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ABSTRACT
Ontologies represent data relationships as hierarchies of pos-
sibly overlapping classes. Ontologies are closely related to
clustering hierarchies, and in this article we explore this re-
lationship in depth. In particular, we examine the space
of ontologies that can be generated by pairwise dissimilar-
ity matrices. We demonstrate that classical clustering algo-
rithms, which take dissimilarity matrices as inputs, do not
incorporate all available information. In fact, only special
types of dissimilarity matrices can be exactly preserved by
previous clustering methods. We model ontologies as a par-
tially ordered set (poset) over the subset relation. In this
paper, we propose a new clustering algorithm, that gener-
ates a partially ordered set of clusters from a dissimilarity
matrix.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining

General Terms: Algorithms
Keywords: PoCluster, Poset, Dissimilarity, Clustering

1. INTRODUCTION
Classification hierarchies are natural ways of organizing

data. Such hierarchies can range from taxonomies, where all
subclasses are disjoint subsets of the parent class, to ontolo-
gies that allow arbitrary overlaps between subclasses as well
as allowing any subclass to have multiple parents. Typically,
classification hierarchies are designed by domain experts. In
this article, we address the problem of constructing ontolo-
gies automatically by computational means. Moreover, we
attempt to derive both categories and their subclass relation-
ships when given only pairwise relationships, dissimilarities,
between elements. As a result, we treat ontology construc-
tion as a data clustering generalization where the set of ob-
jects is grouped into clusters, and the clusters are partially
ordered by the subset relation.

Dissimilarity is a common intermediary used by clustering
methods to classify data. Applications range from analyz-
ing microarray gene expression levels collected under mul-
tiple conditions[20], to analyzing word usage statistics from
a corpus of documents[6]. Dissimilarities represent relative
pairwise relationships between data objects. Often, they are
derived, by various means, from data features. Dissimilar-
ity matrices simplify some of the problems associated with
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Figure 1: Frequencies of nodes with multiple parents
in three GO files (biological process, cellular compo-
nent, and molecular function).

clustering high-dimensional datasets, since their size is only
a function of the number of objects (O(|N |2)), and indepen-
dent of the objects’ dimensions. Many clustering approaches
have been developed that take dissimilarities as inputs, and
generate hierarchies of clusters. Such hierarchies can be
viewed as categorizations or taxonomies if the clusters form
a hierarchy of data partitions.

Classification ontologies are an important tool in biology.
Biological ontologies, such as Gene Ontology[1] (GO), are
carefully curated and encapsulate both functional knowledge
and important relationships between genes. The class-subclass
relationships in GO are neither a simple tree, nor a lat-
tice structure. Instead, it is a directed acyclic graph, where
any child can have multiple parents. The frequency of cate-
gories with multiple parents in GO is illustrated in Figure 1.
Ontologies are a rich source of information for comparing
functions and relationships between various subsets of genes.
Clearly, genes in the same category are expected to be simi-
lar. Likewise, genes whose categories share a common parent-
age would also be expected to exhibit some similarity, albeit
to a lesser extent than members of a common category. Re-
cent efforts have tried to extract the functional relationships
of the expressed genes seen in microarray studies based on
their classification in GO[11].

Ideally, one would expect that the categorical similarities
and dissimilarities derived from a domain expert’s knowledge
of a gene’s function could be used as the basis for extracting
biologically meaningful clusters[20]. We explore the potential
for extracting such meaningful clusters directly from pairwise
dissimilarity measures. Classic clustering algorithms are typ-
ically (with some exceptions noted later) either flat, or hier-
archical, data partitions, whereas the categories of an ontol-
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Figure 2: Comparison of clustering algorithms on an example of 6 points in 2D. (A) Distribution of the
points and 3 distances appearing in the figure; (B) Hierarchical Clustering; (C) Pyramidal Clustering; (D)
PoCluster. Note: black dots: points; red rectangle: intermediate clusters; red dots: cluster of universal set.

ogy allow objects to be members of multiple categories or
clusters, and allow clusters to have multiple parents.

