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In this article we present a new variant of the light field representation that supports
improved image reconstruction by accommodating sparse correspondence information.
This places our representation somewhere between a pure, two-plane parameterized, light
field and a lumigraph representation, with its continuous geometric proxy. Our approach
factors the rays of alight field into one of two separate classes. All rays consistent with a
given correspondence are implicitly represented using a new auxiliary data structure,
which we call a surface camera, or scam. The remaining rays of the light field are
represented using a standard two-plane parameterized light field. We present an efficient
rendering algorithm that combines ray samples from scams with those from the light
field. The resulting image reconstructions are noticeably improved over that of a pure
light field.
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1. Introduction

Light fidds are smple and versatile scene representations that are widdy used for image-
based rendering [13]. In essence, light fields are amply data structures that support the



efficient interpolation of the radiance edtimates adong pecified rays. A common
organization for light fidds is a two-plane parameterization in which the intersection
coordinates of a desred ray on two given planes determines the set of radiance samples
used to interpolate an estimate. A closdy related representation to a light fidd is the
lumigraph [9]. A lumigraph incorporates an approximate geometric moded, or proxy, in
the interpolation process, which dgnificantly improves the quaity of the recondruction.
Unfortunately, every desired ray must intersect some point on the geometric proxy in
order to edimate its radiance in a lumigreph. Thus, a continuous, adbet agpproximate,
scene model is required for lumigraph rendering. Acquiring an adequate scene moded for
lumigraph  rendering can be difficult in practice. In fact, most lumigraphs have been
limited to scenes composed of a sngle object or a smdl custer of scene dements. The
geometric scene proxy used by a lumigraph can be created usng computer vison
methods or with a 3-D digitizer. Geometric information about the scene is important for
eiminating various recondruction atifects that are due to undersampling in light fidds.
An andyds of the rdaionship between image sampling dendty and geometric fiddity
was presented by [4]. Chal, et d, presented a formal bound on the accuracy with which a
geometric proxy must match the actud geometry of the observed scene in order to
eiminate diadng atifacts in the image recondruction. As with the lumigrgoh modd they
assume that a geometric proxy can be identified for any requested ray.

Acquiring dense geomeiric modds of a scene has proven to be a difficult computer
vison problem. This is paticularly the case for complicated scenes with multiple objects,
objects with complicated occluson boundaries, objects made of highly reflective or
transparent materials, and scenes with large regions free of detectable textures or shading
variations. The wide range of depth extraction methods that have been developed over the
past 40 years, with the objective of extracting geometric modds, have met with only
limited success. Even with the recent development of outward-looking range scanners it
is gill difficult to create a dense scene modd. However, both passve sereo and active
range scanners are usudly able to establish the depth or correspondence of a sparse set of
scene points with a reasonably high confidence. The primary objective of this research is
to incorporate such sparse geomeric knowledge into a light fidd reconstruction
agorithm in an effort to improve the reconstruction of interpolated images.



Our light field representation factors out those radiance samples from a light fidd
where correspondence or depth information can be ascertained. We introduce a new data
gructure that collects dl of those rays from a light fidd that are directly and indirectly
associated with a 3D point correspondence. This data structure stores dl of the light field
rays through a given 3D point, and, therefore, it is Smilar to a pinhole camera anchored
a the given correspondence. Since this virtud pinhole camera is most often located at a
surface point in the scene, we cal it a surface camera, or scam for short. Once the rays
associated with a scam are determined, they can be removed from the light fidd. We cdl
this partitioning of rays into scams a factoring of the light fidd. Idedly, every ray in a
light fidd would be associated with some scam, and, thus, we would cdl it fully factored.
The resulting scam light field would generate recondructions comparable to those of a
lumigraph, athough the two representations would be quite different. The utility of a
scam renderer lies in its ability to improve light field reconstructions with a set of scams
that are asmal subset of afully factored light field and do not require to be accurate.

In this aticle, we describe a new light field representation composed of a collection
of implicit scan daa dSructures, which are established by sparse correspondence
information, and an asociated light fidd, which is used to interpolate rays for those parts
of the scene where no scam information has been established. We describe how to factor
al of the rays associaed with a specified scam from a light fidd when given as few as
two rays from the scam (i.e. a correspondence) or the depth of a single known point. We
then describe the necessary bookkeeping required to maintain the scams and light fied
representations. Next we describe an  efficdent two-pass rendering  dgorithm  that
incorporates scam information, and thus, sparse correspondence informeation, to improve
light fidd recongructions. Findly, we show reaults of light fiedd renderings usng our
new representation with varying degrees of geometric sparseness

2. Background and Previous Work
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Fgure 1. light fidd rendering: sysem sstup and rendering dgorithm: (a) Conventiond
light fidd uses an aray of cameras uniformly podtioned on a plane [22]; (b) Light field
assumes condtant scene depth and it renders a new ray by intersecting the ray with the
focd plane and back-traces and blends its closest neighboring rays.

