because of its computational simplicity, good 
approximation property and implicit smoothness (minimum 
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curvature property). Selection of the key frames as control 
points is an adaptive process. We start by fitting each PCA 
projected trajectory by a cubic spline function with four 
evenly distanced control points, two at both ends of the 
motion segment and the other two at the 1/3 and 2/3 
temporal positions of the segment. We then interpolate all 
of the frames using the cubic spline functions and compute 
the interpolation errors. For each frame, the approximation 
error of spline interpolation is calculated as the L2 norm of 
the difference between the k-dimensional interpolated 
vector and the original projection vector. If the 
approximation error of the interpolation exceeds a preset 
threshold for any frame between the two existing control 
points, then the frame in the middle of those two control 
points is selected as a new control point and is added to the 
list of the existing control points. We continue adding 
control points and interpolating frames until the 
interpolation errors of all the frames are within an error 
threshold.  

 As mentioned earlier, the three normalization markers 
only go through one-level compression via the key frame 
selection. Since these three markers are crucial to the de-
normalization of the rest markers and ultimately affect the 
final decompression result, we apply a more stringent error 
tolerance in selection of key frames. 

For each compressed motion segment, we need to store 
the key frames for the three normalization markers; one 
mean vector, the k principal component vectors and the 
PCA projections of the key frames for the non-
normalization markers.  

3.5. Decompression 

Decompression of motion data is conducted for 
normalization markers and non-normalization markers 
separately as follows. 

 Normalization markers: 

Since we only compress the motion data of the 
normalization markers in their original measurement space 
by selecting the key frames as control points for the spline 
interpolation, we simply need to reconstruct the non-key 
frames with spline interpolation using those key frames as 
control points. 

 Non-normalization markers: 

Given the PCA projections of the key frames in each 
segment, we run cubic spline interpolation using those key 
frames as control points to estimate the PCA projections of 
other frames. Then we reconstruct the marker positions in 
the normalized coordinate system using the principal 
component vectors associated with the segments. Finally 
we transform the normalized data back to the original 

coordinate system using the reconstructed positions of the 
normalization markers.  

An inherent shortcoming with the local linear modeling 
approach is the temporal discontinuity at the transitions 
between PCA models, manifested as visible jerkiness in the 
reconstructed motion. For example, if we approximate two 
temporally adjacent motion segments using two different 
sets of principal component vectors, then it is likely to see 
jerkiness at the transition frames between these two 
segments.  

Instead of using only one PCA model to reconstruct the 
poses at the transition of local PCA models, we use a 
mixture of PCA models associated with the particular pose 
and its neighboring poses. Let bt,i be a column vector 
containing the reconstructed 3D positions of markers at 
pose t based on PCA model i, we estimate the marker 
positions yt, as 

yt = i wi bt,i , 

where wi = ri / (h+1) is a weight for the ith PCA model, ri is 
the number of frames corresponding to the ith model 
among the frames t-h/2 to t+h/2. Basically, we put more 
weight on the model that is favored by more of the h +1 
poses. In our experiments, h=10-20 works very well.  

4. Experimental Results 

We evaluated our compression method with Carnegie 
Mellon University’s Graphics Lab motion capture database 
available at http://mocap.cs.cmu.edu.  We used the 3D 
motion data on a set of 41 markers. The sampling rate is 
120 frames per second. Table 1 shows the basic 
information of the motion sequences.  

Sequence Description #Frames Size 
(Kbytes) 

1 Jumping jacks, side 
twists, bending 

over, squats 

4,592 4,413 

2 Long breakdance 
sequence 

4,499 4,324 

3 Walk, squats, 
running, stretches, 
jumps, punches, 

and drinking 

10,590 10,177 

4 Walk, squats, 
stretching, kicking, 

and punching 

9,206 8,847 

Table 1: Used motion capture data sequences. 
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As discussed previously, the reconstruction errors may 
not be perceived on the same scale for different markers, so 
we chose different error tolerances according to the 
importance of markers. The PCA residual error threshold 
was set as 10 mm/marker for the six foot markers and 30 
mm/marker for the other non-normalization markers. The 
spline interpolation error threshold was set as 10 
mm/marker for non-normalization markers and 1 
mm/marker for normalization markers. Larger error 
tolerances typically result in more visible artifacts in the 
reconstruction. Extreme cases include apparent shifting of 
certain body parts as well as jerkiness at the transitions. We 
assessed the performance of our compression method with 
regards to compression ratio and reconstruction quality. We 
visually evaluated the reconstruction results using our 
motion model viewer and quantitatively evaluated the 
reconstruction errors with two distortion measures. The 
first one is a distortion rate d similar to [KG04], which 
measures the quality of reconstruction for the whole motion 
sequence, and is defined as 

,
||)(||

||
~

||100
AEA

AAd  

where A is a 3m x N data matrix containing the original 
motion sequence collected from m markers over N frames. 
A
~

 is the reconstructed result of the same motion sequence 
after decompression. E(A) is an average matrix in which 
each column consists of the average marker positions for 
all the frames. The second distortion measure is the per-
frame distortion, which is defined as the Root Mean 
Squared (RMS) error (mm/marker) in each frame. 

Sequence 1 2 3 4 

# of Segments 6 9 10 9 

Average # of 
Principle 

Components 

4.6 10.9 3.1 4.2 

# of Control Points 117 211 235 221 

Compression Ratio 1:55.2 1:18.4 1:61.7 1:56.0 

Distortion Rate d 
(%) 

5.1 7.1 5.1 5.4 

Compression Time 
(ms/frame) 

1.3 1.4 1.3 1.2 

Decompression 
Time (ms/frame) 

0.7 0.7 0.7 0.7 

Table 2: Compression and reconstruction results. 

