
Scam Light Field Rendering 
 
 

Jingyi Yu       Leonard McMillan 
Laboratory of Computer Science 

Massachusetts Institute of Technology 
{jingyi,mcmillan}@graphics.lcs.mit.edu 

Steven Gortler 
Division of Engineering and Applied Science 

Harvard University 
sjg@graphics.lcs.mit.edu 

 
 

Abstract 
 

In this paper we present a new variant of the light field 
representation that supports improved image reconstruc-
tion by accommodating sparse correspondence 
information. This places our representation somewhere 
between a pure, two-plane parameterized, light field and 
a lumigraph representation, with its continuous geomet-
ric proxy. Our approach factors the rays of a light field 
into one of two separate classes. All rays consistent with 
a given correspondence are implicitly represented using a 
new auxiliary data structure, which we call a surface 
camera, or scam. The remaining rays of the light field are 
represented using a standard two-plane parameterized 
light field. We present an efficient rendering algorithm 
that combines ray samples from scams with those from 
the light field. The resulting image reconstructions are 
noticeably improved over that of a pure light field. 
 
 
1. Introduction 
 

Light fields are simple and versatile scene representa-
tions that are widely used for image-based rendering [11]. 
In essence, light fields are simply data structures that 
support the efficient interpolation of the radiance esti-
mates along specified rays.  A common organization for 
light fields is a two-plane parameterization in which the 
intersection coordinates of a desired ray on two given 
planes determines the set of radiance samples used to 
interpolate an estimate. A closely related representation to 
a light field is the lumigraph [8]. A lumigraph incorpo-
rates an approximate geometric model, or proxy, in the 
interpolation process, which significantly improves the 
quality of the reconstruction. Unfortunately, every desired 
ray must intersect some point on the geometric proxy in 
order to estimate its radiance in a lumigraph. Thus, a con-
tinuous, albeit approximate, scene model is required for 
lumigraph rendering. Acquiring an adequate scene model 
for lumigraph rendering can be difficult in practice. In 
fact, most lumigraphs have been limited to scenes com-

posed of a single object or a small cluster of scene 
elements. The geometric scene proxy used by a lumigraph 
can be created using computer vision methods or with a 
3-D digitizer. Geometric information about the scene is 
important for eliminating various reconstruction artifacts 
that are due to undersampling in light fields. An analysis 
of the relationship between image sampling density and 
geometric fidelity was presented by [4]. Chai, et al, pre-
sented a formal bound on the accuracy with which a 
geometric proxy must match the actual geometry of the 
observed scene in order to eliminate aliasing artifacts in 
the image reconstruction. As with the lumigraph model 
they assume that a geometric proxy can be identified for 
any requested ray. 

Acquiring dense geometric models of a scene has 
proven to be a difficult computer vision problem. This is 
particularly the case for complicated scenes with multiple 
objects, objects with complicated occlusion boundaries, 
objects made of highly reflective or transparent materials, 
and scenes with large regions free of detectable textures 
or shading variations. The wide range of depth extraction 
methods that have been developed over the past 40 years, 
with the objective of extracting geometric models, have 
met with only limited success. Even with the recent de-
velopment of outward-looking range scanners it is still 
difficult to create a dense scene model. However, both 
passive stereo and active range scanners are usually able 
to establish the depth or correspondence of a sparse set of 
scene points with a reasonably high confidence. The pri-
mary objective of this research is to incorporate such 
sparse geometric knowledge into a light field reconstruc-
tion algorithm in an effort to improve the reconstruction 
of interpolated images. 

Our light field representation factors out those radi-
ance samples from a light field where correspondence or 
depth information can be ascertained. We introduce a                        
new data structure that collects all of those rays from a 
light field that are directly and indirectly associated with a 
3D point correspondence. This data structure stores all of 
the light field rays through a given 3D point, and, there