Before proceeding, we examine the specific classification
notion assumed in this paper. Mathematically, a general
classification system, namely, ontology, is a partially ordered
set[1], or poset. It represents the relationships among mul-
tiple categories of objects. For our discussion, we consider a
category as a set of objects and the more ”specific” relation-
ship between a parent and a child as a ”subset” relationship.
Therefore, a poset contains the sets of objects as the elements
ordered according to their subset relationships. A poset can
be constructed from any combination of subsets taken from
the set’s power set. Therefore, the set of posets has a maxi-

mal cardinality of 22|N| , where N is the object set.
A poset generalizes hierarchical clustering structures by al-

lowing overlaps. This generalization poses a challenge to tra-
ditional clustering methods. Classical clustering algorithms
generate disjoint subsets, such as graph-theoretical cluster-
ing, density-based clustering and k-means type clustering,
etc. Even agglomerative hierarchical clustering methods main-
tain the invariant that child subsets of a common parent are
disjoint.In this paper, we focus on incorporating all of the
available information from a given dissimilarity matrix into
a clustering algorithm, and derive partially ordered sets from
it.

From an application standpoint, the goal of our paper is to
derive plausible ontology-like categorizations of objects from
a pairwise dissimilarity matrix via a clustering algorithm.
We adopt the natural definition of the cluster in graph the-
ory, maximal clique. A clique cluster is a maximal subset
of objects whose maximal pair-wise dissimilarity is below a
certain threshold. The PoCluster is a collection of maximal
cliques arrived at by smoothly varying the threshold from 0
to the maximum dissimilarity within the dataset.

In order to construct the PoCluster from a dissimilarity
matrix, we map our problem to a dual graph problem. We
start with a graph with no edges and gradually insert the
edges in the increasing order according to their dissimilar-
ity values. After all edges less-than-or-equal to a given dis-
similarity threshold are inserted, the graph is searched for
cliques. These cliques represent potential categories (sub-
sets). In subsequent passes the threshold is increased and
the process repeats until all objects are combined into a sin-
gle clique. As a result, the series of cliques form a PoCluster.
Our experiments on real data have shown effectiveness and
efficiency compared with conventional hierarchical and pyra-
midal clustering algorithms.

The remainder of this paper is organized as follows. Sec-
tion 2 addresses related work in clustering, automated tax-
onomy construction, and dissimilarity measures appropriate
for taxonomies. Section 3 defines PoCluster and its proper-
ties. Section 4 constructs the poset from the dissimilarity
data. A performance study is reported in Section 5. Section

6 concludes the paper and discusses some future work.

2. RELATED WORK
Many clustering algorithms assume that the input is given

as a dissimilarity matrix. However, relatively few investiga-
tions have been conducted in establishing the relationship
between a dissimilarity matrix input and the clustering re-
sult. In this section, we review previous studies on clustering
algorithms that have known relationships to special classes
of dissimilarity matrices.

2.1 Hierarchial and Pyramidal Clustering
Both hierarchical[10, 3] and pyramidal clustering [7, 4] gen-

erate clusters that have bijections to some special sub-classes
of dissimilarity matrices.

Hierarchical clustering[10, 3] refers to the formation of a
recursive clustering of data objects: a partition into two clus-
ters, each of which is itself hierarchically clustered. It is often
represented by a dendrogram, that is, a binary tree with the
objects at its leaves and a root corresponding to the uni-
versal set (of all objects). The heights of the internal nodes
represent the maximal dissimilarities between the descendant
leaves. It has been proven that a bijection exists between hi-
erarchical clustering and an ultrametric[7] — a special type
of metric in which the dissimilarities satisfy the ultramet-
ric triangle inequality D(a, c) < max{D(a, b), D(b, c)}. An
equivalent way of defining an ultrametric is that there exists
a linear order of all objects such that their dissimilarities are
the distances between them.