In recent years, image-based modding and rendering (IBMR) has become a popular
dternative to conventiond geometry-based computer graphics. In IBMR, a collection of
reference images are used as the primary scene representation [9][14]. Early IBMR
systems such as 3D warping [17], view interpolation [5] and layered-depth images [19],
etc, rely heavily on the correctness of depth approximations from stereo agorithms.
Previous work in IBMR has further shown tha the qudity of the resulting synthesized
images depends on complicated interactions between the parameterization of the given
ray space [10][14], the underlying sampling rate [4][14] and the avaldbility of
gpproximate depth information [2][9].

Light fidd rendering is a specid form of image-based rendering. It synthesizes new
views by interpolating a set of sampled images without associated depth information.
Light fidd rendering relies on a collection of densdy sampled irradiance measurements
dong rays, and require littte or no geometric information about the described scene.
Usudly, these measurements are acquired usng a series of pinhole camera images
acquired aong the surface of a parameterized, two-dimensond, manifold, most often on

aplane asisshown in Figure 1(a).
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Figure 2. Light fidd rending dgorithm: () assumes the scene lies a infinity; (b) assumes
the scene lies a the optimd focal plane; () uses prefiltering on (a); (d) uses prefitering
on (b); (¢) uses dynamicaly reparameterized light fidd(DRLF) and puts the focad plane
on the red stuffed anima with a large gperture; (f) uses DRLF and puts the foca plane on
the guitar with large aperture.
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Standard light field assumes congtant scene depth, which is cdled the focd plane. To
render a new ray r, it firg interests r with the focd plane. Then it collects the closest rays
to r that passes through the camera and the intersection point. Findly light fiedd rendering
interpolates or blends r from these neighboring rays, shown in Figure 1(b). In practice,
smple linear interpolation method like bilinear interpolation is used to blend the rays.

When undersampled, the light fidd rendering exhibits diadang artifects, as is shown in
Figure 2(@). Levoy and Hanrahan [14] suggested that light fidd diasng could be
eiminated with proper prefiltering. Prefiltering can be accomplished opticdly by usng a
camera whose aperture is a least as large as the spacing between cameras. Otherwise,
prefiltering can be accomplished computationdly by initidly oversampling dong the
camera-gpacing dimensons and then applying a discrete low-pass filter, which modes a
gynthetic aperture. In practice, it is usudly impracticd to do oversampling since it
requires cameras be positioned very close to each other or have large aperture. The other
mgor issue is the large storage requirement since dense sampling means a tremendoudy
large number of images Therefore the only practicd way to reducing diasng in
conventiond light fidd is to use band-limited filtering, i.e, low pass filtering. However,
low-pass filtering has the dde effects of removing high frequencies like sharp edges and
view-dependencies, and will incur undesrable blurriness in recondructed images, as is
shown in Figure 2(c).

A specid prefiltering technique to remove diasing is the dynamic reparameterized
light fidd [12]. The dynamic reparameerized light fidd techniques synthesize virtud
goerture and virtud focus to dlow for any paticular scene dement (depth) to be
recondructed without aiasng atifact. However only those scene dements near the
assigned foca depth are clearly reconstructed and al other scene dements are blurred, as
is shown in Fgure 2(e) and 2(f). This kind of prefiltering hence has the undesirable sde
effect of forcing an a priori decison as to what parts of the scene can be clearly rendered
thereafter. The introduction of clear and blurry regions of focus in a prefiltered light field
is a direct result of the depth-of-fidd effects seen by a finite (nonpinhole) aperture. In
addition, view dependencies like specular high lights will be reduced or even removed
because such features are usualy not presented in al data cameras or do not have
consstent focal depth.
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Penoptic sampling [4] amdlyzed the rdationship between the sample rate and the
geometricd  information. Plenoptic sampling dso suggested that one can minimize the
diasing atifacts by placing the object or focd plane a a distance from the camera plane
that is consgtent with the scene's the average disparity, as shown in Figure 2(b). When
the light field is undersampled, it gill exhibits diasing atifacts and usng prefiltering
incurs undesrable blurriness shown in Fgure 2(d). Lumigraph rendering [9] addresses
the issue of sparse sampling by introducing geometric information and showed tha the
rendering qudity is dgnificantly improved with approximate geometry proxies even in a
gasdly sampled light fidd. Our work assumes tha it is difficult to provide dense
sampled geometric proxies, or dense correspondences. We design an dgorithm to render
views using a sparse set of correspondences and a sparsely sampled light field.