 
Figure 1: Light field rendering and scam rendering: (a) light field rendering with zero disparity; (b) light field rendering 
with optimal disparity; (c) scam rendering with correspondences of the pumpkin head; (d) scam rendering with corre-
spondences of multiple objects in the scene; 

fore, it is similar to a pinhole camera anchored at the 
given correspondence. Since this virtual pinhole camera 
is most often located at a surface point in the scene, we 
call it a surface camera, or scam for short. Once the rays 
associated with a scam are determined, they can be re-
moved from the light field. We call this partitioning of 
rays into scams a factoring of the light field. Ideally, 
every ray in a light field would be associated with some 
scam, and, thus, we would call it fully factored. The re-
sulting scam light field would generate reconstructions 
comparable to those of a lumigraph, although the two 
representations would be quite different. The utility of a 
scam renderer lies in its ability to improve light field re-
constructions with a set of scams that are a small subset 
of a fully factored light field. In this paper we describe a 
new light field representation composed of a collection of 
implicit scam data structures, which are established by 
sparse correspondence information, and an associated 
light field, which is used to interpolate rays for those 
parts of the scene where no scam information has been 

established. We describe how to factor all of the rays as-
sociated with a specified scam from a light field when 
given as few as two rays from the scam (i.e. a correspon-
dence) or the depth of a single known point. We then 
describe the necessary bookkeeping required to maintain 
the scams and light field representations. Next we de-
scribe an efficient two-pass rendering algorithm that 
incorporates scam information, and thus, sparse corre-
spondence information, to improve light field 
reconstructions. Finally, we show results of light field 
renderings using our new representation with varying 
degrees of geometric sparseness. 
 
2. Previous work and background 

 
Early image-based rendering models such as 3D warp-

ing [13], view interpolation [5] and layered-depth images 
[15], etc, consist of a set of images of a scene and their 
associated depth maps. The rendering quality relies heav-
ily on the correctness of these depth maps, which are 
usually derived from stereo algorithms. Light field ren-



dering [11] synthesizes new views by interpolating a set 
of densely sampled images without associated depth in-
formation. When undersampled, the light field rendering 
exhibits aliasing artifacts, as is shown in Figure 1(a). 
Plenoptic sampling [4] analyzed the relationship between 
the sample rate and the geometrical information. Plenop-
tic sampling also suggested that one can minimize the 
aliasing artifacts by placing the object or focal plane at a 
distance from the camera plane that is consistent with the 
scene’s the average disparity, as shown in Figure 1(b). 
Lumigraph rendering [8] addresses the issue of sparse 
sampling by introducing geometric information and 
showed that the rendering quality is significantly im-
proved with approximate geometry proxies even in a 
sparsely sampled light field. Our work assumes that it is 
difficult to provide dense sampled geometric proxies, or 
dense correspondences. We design an algorithm to render 
views using a sparse set of correspondences and a 
sparsely sampled light field.  

In conventional light fields, a two parallel plane 
parameterization is commonly used to represent rays, 
where each ray is parameterized in the coordinates of the 
camera plane (s, t) and a image plane (u, v). Surface light 
fields [17] suggested an alternative ray parameterization 
where rays are parameterized over the surface of a pre-
scanned geometry model. We combine both 
parameterizations in our algorithm. 

For simplicity, we assume uniform sampling of the 
light field and use the same camera settings as Gu et al 
[9], where the image plane lies at z = -1 and the camera 
plane lies at z = 0. This leads to the parameterization of 
all rays passing through point (px,, py,  pz) as 
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We use a slightly different parameterization of [9]; we 
parameterize each ray as the 4-turple (s, t, u, v), where   
(u, v) is the pixel coordinate in camera (s, t). This simpli-
fies the ray equation (1) to 
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The ray-point equations (1) and (1’) indicate that all 
rays passing through the same 3D point lie on an s-t plane 
in the 4D ray space, which we call the point’s constraint 
plane.  

In a calibrated setting, each correspondence identifies 
a unique 3D point; therefore, it also identifies a constraint 
plane. Our goal is to first factor all of the rays associated 
with the constraint plane of each correspondence using a 
special data structure called “surface camera” or scam. 
We then suggest an algorithm that synthesizes new views 
from these scams using a reconstruction algorithm  simi-
lar        

 
 
Figure 2: Factoring scam: (a) a correspondence is speci-
fied as two points and can be factored to all cameras by 
back projection the 3D point; (b) by normalizing the a 
correspondence with unit disparity, we can factoring all 
rays associated with a scam. 
 
to the rebinning approach described for unstructured cam-
eras in the lumigraph. For desired rays that are not 
interpolated by any scam, we use the light field approach 
to render them. In addition, we present an interactive ren-
dering system that allows users to provide or remove 
correspondences and re-renders the view in real-time. 
Figure 1(c) and 1(d) illustrates the various rendering re-
sults using the scam rendering algorithm with 
correspondence information from multiple objects. 
 