Pyramidal clustering[7, 4] allows for a more general model
than hierarchical clustering. A child cluster may have up to
two parent clusters. Two clusters may overlap by sharing
a common child cluster. The structure can be represented
by a directed acyclic graph. It is known that a bijection ex-
ists between pyramidal clustering and dissimilarity matrices
that are Robinson matrices. A matrix is a Robinson matrix
if there exists an ordering among all objects such that the
dissimilarities in the rows and columns do not decrease when
moving horizontally or vertically away from the main diag-
onal. An ultrametric matrix is a special case of Robinson
matrix and hierarchical clustering is a special case of pyra-
midal clustering. Note that a dissimilarity matrix may not
always be a Robinson matrix, and in such case, neither hi-
erarchical clustering nor pyramidal clustering is able to gen-
erate clustering from which the original dissimilarity matrix
can be re-derived. That is, the bijection no longer exists.
Information of dissimilarity will be lost during the clustering
procedure.

Consider the example shown in Figure 2. Figure 2(A)
shows 6 points on a circle in a 2D space. The non-overlapping
property of hierarchical clustering (Figure 2(B)) prohibits the
clustering of (-1, 0) with (-0.5, -.87) once it is clustered with
(-0.5, 0.87), although it has the same distance to both (-0.5,



-.87) and (-0.5, 0.87). Pyramidal clustering (Figure 2(C)) al-
leviates this problem by allowing (-1, 0) to be clustered with
both (-0.5, -0.87) and (-0.5, 0.87). However, a strict ordering
of points based on Robinson matrix criterion is impossible
in this case. With the optimized ordering 〈(−0.5, 0.87), (-1,
0), (-0.5, -0.87), (0.5, -0.87), (1, 0), (0.5, 0.87)〉, points (-0.5,
0.87) and (0.5, 0.87) are not connected although they have
the minimum distance. Our method (Figure 2(D)) considers
only the different dissimilarities in the data. In this example,
they are {1, 1.74, 2}. For each dissimilarity d, we look for the
maximal sets of points whose maximum pair-wise dissimilar-
ity is less than or equal to d. When d = 1, the set of clusters
are those intermediate clusters in the first level shown in Fig-
ure 2(D).

2.2 Dissimilarity Derived from an Ontology
Similarities or dissimilarities among objects organized in a

hierarchical structure are often easy to compute than those
of the objects in a DAG(Directed Acyclic Graph), such as
wordNet and GO. Semantic similarity[6] was introduced to
measure the similarity between two concepts in the Word-
Net. Similar measures were also applied to determine the
dissimilarity between a pair of genes in Gene Ontology[20,
12].

The following are a few widely adopted measures. Guided
by the intuition that the similarity between a pair of con-
cepts may be assessed by ”the extent to which they share
information”, Resnik defined the dissimilarity between two
concepts c1 and c2 as the information content of their low-
est subsumer(which is measured by a probability p), i.e.,
sim(c1, c2) = − log p(ls(c1, c2)). Leacock and Chodorow
proposed a very different similarity measure that relies on
the length len(c1, c2) of the shortest path between two con-
cepts. However, they limit their attention to specific links
and scale the path length by the overall depth D of the tax-

onomy: dis(c1, c2) = −log(len(c1,c2))
2D

. It is unclear how clus-
ters derived from these dissimilarities relate to the original
ontology. In Section 5, we provide a comparison of those al-
gorithms in how suitable they are when used for recovering
the original ontology. Jiang et. al[6] and Lin[6] also devel-
oped other two alternative similarity measures, which are a
variation of Resnik’s method.

3. MODEL
In the following discussion, we assume a universal set of

objects denoted by N . A pair in N refers to an object pair
{x, y}, where x, y ∈ N . Given a set S ⊆ N , the set of pairs
in S is denoted by S × S or S2.

A dissimilarity matrix describes the pair-wise relationships
between objects. It is a mapping D from (N ×N ) to a real
nonnegative value. A dissimilarity matrix has the following
two properties (1) reflectivity: ∀x, D(x, x) = 0; (2) sym-
metry: ∀x, y, D(x, y) = D(y, x) . A dissimilarity matrix
can be directly mapped to an undirected weighted graph
G = 〈V, E, W 〉, where each node in V corresponds to an
object in N , and each edge e = 〈x, y〉 with weight w depicts
the dissimilarity D(x, y) between the two objects it connects.
We denote the graph implied by the dissimilarity D as G(D).