Rendering new views from a set of images have dso been dudied in the computer
vison community. Shape-fromrimage techniques, such as shape-from-shading [11] have
long been studied and its mgor god is to recongruct the 3D geometry of the scene from
one or more images. These methods usudly work for single and smple objects with
goecific surface modes and ae not suitable to recondructing red scenes with
complicated occlusons and surface properties. An dternative is to model such scenes as
3D points with depths that are usudly stored implicitly in the form of correspondences.
Lots of researches have focused on robust correspondence generation agorithms. Most of
these dgorithms like graphrcut/maximum flow method [2] and the dynamic
programming agorithms [8] ae successful on textured Lambertian surfaces but exhibit
poor performance on nontextured regions, surface regions with  view-dependent
reflection, and occuson boundaries. These conditions lead to inaccurate
correspondences for most computer vison dgorithms, and hence incorrect geometry
recondruction and problematic rendering. Recent sudies [13][15] in computer vison
focus on ssgmenting occluson boundaries and modding specular highlight from densdy
sampled images. These methods usudly require dense sampling and high computation
cost that are not suitable for real-time light field rendering.

Our gpproach firgt factors al of the rays associated with the congraint plane of each
correspondence using a specid data structure cdled “surface camera’ or scam. We assign

a weight to each scam according to its quality and associated disparity. When rendering,
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we blend them with their weights by a smilar dgorithm like the ungdructured lumigraph.
We will show that our agorithm successfully renders occlusons and view-dependencies
even though the correspondences of those regions are inaccurate. For desired rays that are
not interpolated by any scam, we use the light field approach to render them. In addition,
we present an interactive rendering system that dlows users to specify or remove
correspondences and re-renders the view in red-time. Figure 13 and 14 illudrates the
vaious rendering results usng scam-rendering dgorithm  with  correspondence  from

multiple objects.

3. Scam Parameterization

In conventiond light fidds, a two pardld plane parameterization is commonly used to
represent rays, where each ray is parameterized in the coordinates of the camera plane
(s, t) and an image plane (u, v). Surface light fidds [21] suggested an dterndive ray
parameterization where rays are parameterized over the suface of a pre-scanned
geometry modd. We combine both parameterizations in our dgorithm.

For smplicty, we assume uniform sampling of the light fidd and use the same
camera sdttings as Gu e d [10], where the image plane lies a z = -1 and the camera
plane lies a z = 0, as is shown in Figure 3. This leads to the parameterization of dl rays
passing through point (px,, Py, P2) as

A DN A A

+5§%(1,0,1+1/ p,,00+ £ x(0,1,0,1+1/ p,) @)

We use a dightly different parameterization of [9]; we parameterize each ray as the 4
tuple 5, t, u, v), where (u, V) is the pixe coordinate in camera (S, t). This parameterization

ismore natural and gives asimple ray parameterization as

r(stuv) =rGt,a- 8- 1)
= (0,0,- p,/p,,- P,/ p,)
+5%(1,0,1/ p,,0)+ tx(0,1,01/ p,) (2
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Figure 3: Correspondence parameterization: each correspondence is identified by two
rays from the light fiedd and because they both pass the same 3D point in space, each
correspondence forms two Smilar triangles and the ratio represents the disparity of the
correspondence. Notice the red ray that passes through the 3D point and (0, O on st
planeintersects u-v plane a (uo, Vo).

The ray-point equations (1) and (2) indicate that al rays passng through the same 3D
point lieon an st plane in the 4D ray space, which we cdl the point’s congtraint plane.

In a cdibrated setting, each correspondence identifies a unique 3D point; therefore, it
ads0 identifies a condraint plane. Our god is to fird factor dl of the rays associated with
the condraint plane of each correspondence using a specid data structure caled “surface
camerd or scam. We then suggest an dgorithm that syntheszes new views from these
scams usng a recondruction dgorithm smilar to the rebinning approach described for
ungtructured cameras in the lumigrgph. For desired rays that are not interpolated by any
scam, we use the light fidd approach to render them. In addition, we present an
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interactive rendering system that alows users to provide or remove correspondences and

re-rendersthe view in red-time.