3. Scam factoring 
 

Correspondences can always be specified as scalar 
disparities along epipolar lines. We will assume that all 
source mages have to be rectified such that their epipolar 



planes lie along pixel rows and columns. In this setting 
disparities can be describe the horizontal and/or the verti-
cal shifts between the corresponding pixels of image 
pairs, as is shown in Figure 2. Each correspondence is 
represented as two rays r  and 

, which pass through the same 3D point. 
Assuming uniform sampling, and applying the constraint 
plane equation (1’), we have 
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where disp is the disparity of a correspondence. We can 
rewrite the point’s constraint plane equation (1) in terms 
of its disparity as 
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This construction transforms each correspondence into 
a constraint plane defining a set of 4-dimensional rays. 
The values of u0 and v0 can be determined directly from 
the correspondence rays, r1 and r2. All other rays can be 
factored from the given light field by setting the values of 
s and t and solving for the appropriate u and v values con-
sistent with the constraint plane of the correspondence. 
The constraint plane solutions at integer values of s and t 
are equivalent to placing a virtual camera at the 3D point 
and computing rays from that point through the camera 
centers lying on the camera plane, as is shown in Figure 
2(a). We implicitly store constraint plane as an image 
parameterized over the same domain as the camera plane. 
We call this image a “surface camera” or scam. To index 
the rays of a scam, we solve the disparity equation (3) for 
all data camera locations shown in Figure 2(b). Because 
these rays do not necessarily pass through the pixels 
(samples) of the data cameras, we bilinearly interpolate 
their color in the data image. The complete factoring al-
gorithm is shown as follows: 

 
 
Generate scam for each correspondence 
for each correspondence S  do 

normalize S in form (u0 , v0 , disp)  
for each data camera C(s, t) do 

calculate the projection (u, v) of S in camera        
C(s, t) from the disparity equation (3) 
bilinearly interpolate P(u, v) in C(s, t) 
store P as pixel (s, t) in  scams 

 end for 
end for 

 
 
 

 

 
 
Figure 3: scam1 is close to the real surface and is not 
occluded by another other parts of the scene; scam2 is 
occluded by other parts of the scene; scam3 is from the 
incorrect correspondence and is far away from the real 
surface.  
 
4. Scam representation 
 

Scam images can be used to analyze the accuracy of 
correspondences, the presence of occlusions, and the 
consistency of the correspondence’s surface reflectance. 
If a correspondence is not close to the real surface, then 
we expect to observe greater variations in its scam 
images, as shown in scam3 of Figure 3 and Figure 4(b). If 
a correspondence is near the actual surface and it is not 
occluded by other parts of the scene, then its scam image 
indicates the radiance received at all data cameras and 
thereby represents the surface’s local reflectance 
radiance, shown as scam1 of Figure 3. Moreover, if the 
surface is Lambertian, then these scams are expected to 
have constant color everywhere, as is shown in Figure 
4(c). If the surface’s reflectance exhibits view 
dependencies such as specular highlights, we expect to 
observe smooth radiance variations over the scam images. 
Figure 4(d) shows the scam of the specular highlight on 
the pumpkin.  When a correspondence lies close to the occlusion 
boundary of an object, then we expect to see specific 
abrupt color transitions in its scam image. Rays that are 
not occluded should have consistent colors, while oc-
cluded rays might exhibit significant color variations and 
discontinuities, as shown in scam2 of Figure 3 and Figure 
4(a). Since we bilinearly interpolate each scam image, we 
model the scene with “smooth occlusion” by implicitly 
interpolating between points on either side of the occlu-
sion boundaries. 

 
 



 

 
Figure 4: In the illustration above, scam (a) is close to 
the occlusion boundaries; scam (b) is away from the real 
surface; scam (c) is close to the real Lambertian surface 
and is not occluded; scam (d) is close to the specular 
highlight on the real surface; 
 

Because correspondences are usually not very accu-
rate, we can estimate a measure of the quality of 
correspondences by calculating the distribution and the 
variance of the colors within scams. The color distribu-
tion in incorrect correspondences should be 
discontinuous, non-compact, and its variance is expected 
to be high. For the correct correspondences and unoc-
cluded surfaces, we expect to see more uniform and 
continuous color variations, and, therefore, low color 
variance. For correspondences on simple occlusion 
boundaries or with simple view dependencies, we can 
characterize them by modeling bimodal color distribu-
tions from their scam images. We will discuss how to use 
this measurement to improve the reconstruction in Sec-
tion 5.  
 