Example: Figure 3 (B) shows a dissimilarity matrix of ob-
ject set {A, B, C, D, E}. It satisfies both reflectivity(0 diago-
nal) and symmetry. This dissimilarity matrix can be mapped
to the undirected weighted graph in Figure 4 (d = 4). Each
node in graph corresponds to an object, each edge corre-
sponds to a pair and the weight of the edge is the dissimilarity
between the pairs of objects.

A clique is a fully connected subgraph in an undirected
graph.The diameter of a clique is the maximum edge weight
within the clique. A clique cluster is defined as a maximal
clique with a diameter d. A diameter indicates the level of

{A, B, C, D, E}
4

{A, B, C, D, E}
4

{A, B, C, D}
2

{A, B, C, D}
2

{A, B, C, E}
3

{A, B, C, E}
3

{A, C} 
1

{A, C} 
1

{B, D} 
1

{B, D} 
1

{C, D} 
1

{C, D} 
1

{ B, C, E}
2

{ B, C, E}
2

{B, E} 
1

{B, E} 
1

{A}
0

{A}
0

{B}
0

{B}
0

{C}
0

{C}
0

{D}
0

{D}
0

{E}
0

{E}
0

(A) An example PoCluster

A B C D E
A 0 2 1 2 3
B 2 0 2 1 1
C 1 2 0 1 2
D 2 1 1 0 4
E 3 1 2 4 0

(B) Dissimilarity Matrix

Figure 3: A running example. (A) shows a PoClus-
ter which contains 13 clusters over the object set {A, B,
C, D, E}. Each node in the PoCluster represents a clique
cluster with its diameter. The PoCluster is organized in
DAG with subset relationship between the nodes. There
is a directed path from node S1 to S2 if S1 ⊂ S2; (B) shows
a dissimilarity matrix which corresponds to the PoClus-
ter in (A). Applying Algorithm in Sec 4 can completely
construct the PoCluster in (A) from (B).

dissimilarity of the set of objects in the clique cluster.

Definition 3.1. (Clique Cluster). Let G(D) be an undi-
rected weighted graph of a dissimilarity matrix D. A clique
cluster C = 〈S, d〉 is a maximal clique S with diameter d in
graph G(D).

When there are multiple cliques within the graph with
the same diameter d, we denote this set of clique clusters
as cliqueset(d).

Example: Given the dissimilarity matrix shown in Fig-
ure 3(B), ABCD forms a clique with maximum edge weight
2, as shown in Figure 4. Therefore, ABCD is a clique cluster
with diameter 2. So is BCE. We denote them as cliqueset(2)=
{ABCD, BCE}.

PoCluster
The notion of clique cluster is not new. The intermediate
clusters generated by hierarchical clustering using a complete
linkage criterion is similar to clique clusters in spirit, since
they both look for a cluster with minimum diameter. How-
ever, when two clusters are merged in hierarchical clustering,
the relationship(linkage) between two clusters to be merged
solely depends on the maximum or minimum dissimilarity be-
tween a pair of objects within two clusters. This oversimpli-
fied similarity measure ignores many pair-wise relationships
between objects in the two clusters. To best explore and
preserve the information carried by a dissimilarity matrix, in
this paper, we present PoCluster. PoCluster reveals clique
clusters with all possible diameters present in the dissimi-
larity matrix. The non-disjoint feature allows us to explore
richer and deeper relationships among objects. We formally
define PoCluster in Definition 3.2.
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Figure 4: Four directed weighted graphs corresponding to the dissimilarity matrix in Figure 3 (B) with maximum
edge weight {d = 1, 2, 3, 4}.

d cliqueset(d)
d=1 AC, BD, CD, BE
d=2 ABCD, BCE
d=3 ABCE
d=4 ABCDE

Table 1: PoCluster generated based on dissimilarity ma-
trix in Figure 3(B).