3. Scam factoring

Correspondences can dways be specified as scdar disparities adong epipolar lines. We
will assume that al source mages have to be rectified such that their epipolar planes lie
adong pixd rows and columns. In this setting disparities can be describe the horizontal
and/or he vertica shifts between the corresponding pixels of image pairs, as is shown in
Figure 2. Each correspondence is represented as two rays r,(s,t,u,v) and

r,(s,,t,,u,,Vv,), which pass through the same 3D point. Assuming uniform sampling,
and applying the constraint plane equation (2), we have

Y- Y :VZ- Vi :i:d|sp (3)
S-3 tz 't1 P,

where disp is the disparity of a correspondence. We can rewrite the point’s constraint

plane equation (2) in terms of its disparity as

r(stu,v) = (00, uy,Vv)
+sX1, 0, disp, 0) +t%(0,1,0,disp) (4)

This congruction transforms each correspondence into a congraint plane defining a st
of 4-dimensond rays The values of up and vo can be determined directly from the
correspondence rays, r1 and ro. All other rays can be factored from the given light fidd by
seiting the values of s and t and solving for the gppropriate u and v values condstent with
the condraint plane of the correspondence. The condraint plane solutions a integer
vauesof sand t are equivdent to placing a virtual camera a the 3D point and computing
rays from that point through the camera centers lying on the camera plane, as is shown in
Figure 4(). We implicitly store congraint plane as an image parameterized over the same
domain as the camera plane. We cdl this image a “surface camera’ or scam. To index the

rays of a scam, we solve the disparity equation (4) for dl data cameralocations shown in
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Figure 4. Factoring scam: (&) a correspondence is specified as two points and can be
factored to dl cameras by back projection the 3D point; (b) by normdizing the a
correspondence with unit disparity, we can factoring al rays associated with a scam.

Figure 4(b). Because these rays do not necessarily pass through the pixels (samples) of
the data cameras, we bilinearly interpolate their color in the data image. The complete

factoring agorithm is shown as follows:

Generate scam for each correspondence

for each correspondence S do
normdize Sin form (Up , Vo , disp)

for each data camera C(s, t) do
caculate the projection , v) of Sin camera C(s, t) from the disparity equation
(4)
bilinearly interpolate P(u, v) in C(s, t)

store P aspixe (s, t) in scams

end for
end for

4. Scam Representation
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All rays passng through a correspondence should all lie on its condraint plane and scam
image and therefore it is important to correctly interpolate the scam image to render new
rays. When a correspondence is accurate, i.e., its corresponding 3D point lies close to the
real surface and is not occluded n any camera view, its scam image reflects the radiance
properties of this point on the surface. For most surfaces, their radiance functions are
gnooth and have smdl variance. Smilar to recondructing 2D sSgnds from samples,
ample interpolation method like bilinear interpolation is sufficent. If a scam is on the
view-dependent gpots, it then exhibits variaion in intendty. In tha case, better
recondruction filters that preserves high frequencies is more appropriate. Furthermore,
when a scam is on occluson boundaries, it exhibits sharp trangtions between occluded
and non-occluded rays and edge-presarving filters is the correct choice to interpolate the
image.

The scam image of a correspondence close to the red surface indicates the radiance
recéved a dl data cameras and thereby represents the surface's locd reflectance
radiance, shown as scamy of Figure 6. Moreover, if the surface is Lambertian, then these
scams are expected to have congant color everywhere, as is shown in Figure 5(c). If the
aurface's reflectance exhibits view dependencies such as specular highlights, we expect
to observe smooth radiance variations over the scam images. Figure 5(d) shows the scam
of the specular highlight on the pumpkin. Findly, if a correspondence is not cose to the
red surface, then we expect to observe greater variations in its scam images, as shown in
scamy of Figure 6 and Figure 5(b).

When a correspondence lies close to the occluson boundary of an object, then we
expect to see specific abrupt color trangtions in its scam image. Rays that are not
occluded should have consstent colors, while occuded rays might exhibit sgnificant
color variations and discontinuities, as shown in scany, of Figure 6 and Figure 5(a). Since
we hilinearly interpolate each scam image, we modd the scene with “smooth occlusion”
by implicitly interpolating between points on ether Sde of the occlusion boundaries.