5. Scam rendering 

In order to render a correspondence from an arbitrary 
view, we need to first project its scam onto the desired 
view. We do this by constructing a ray from the desired 
view that is consistent with the correspondence. We then 
use the scam data structure to interpolate the reflected 
radiance. The explicit coordinates of the 3D point are not 
needed to construct the ray.  We can instead compute the 
intersection of the correspondence’s constraint plane with 
the camera’s image plane. This is particularly efficient 
with our representation. 

 
5.1. Projecting correspondences 

We describe all virtual cameras in form (s’, t’, z’), 
where z’ is the distance to the data camera plane. If the 
camera is on the camera plane, i.e., at (s’, t’, 0), we can 
calculate the projection of the correspondence in the new 
view using the disparity equation (3) as  
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Figure 5: Projecting the correspondence in the new view: 
(a) we project the correspondence in camera        (s’, t’, 
z’) by first projecting it in camera (s’, t’, 0) then calculat-
ing its position in camera (s’, t’, z’) using the geometric 
relationship; (b) we construct the ray that passes the cor-
respondence from camera (s’, t’, z’) and compute its 
intersection with the original camera plane.  
                            
 
 
 

And we can query the color of the projected correspon-
dence by interpolating point (s, t) in its scam image. To 
determine the projection of a correspondence in a camera 
(s’, t’, z’) off the camera plane, we first calculate its pro-
jection (u, v) in camera C’(s’, t’, 0). Because C’ is on the 
camera plane, we can simply calculate (u, v) as (4). 

We then apply the geometry relationship as is shown 
in Figure 5(a) and use the depth-disparity equation (2), 
we have 
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Therefore the projection of the correspondence in the 
new camera  (s’, t’, z’) can be computed as 
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We then calculate the intersection point (s”, t”, 0) of 
the ray with the original camera plane. Notice the corre-
spondence should project to the same pixel coordinates in 
both camera (s’, t’, z’) and (s”, t”, 0), as is shown in Fig-
ure 5(b). Therefore by reusing disparity equation (3), we 
can calculate (s”, t”) as  
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The color of the projected correspondence is then bi-

linear interpolated at (s”, t”) in the scam image of the 
correspondence. 
 
5.2. Color blending 

Once we project all correspondences onto the new 
camera, we need to synthesize the image from these scat-
tered projection points. We use a color-blending 
algorithm similar to unstructured lumigraph [2]. We as-
sume correspondences are comparatively accurate and 
therefore its projection only influences a limited range of 
pixels around it in the new view. In practice, we only 
blend correspondences projected in a pixel’s 1-ring 
neighborhood. If there isn’t any, we then render the pixel 
directly from the light field. We use the following weight 
function to blend these correspondences: 

)( icorrespweight =
     

The first term of the weight evaluates the quality of 
the scam, where we use the color variance as a simple 
measurement, as is discussed in Section 4. The second 
term measures how close the projection is to the pixel, 
where closer projections get higher weight. The last term 
distinguishes closer correspondences from far away ones 
by their disparities. For a boundary pixel, there could be 
multiple correspondences with difference disparities 
around it. Since closer objects are expected to be more 
important, we assign larger weight to those of large dis-
parities. Furthermore, we assign continuous metric 
functions for all terms to maintain the smooth transition 
from scam rendered parts to light field rendered parts. 
The complete two-pass rendering algorithm is shown as 
follows: 

 
 

Synthesize view C(s’, t’, z’) 
for each correspondence S do 

calculate ray r(s”, t”) that passes S and           
C(s’, t’, z’) using equation (7) 

 interpolate r in the scam image of S 
calculate the projection P(u’, v’) of  S in C using 
equation (6) 
compute the weight of S using equation (8) and    
add S to P’s 1-ring pixels’ scam list 

end for 
for each pixel P(u, v)  in the synthesized image do 
 if P’s scam list is not empty do 

color blend all correspondences in P’s scam      
list with calculated weights  

 end if 
       else do 

                 use light field to render  P 
       end else 
end for 

 
6. Result 
 

We have applied our algorithm to correspondences 
generated from a range of different stereo algorithms 
[7][3]. We have also developed a user-guided stereo algo-
rithm in which the user to specifies image regions to be 
correlated because local correspondences are faster to 
generate and are more reliable and the user can focus 
their efforts on important features. We have tested our 
algorithm on varying degrees of sparseness and quality of 
the correspondences.  