Definition 3.2. (PoCluster) Let D be a dissimilarity ma-
trix, a PoCluster P of D is defined as

P =
[

∀d∈W (D)

cliqueset(d). (1)

which is the collection of clique clusters of all possible diam-
eters in diameter set W (D).

Example: The dissimilarity matrix in Figure 3(B) con-
sists of 4 possible diameters, they are {1, 2, 3, 4}. For each
diameter, we map them into an undirected graph, namely, di-
ameter graph, where there exists an edge between two nodes
only if their dissimilarities are smaller than or equal to the
diameter. For each graph, there exists a set of cliques in it.
For example, in Figure 4, when d = 1, there are four 2-cliques
in the graph. The set of the clique clusters generated in each
of the diameter graph is shown as poClusters in Figure 3(A).

Now, we examine the properties of PoClusters. Similar
to hierarchical clustering, PoCluster also includes the set N
containing all the objects. This set has the maximum dis-
similarity in D as its diameter. PoCluster does not ignore
dissimilarity measures as hierarchical clusters do since each
pair-wise dissimilarity is covered by at least one clique cluster
whose diameter equals to the pair-wise dissimilarity. In ad-
dition, the maximal clique cluster insures that if one cluster
is a subset of the other, one’s diameter will be strictly lower
than the other. This property generates a partial order of
the clusters in the PoCluster as shown in Figure 3(A).

Property 3.1. Let D be a dissimilarity matrix of object
set N , Let P be a PoCluster of dissimilarity matrix D, P has
the following properties.

1. N ∈ P

2. ∀C1, C2 ∈ P , if C1 ⊂ C2, then diam(C1) < diam(C2)

3. ∀x, y ∈ N , there exists a cluster C ∈ P , such that
{x, y} ⊆ C and diam(C) = D(x, y);

4. ∀x ∈ N , {x} ∈ P .

4. CONSTRUCTION OF A POCLUSTER
Given a dissimilarity matrix D, the corresponding PoClus-

ter P (i.e., P = {cliqueset(d)|∀d ∈ W (D)}) can be found
by repeating a simple procedure. One needs only to find
all cliques in a subgraph of G(D) that includes only those
edges corresponding to the pair-wise dissimilarities less than
or equal to a threshold d as the threshold varies from the
smallest to the largest dissimilarity in D. Finding a clique
of size k in a graph is one of the original NP-complete prob-
lems identified in Karp’s seminal paper [13]. The k-clique
problem can be reduced in polynomial time to a PoCluster-
ing problem, hence the PoClustering problem is NP-hard. In
order to make a PoCluster reconstruction practical for large
datasets, we present an incremental algorithm which takes
advantage of already constructed clique clusters to generate
their subsequent parent clusters.

Algorithm 1 gen poCluster(E)
Input E:an ordered list of edges.
Output P : a PoCluster

1: t = 0; G = 〈N, ∅〉.
2: E0 = E
3: while E 6= ∅ do
4: e ← min(Et);Et+1 ← Et − e
5: Ct+1 ←gen clique clusters(Ct, e)
6: P ← P ∪ Ct+1; t ← t + 1
7: end while
8: return P

The Optimized Incremental Algorithm
The incremental algorithm only computes cliques that are af-
fected by the introduction of new edges. The algorithm keeps
a pool of all cliques in the previous graph. Given the next
graph with more edges, the pool of cliques can be updated
as follows: First, find all the cliques in the pool that share
a vertex with the new edges. Second, if a clique in the pool
can be extended by adding one or more of the new edges, the
extended maximal cliques are added into the pool, and the
cliques in the old pool that are subgraphs of the newly added
cliques are removed. The parent-child relationships can be
established between new cliques and removed cliques.

Let x ∈ V be a node in graph G, and let π(x) denote all
the cliques containing x.

lemma 4.1. Let G = (V, E) be an undirected graph. Let
C be the cliques contained in G, and let e = (x, y) be the edge
added to G. The cliques in the new graph G′ can be obtained
based on the cliques in the graph G.