Because correspondences are usudly not very accurate, we can further estimate a
measure of the qudity of correspondences by cdculating the digtribution and the variance
of the colors within scams. The color digtribution in incorrect correspondences should be

discontinuous, non-compact, and its variance is expected to be high. For the correct

19



correspondences and unoccluded surfaces, we expect to see more uniform and continuous
color variations, and, therefore, low color variance. For correspondences on simple
occluson boundaries, we can characterize them by modeling bimoda color distributions
from ther scam images using the method described. And for view-dependent spots like
specular highlights, we modd them as combinations of Gaussian functions.

The qudity of the scam depends on its accuracy, occluson condition and view
dependencies. An accurate correspondence on nortoccluded Lambertian surface should
have uniform color in within its scam image. Correspondences on occluson boundaries
should have partid conggencies as wel as shap changes within their scam images.
Accurate correspondences on view-dependent spots like specular highlights have a
Gaussan-like smooth distribution. And inaccurate correspondences are expected to have
random colors within their scam images.

We can therefore measure the qudity of the scam as following; we firs cdculate the
variance of the color in the scam image. If the variance is below certain threshold, then
we assume the scam is on the nonroccluded Lambertian surface and we assign a large
weight to the scam; otherwise we edtimate if there is abrupt changes in the image, if o,
we fit a bimodd digribution to it and classfy it as occluson boundaries. Otherwise, we
fit a 2D Gaussan function to the scam and dassfy it as a view-dependent scam. If the
fitting error is smdl, we then treat the scam as on occluson boundaries or on a non
Lambertian surface and assgn the weight according the fitting error. Otherwise, we
assume the scam is incorrect and assign a smdl weight or smply discard it. Moreover,
we assgn different interpolation methods in respect to their type. The conplete scam
classfication dgorithm is as follows:
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(b) (d)

Figure 5: In the illustration above, scam (@) is close to the occlusion boundaries; scam (b)
is away from the red surface; scam () is close to the red Lambertian surface and is rot
occluded; scam (d) is close to the specular highlight on the real surface.

Camera Plane

Figure 6. scam, is close to the red surface and is not occluded by another other parts of
the scene;, scam, is occluded by other parts of the scene; scam, is from incorrect
correspondence and is far away from the real surface.
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Classfy scams.
for eachscam S do
cdculate the color variance var of S

if var < threshold

flat_ color

Metric, ., = Mmetric__
RENDER_METHOD =BI_LINEAR
end if
elsedo

if Shas abrupt color changes
fit abimodd functionto Sin term of least square error err

if err <threshold, say
Metric, ., = Metric__ >exp(- err)
RENDER_METHOD = EDGE_PRESERVE
end if
elsedo
metric = metric . or discard the scam

quality
end else
end else
else

fit a2D Gaussan function to Sin term of least square error err
metric = metric__ >exp(-err)

quality

RENDER_METHOD =BI_CuUBIC
end else
end else
end for

5. Scam Rendering

In order to render a correspondence from an arbitrary view, we need to first project its
scam onto the desired view. We do this by condructing a ray from the desred view that
is condgtent with the correspondence. We then use the scam data Structure to interpolate
the reflected radiance. The explicit coordinates of the 3D point are not needed to
congtruct the ray. We can instead compute the intersection of the correspondence's
condrant plane with the cameras image plane. This is paticulaly efficient with our

representation.
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5.1. Projecting correspondences

We describe dl virtud cameras in form €, t', Z), where Z is the distance to the data
camera plane. If the camera is on the camera plane, i.e, a &, t', 0), we can caculate the

projection of the correspondence in the new view using the disparity equation (4) as
(u, v) = (u,+s>disp, v, +t">disp) (5)

And we can query the color of the projected correspondence by interpolating point &, t)
in its scam image. To determine the projection of a correspondence in a camera (8, t', Z2)
off the camera plane, we firg cdculate its projection (u, v) in camera C'(s, t', 0).
Because C’ ison the cameraplane, we can amply cdculae (u, v) as (5).