The pumpkin dataset shown in Figure 6 is constructed 
from a 4x4 sparse light field. We allow users to specify 
the regions to correlate and generate correspondences on 
the fly using a dynamic-programming based stereo algo-
rithm [7]. Previous results have shown correspondences 
generated by [7] are not always reliable, however, be-
cause our color-blending algorithm is robust, we are able 
to synthesize high quality views from these set of low-
fidelity correspondences. Figure 6(a) renders the new 
image using standard light filed rendering methods with 
the focal plane optimally placed at the depth associated 
with the average disparity as suggested by plenoptic sam-
pling [4]. Aliasing artifacts are still visible because the 
light field is undersampled. We then add in correspon-
dences for the head sculpture, the pumpkin, the fish, and 
part of the red stuffed animal by correlating rectangular 
regions using algorithm [7], as is shown in Figure 6(a). 
As a result, the reconstruction in the yellow regions of the 
synthesized image 6(b), are significantly improved. 
Boundaries between the light field rendered parts and 
scam rendered parts are also very smooth.  



The office scene light field in Figure 7 illustrates the 
gradual improvements using scam rendering with more 
and more correspondences. Figure 7(a) is a synthesized 
view using light field rendering with the optimal dispar-
ity. Figure 7(b) improves the reconstruction of the red 
stuffed animal with scam rendering associating its corre-
spondences. Figure 7(c) renders the scene with additional 
correspondences from different parts of the scene. Figure 
7(d) reconstructs the reflected highlights on the back-
ground by providing correspondences of the background 
while these view dependencies are usually difficult to 
achieve in traditional light field rendering systems. 
 
7. Conclusions and future work 
 

In this paper we have presented a light field decompo-
sition technique and an image-based rendering algorithm 
for light fields with a sparse collection of correspon-
dences. We use a special data structure called a scam to 
store light field regions associated with correspondences 
and to accelerate interpolation of arbitrary rays in it with 
two-plane parameterization. We implemented the algo-
rithm in an interactive and real-time system that allows 
users to aid in the assignment of new correspondences 
and quickly re-renders the view. We have tested our algo-
rithm on correspondences with varying degrees of 
sparseness and show it is robust with low-fidelity corre-
spondences. Our reconstructions are comparable to those 
of a lumigraph while it doesn’t require complete geomet-
ric models. 

For those parts of the image without accurate corre-
spondence information, our method uses the traditional 
light field method for interpolating the radiance at the 
desired ray. As a result, in these regions, we expect to see 
aliasing artifacts due to under-sampling in the light field. 

 However, there are special cases where such artifacts 
are less apparent, in particular, in areas of low texture. 
Our method generates effective reconstructions in these 
regions where, one should note, it is also difficult to es-
tablish correspondences.  Using traditional stereo vision 
methods, it is also difficult to establish accurate corre-
spondence near occluding boundaries and on specular 
surfaces. However, if any high-confidence correspon-
dence can be established from any image pair from the set 
of all light field images, our technique will generally pro-
vide reasonable reconstructions.  

In the future, we would like to extend our scam repre-
sentation as an alternative modeling method to the image-
based and geometry-based approaches. We also want to 
study the surface radiance properties from scams by bet-
ter characterizing their color variance and distributions. In 
addition, our scam rendering algorithm is closely related 
to the point-based rendering algorithms and we hope to 

investigate and apply relative techniques to improve scam 
rendering.  
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Figure 6: Light field and scam rendering: (a) light field rendering with optimal disparity; (b) scam rendering view with 
correspondences for all yellow rectangle regions in (a) while rest of the scene rendered by light field with optimal dispar-
ity.  
 

 
Figure 7: Scam rendering with view dependencies: (a) light field rendering with optimal disparity; (b) scam rendering 
with correspondences of the unicorn; (c) scam rendering with correspondences from multiple objects; (d) scam rendering 
further adds in correspondences of reflected highlights.  
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