• The added cliques are the maximal complete subgraphs
of {c1∩c2∪{x, y}|∀〈c1, c2〉 ∈ π(x)×π(y), where π(x), π(y)
∈ G}.

• The removed cliques are those {c|∃c′, {〈c, c′〉 ∈ π(x) ×
π(y)} ∧ {|c \ c′| = 1}}.



When a new edge is inserted, a new set of cliques are gen-
erated based on the previous graph. Algorithm 2 implements
the second part of the Lemma 4.1 while removing cliques in
G(t−1) from which the new cliques are derived.

Algorithm 2 gen clique clusters(C, e)
Input e: an new edge and C: current cliques.
Output Cnew: cliques after adding e.

1: (x, y) ← get vertices(e)
2: Cnew = ∅
3: for all 〈c1, c2〉 ∈ π(x)× π(y) do
4: c ← c1 ∩ c2

5: if {c = c1} ∨ {c = c2} then
6: C ← C − {c}
7: else if @c′ ∈ Cnew, c ∪ {x, y} ⊂ c′ then
8: Cnew ← Cnew ∪ {c ∪ {x, y}}
9: end if

10: end for
11: Cnew = Cnew \ {c|c ⊂ c′, c, c′ ∈ Cnew}
12: return Cnew = C ∪ Cnew

5. EXPERIMENTS
Our experiments are done on a subset of gene function cat-

egories obtained from Gene Ontology. We compare hierar-
chical clustering(Hierarchy), pyramidal clustering(Pyramid),
and incremental optimal poCluster algorithm, to evaluate the
their capabilities in preserving the structures.

5.1 Evaluation Criteria
The match score is used to measure the approximation of

the recovered poset to the original poset. We take each poset
as a set of sets. Given P1 and P2, the match score of P2 to
P1 is computed as:

match(P1, P2) = means1∈P1(maxs2∈P2(
s1 ∩ s2

s1 ∪ s2
) (2)

5.2 Gene Ontology
Our experiment compares the quality of the three clus-

tering algorithms given a real ontology categorization. We
also evaluate our method for deriving dissimilarities against
previous approaches reviewed in Section 2.

We use 799 genes which are the most active and cell cy-
cle co-regulated in the yeast cell cycle data of Spellman et
al.(1998)[18]. We consider three GO files on biological pro-
cess (BP), cellular component (CC), and molecular function
(MF), from the Gene Ontology database. We extract all GO
categories that contain at least two genes and remove dupli-
cate categories.

The remaining GO categories are taken to generate dis-
similarity matrices as the input to the clustering algorithms.
Table 3 presents size and overlapping statistics of our data.
The statistics of the three GO files are listed in Table 3.

GO files #Known
genes

#Terms Maxlevel Mean
Overlap

CC 64 349 7 46%
BP 159 523 7 21%
MF 230 451 10 21%

Table 3: Statistics for the three GO files. MF: Molec-
ular Function, CC: Cellular Component; BP: Biolog-
ical Process

We first compare the two possible similarity measures in-
cluding Resnik, and Leacock and Chodorow (LC) [6]. These
methods are applied to generate dissimilarity matrices of

genes based on the structure of categories in GO. We de-
rive two dissimilarity matrices, one by each method. We
then apply the PoCluster algorithm to the dissimilarity ma-
trices in order to reconstruct the categorization structure of
GO. The matching scores of three different files are shown
in Table 4. The result shows that Resnik method renders
consistently higher recoverability result than LC method for
all three GO files. Therefore, in the rest of experiment, we
take Resnik method to measure the affinity of genes based
on the GO categorization.