We then gpply the geometry relationship as is shown in Figure 7(a) and use the depth
digparity equation (3), we have

u' D/(z+Z) z 1
D/z - z+7 :1+z'>disp

(6)

_V' —
v

Therefore the projection of the correspondence in the new camera €, t', Z) can be

computed as

(U, V) = ((uy+sxdisp)/ 1+ Zxdisp),
(v, +t>dlisp) / (L+2disp) ) (7)

We then cdculae the intersection point €, t”, 0 of the ray with the origind camera
plane. Notice the correspondence should project to the same pixel coordinates in both
canga (s, t', Z) ad (s’, t’, 0), as is shown in Figure 7(b). Therefore by reusng
disparity equation (4), we can cdculate (s", t”) as

(s"t")= ((u'- u)/disp, (V-\)/disp))
= ((s'- Z,)/ (1+ Z>disp),
(t'- zw,)/ (1+Z>disp) ) €5)
The color of the projected correspondence is then hlinear interpolated at 7, t”) in the

scam image of the correspondence.
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Figure 7: Projecting the correspondence in the new view: (a) we proect the
correspondence onto camera €, t', Z) by first projecting it onto camera §', t', Q and
then cdculating its projection with geometric reationships, (b) we condruct the ray that
passes the correspondence from camera (S, t', Z') by computing its intersection (s’, t”, 0)
with the origind camera plane and interpolating it from the scam.
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5.2. Color blending

Once we project al correspondences onto the new camera, we need to synthesize the
image from these scatered projection points. We use a color-blending dgorithm smilar
to ungructured lumigraph [2]. We assume correspondences are comparatively accurate
and therefore its projection only influences a limited range of pixels around it in the new
view. In practice, we only blend correspondences projected in a pixe’s 1-ring
neighborhood. If there isn't any, we then render the pixd directly from the light field. We
use the fallowing weight function to blend these correspondences.

weight (corresp i) = MEtricy, e (SCAM i)
+ MEtric ., (COrresp i)
+ Metric ;o .., (COrresp i)  (9)

The firg term of the weight evauates the quality of the scam, where we use the color
vaiance as a dmple measurement, as is discussed in Section 4. The second term
measures how close the projection is to the pixd, where closer projections get higher
weight. The lagt term didtinguishes closer correspondences from far away ones by ther
disparities. For a boundary pixd, there could be multiple correspondences with difference
disparities around it. Since closer objects are expected to be more important, we assign
larger weight to those of large disparities Futhermore, we assgn continuous metric
functions for dl terms to maintain the smooth trangtion from scam rendered parts to light

field rendered parts. The complete two-pass rendering dgorithm is shown asfollows:

Syntheszeview C(s, t', Z)
for each correspondence Sdo
cdculateray r(s’, t”) that passes Sand C(s, t', Z') using equation (8)
interpolater inthe scam image of S
cdculate the projection P(u’, v') of Sin C using equation (7)
compute the weight of S using equation (9) and add Sto P’s 1-ring pixds scam
list
end for
for each pixd P(u, v) inthe syntheszed image do
if P’sscam ligt is not empty do
color blend dl correspondencesin P’s scam ligt with caculated weights
end if
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esedo
use light field to render P
end else
end for

6. Scam Generation

To generate correspondences, we dart with corrdating regions from a pair of images that
users can provide with our interactive tools. We then generate correspondences by
sweeping through scanlines between the two regions under epipolar condraints. The
epipolar condraints guarantee that two rays associated with each correspondence
intersect at a 3D point in object space.

Furthermore we assume two additional congiraints:

Ordering condraint: corresponding points gppear in the same order dong epipolar
lines
Piecewise continuity: 3D geometries are piecewise continuous.

Notice the ordering congraint is not dways vdid, especidly for regions close to
occluson boundaries. It, however, prohibits intercrossing between correspondences and
dlows us to use a lage dass of dynamic programming based dgorithms to generate
correspondences. In addition, as is mentioned in previous chapters, our rendering
agorithm does not heavily rely on the accuracy of the correspondences for rendering
quaity snce low qudity correspondences will be “overwritten” by high qudity ones in
our qudity-biased blending schemes. Piecewise continuity condraint assumes the 3D
geometry is continuous, eg., occluson boundaries are continuous. This maiches well
with the continuity assumption in our scam-rendering dgorithm where we implicitly
mantan a continuous light fidld We will discuss in detals this continuous light fied
property later this chapters.