 
(a) Sequence 1 

   (b) Sequence 2 

 
(c) Sequence 3 

       (d) Sequence 4 

Figure 4: Reconstruction errors of decompression. 

The compression and reconstruction results of four 
motion sequences are presented in Table 2. The frame-by-
frame distortions are shown in Figure 4. These results 
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showed that our compression method achieved a high 
compression ratio with low distortion rate. As motion 
sequences became more complicated, more principle 
components and key frames were needed to ensure the 
reconstruction quality. For example, the long sequence of 
breakdance was quite fast-paced and sophisticated, thus it 
required more principle components and key frames than 
the other sequences to obtain comparable reconstruction 
quality, resulting in a compression rate not as high as those 
of the other motion sequences. The accompanying video 
demonstrates that the reconstructed motion sequences are 
of reasonably good quality with fairly smooth transitions 
from one PCA-modeled segment to another. We also show 
one example in the video that using a tighter PCA residual 
error tolerance for the foot markers instead of a uniform 
tolerance for all the markers greatly reduces the sliding-feet 
artifact and thus significantly improves the perceived visual 
quality of the reconstructed motions.  Some reconstructed 
sample frames are given in Figure 5. 

Sequence Method Compression 
Ratio 

Distortion 
Rate (%) 

Global PCA 1:5.3 4.2 

Piecewise 
PCA 

1:8.0 4.1 

 

1 

Our method 1:55.2 5.1 

Global PCA 1:3.7 5.8 

Piecewise 
PCA 

1:5.0 5.4 

 

2 

Our method 1:18.4 7.1 

Global PCA 1:6.4 4.9 

Piecewise 
PCA 

1:9.4 4.3 

 

3 

Our method 1:61.7 5.1 

Global PCA 1:5.3 4.5 

Piecewise 
PCA 

1:8.4 4.5 

 

4 

Our method 1:56.0 5.4 

Table 3: Comparison of different compression methods. 

We compared our method to the global PCA method 
and the segment-based piecewise PCA method without 

spline interpolation (Table 3). Piecewise PCA compression 
method improved the compression performance for all the 
sequences as compared to the global PCA compression 
method. However, the most significant improvement came 
from its use combined with the spline interpolation which 
efficiently incorporated the temporal coherence of the 
sequences. Note that 3 out of 41 markers were used as 
normalization markers in our experiment and only 38 
markers actually went through the segment-based PCA 
compression, so the compression effect of piecewise PCA 
may not be fully demonstrated. However, we expect 
significant advantage of PCA compression when the 
number of markers increases substantially.  

We run the experiments in Matlab V7 on a Dell Inspiron 
Laptop, with 1.4GHz CPU and 512M physical memory. 
Both of our compression and decompression algorithms are 
very fast and scale linearly with the number of frames. As 
Table 2 shows, the compression time is about 1.3 ms/frame 
for all four motion sequences; while the decompression 
time for each sequence is 0.7 ms/frame. 

5. Conclusions and Future Work 

We present a novel method to compress human motion data 
sequences. We exploit both spatial and temporal 
coherences of motion data to achieve a considerably high 
compression rate with low degree of distortions. The 
experimental results show that it is important to segment a 
long and complicated motion sequence into subsequences 
of short and simple motions and compress each of these 
subsequences separately. Our segment-based approach 
requires many fewer principal components to achieve the 
same error threshold than with traditional global PCA 
compression, and this leads to a higher compression rate 
and better reconstruction results. PCA approximation is an 
effective way to characterize the correlations among 
markers and significantly reduce the dimensionality of the 
marker data without the loss of important aspects of the 
motion. Spline interpolation on top of the PCA 
approximation further improves the already high 
compression rate by taking into account the correlations 
among temporally adjacent frames.  

Our compression method is a lossy compression 
scheme. If more accuracy is demanded, quantization can be 
used to store the differences between the reconstruction 
results and the original true values so that the actual errors 
can be further reduced to the quantization errors only. 
However, doing so means we have to allocate extra space 
to store these quantized errors and the trade-off would be 
the reduced compression rate. Our experiment results show 
that few visual artifacts appear when the information 
reflected by the residual errors is discarded, so the use of 
quantization may not be necessary.   
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Motion capture data are often represented as joint angles 
in animation research. Since joint angle is a hierarchical 
representation, it is difficult to achieve high quality 
compression by directly compressing the joint angle data 
due to the accumulation of errors along the chain of the 
joint angles. As a solution, we can first convert joint angles 
into joint positions and then compress these joint positions 
instead. In a concurrent work by Arikan [Ari06], the 
conversion to positional data of so-called virtual markers 
was also involved in the compression of joint angle data. It 
is worth examining how effective our method is as 
compared to Arikan’s approach in handling the joint angle 
data.     

While we demonstrated our compression method with 
full-body human motion capture data, in our future work 
we would like to evaluate how well our method performs in 
compressing other types of human motion data, such as 
facial expressions. In addition, the application of our 
compression method to other formats of data such as 
animation meshes, sequences of point clouds and range 
scan data also merit further study.   
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Sequence 1: (a) jumping jack & side twists                   (b) bending over                                             (c) stretching 

 
Sequence 2:                                                        long sequence of breakdance 

 
Sequence 3:  (a) jumping                                                    (b) squats                                                      (c) drinking 

 
Sequence 4:  (a) walking                                                     (b) punching                                                   (c) kicking 

Figure 5: Sample frames of reconstructed motion sequences. 
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