Similarity CC BP MF
Resnik 0.8471 0.8680 0.7261
LC 0.5616 0.7157 0.6684

Table 4: Reconstructed poset match score to original
GO based on various similarity measures

We then apply the three algorithms: PoCluster, hierar-
chical clustering and pyramidal clustering to reconstruct the
original categorization. Among them, PoCluster performs
the best in recovering the GO categories, while hierarchical
and pyramidal clustering seems to miss many of the cate-
gories. In this case, two additional measurements are used to
evaluate the relationships between a reconstructed poset(P )
and GO files(go). They are recovery rate and accuracy. The
recovery rate is the percentage of GO categories recovered;
the accuracy is the percentage of the clusters discovered that
truly appear in GO categories. The two measurements pro-
vide more information about those clusters. The recovery
rate in the second column of Table 2 is more than 50% and
even closer to 79%(MF) of the categories that cannot be
properly discovered by hierarchical and pyramidal clustering.
According to the third column in the same table, over 96%
of the discovered clusters by PoCluster are actual matches
to the GO categories. In comparison, the spurious clusters in
pyramidal clustering and hierarchical clustering may exceed
50%, which is unacceptable in real applications.

6. CONCLUSION AND FUTURE WORK
We have presented a new clustering algorithm for the auto-

matical generation a set of partially ordered clusters(PoCluster)
based on the pairwise relationships between objects. The
structure of a PoCluster is analogous to that of the classifica-
tion ontology such as Gene Ontology by allowing overlapping
between sibling categories and allowing one child category to
have multiple parent categories.

PoClustering is a generalization of both hierarchical clus-
tering and pyramid clustering. PoCluster provides both ho-
mogeneity within a cluster, as measured by the cluster’s di-
ameter, and separation between clusters. Different from dis-
joint clustering algorithms, PoClusters allow overlaps be-
tween clusters in a meaningful way. However, given an ar-
bitrary poset containing the whole object set and single-
ton set, it might not be a valid PoCluster. For example,
given a set of objects {A, B, C}, a poset of this object set
as shown in Figure 5, is not a valid PoCluster. Assume the
poset shown is a valid poset, according the second property
listed in Property 3.1, we have diam(AB) < diam(ABC),
diam(AC) < diam(ABC), and diam(BC) < diam(ABC).
However, the three conditions cannot be true at the same
time since diam(ABC) = max (diam(AB), diam(BC), diam
(AC)). Therefore, this poset is not a valid PoCluster. One of
the interesting questions that is worth further investigation
is how to identify an arbitrary poset as a valid poCluster.

As we know, the hierarchical clustering only preserves the
information of the ultrametric dissimilarity matrix. By pre-
serving, we mean there exists one to one correspondence be-
tween the set of hierarchical clusters and the set of ultramet-



match score recovery rate accuracy
Algorithm
poCluster
Pyramid
Hierarchy

CC BP MF
0.8493 0.8776 0.7263
0.6621 0.5342 0.6335
0.5086 0.4960 0.5046

CC BP MF
0.7813 0.8553 0.6478
0.4531 0.2704 0.4652
0.4063 0.2893 0.3696

CC BP MF
0.9615 0.9379 1.0000
0.6905 0.4574 0.8168
0.6047 0.3262 0.4545

Table 2: Reconstructed poset match score to original GO by the three algorithms. go represents the GO file
and P is the reconstructed poset

{A, B, C}

{A, B} {A, C} {B, C}

{A} {B} {C}

Figure 5: An example of poset which is not a valid
PoCluster

ric dissimilarity matrices. Similarly, the pyramidal cluster-
ing, which is an extension of hierarchical clustering preserves
another special type of matrices, namely, the Robinson ma-
trices. Applying pyramidal clustering on other matrices may
cause information contained in the dissimilarity matrices to
be ignored.

This inspires us to pursue the following questions: Is PoClus-
ter able to fully preserve the information provided in a dis-
similarity matrix? If so, what are the types of dissimilarity
matrix? And how should we derive it from a PoCluster? In
addition, how do they relate to the Robinson matrices or
ultrametric matrices? The answers to these theoretical ques-
tions may lead to deeper understanding of the relationships
between the sets of PoClusters and the set of dissimilarity
matrices.

The formal definition of PoCluster is primarily of theoret-
ical interest, since computing the exact solution is likely to
be intractable for large problems. In order to address the
challenge, it is important to investigate an approximation
algorithm which is scalable to large datasets in our future
work.
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