Given two regions from two images, our god is to first determine pairs of scanlines to
be correlated to generate correspondences. Recall the ray-point parameterization as

r=(0, 0, uy,V,
+ sx(1, O, disp, 0) +t%(0, 1, O, disp) )
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Obvioudy, if the two images are on the same row or column, i.e, have the same t or s
coordinates, then the two rays of each correspondence should lie on the same horizonta
or verticd scanline as wdll. In generd, two rays r(s,, t,, u,, v;) and r(s,, t,, u,, v,) of a

correspondence between images (s, t;) and (s,, t,) mud satisfy

Ul-U2:U0+Sl><diSp- (Uo+sz >diSp) _S-5S

: — = (10)
Vi-V, Vot xdisp- (v +t, disp) -t

In other words, the scanlines to be correlated between the two regions should have the
same dope, i.e., the dope of the two imagesin image space.

Scanline (s+1, t, v) —»-@

Figure 8. Dynamicaly reparameterized light field is a specid case of correspondence
mapping. Boundary points are forced to correlate to some end points.

Once the two scanlines are generated, we can then establish correspondences between
pixels on the two scanlines. The easest way to generate correspondences is to assume
uniform digparity between scanlines, as is shown in Figure 8 and we corrdate internd
pixels with a specific disparity and fix the boundary pixes. Furthermore, we can use the
locd optimd digpaity when corrdating two scanlines by picking the disparity that
minimize the total difference function. Notice here the optimd disparity is different from
the one suggested by plentopic sampling [4]. We obtain our optimdity per par of
scanlines and hence our disparity is loca while plenoptic sampling assumes globa
optimd disparity (by assuming different depth layers of geometries have uniform
digribution).
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To obtain better quality scams, we assume the ordering congtraint so that we are able
to use a large class of dynamic programming agorithms from computer vison research.
The badc idea of these dynamic programming-based methods is to transform the problem
of finding correspondences into finding the optima path in a directed greph. For
example, to corrdate two scanlines with m and n pixds, we firg form an mxn correlaion
graph where each node (i, j) in the graph represents the smilarity between pixel 1 and j in
its corresponding scanlines. And we can find a best sequence of correspondences
between these two scanlines by finding the path from node (0, O to node fn, N with
highest overal corrdation scores. The ordering condraint guarantees that the correaion
graph is directiond and hence we may aoply dynamic programming agorithms to find
these optimal paths asis shown in Figure 9.

We dat with cdculating the corrdation correl(i, j) between pixe i in the fird
scanline and j in the second. 1dedlly, we need the linear invariance despite the changes in
illumination. This linear invariance property can be eesly achieved by usng CIE modd
with xyY color space. x and y are good indicators of the actud color, regardiess of the
luminance. We neverthdess have to ded with a new nonlinearity in the trandform
between RGB and CIE xyY. In a light fidd where illuminaion remans amogt congant
for dl images, smple RGB color distance dso works wdl in practice. We further assume
the minimum depth of the scene as the largest disparity as disp,,, and assgn the weght
of each node in the graph as.

i T 2557 0f j>i ori>j+di ;
corret . 1) :'1%3' 2557 - (3ri - ?]5)2 - (Jgi - ;i )? - J(bic-isli;]azx’otherwise; n

Denote Opt(i, j) as the optima path that that goes from Q, O through (, j); then we
deduce the dynamic programming equation as.
jcore (i, ])+ Opt (i,]- 1)

opt (i, j) = o . .
pt(1, 1) = max Leorrd (i, j)+o0pt (i-1, 1)

(12)

A routine dynamic programming method solves this problen in O(N?)time and
gives the complete optimad path from (0, Q to (m, n). Then for each node {, j) on the
path, we corrdate pixel i and j on the two scanlines as a scam. Figure 10 compares the
dynamic programming method and the optima disparity method by showing the Eipolar
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Images by interpolating correspondences between scanlines. The optima  disparity
method digns most of the features correctly except the white/black dtripe since its
corresponding geometries is not close to the presumed the optima foca plane and we
observe sious diadng atifacts in these regions. The dynamic programming method,
however, manages to remove these diasings by correctly digning them.

Scanline (s, t, v)

Edge Front Optimal Path

Scanline (s+1, t, v)

hj

Scanline (s, t,v) —»

-
&

Figue 90 We can triangulate two scanlines directly from the optima pah of the
correlaion graph.

Scanline (s+1,t,v) —»

The dynamic programming has been used widdy in the computer vison fidd, whose
main god is to completey recondruct the 3D surface. Unfortunately it has severd magor
atifacts. First of dl, it adapts poorly to nornttextured regions where it is very sendtive to
gndl noises on uniform-colored surfaces. Second, it cannot handle view-dependencies
such as specular highlights where the corrdations are low for points on these surfaces.
Third, the ordering condraints are not adways vaid for cameras with large basdines
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where intercrossng may happen. It becomes more problematic on occluson boundaries
to determine the depth of pixes on these occlusion boundaries.

Fortunately these defects for most stereo agorithms cast much fewer artifacts on our
scam-rendering  dgorithm. Recdl that our scam-factoring agorithm distribute each
correspondence into the light fiddld and then measure its qudity in its scam image,
therefore inaccurate correspondences are given much lower priorities when rendering. As
a reault, it will be “overwritten” by its good neighbor scams ones and hence has much
fewer atifacts Furthermore, on the occluson boundaries where most computer vison
dgorithms fal to reconsruct accurate geometries, our scamrendering  agorithm
smoothly blends different layers of correspondences and guarantees high qudity
rendering. Findly we provide users interactive tools to sdect regions and methods to
corrdlae them and therefore it helps to solve mogst of the view-dependency problems. In
the result chapter, we will show by different examples of our scam rendering agorithms
to illusrate how our agorithm tekes advantage of correspondences while removing their
defects.

l

Figure 10: Comparison between optimd digparity and dynamic programming: top: a
sarse sampled Epipolar image; bottom left: interpolated Epipolar image using optima
disparity; bottom right: interpolated Epipolar image usng dynamic programming.
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7. Continuous Light Field Reconstruction

Rendering a new ray in a light fidd is equivdent to interpolaing it from the sampled
rays and it is very desirable to provide a continuous representetion of the light fied. The
amples continuous representation of gpace is the amplex-tiled space, eg., a
triangulation of the 2D space or a tetrahedraization of the 3D space. Such representations
have great advantages on the rendering: to render a new ray r, we firs locate the smplex
that it lies in and then caculate the barry-centric coordinates of r in the Smplex in respect
to dl vertexes of the samplex and use them as weights for blending. Randomized
dgorithms [7] are usudly used for tracing consecutive rays and memory caching is used
to record types of simplexes to accelerate calculations of the barry-centric coordinates.

The dynamic programming agorithm we mentioned above in fact naurdly gives a
triangulation between two scanlines. Recdl the dynamic programming dgorithm
determines the optima path of correspondences and prohibits them over-crossng, we
may define the “edge frontier” as the correspondence generated a each node on the
optima path as par (i, j), where i is the pixd index on firg scanline and j on the second.
Notice edge frontier (i, j) in the optima path mus go to ether (i + 1, j)or (i, ] + 1)
according to the dgorithm; therefore the two consecutive edge frontier must share a
vertex as is shown in Figure 9. Therefore the two neighboring correspondences form a
triangle and it is easy to extend the deduction to the whole scanline and we then form a
triangul ation between two scanlines.

It is dedrable to tile the 4D light fidd space with smplexes digned with the
correspondences.  Smplexes in 4D are  5-vertex 10-face pentahedras. Notice
correspondences in 4D ae 2 dimensond condraint planes. To achieve a non-trivid
pentahedra-tiled 4D gpace, we need to dign dmplexes with condraint planes.
Unfortunatdy it is an extremdy difficult task, even with the same st of correspondences
that are usad for triangulating scanlines from the dynamic programming dgorithm in 2D.
The mgor difficulty lies in thet, athough in 2D two correspondences do not intersect
under our ordering congraint, the corresponding 2D condraints planes may dill intersect

in 4D, as is shown in Figure 11, where two correspondences from two horizontd
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scanlines might intersect on the verticd scanline. These intersections are quite usud in
practice. In other words, there does not exist a vdid triangulation (Smplex-tiling) of the
4D gpace where dl smplex faces dign wdl with correspondences without introducing
additiond vertexes.

W scanlime

H xrl.nlilm-é D EI

H seanline |

Crossing
i

; AN

Figure 11. Correspondences generated by dynamic programming dgorithm may ill
intersect in 4D space; here the green and the red correspondences from the horizontdl
scanlinesintersect on the vertical scanline.

One smple solution to the problem is to cdculate intersections between dl pairs of
congraint planes and insert intersection points back to the 4D space. However it turned
out to be quite impractical for the following reasons. Firgt, notice any two planes can
intersect in 4D space unless they are pardld, therefore it usudly leads to a huge number
of intersections from a smal set of correspondences. It dso leads to tremendous
computationa cost for caculating these intersections. Second, it is not clear how to
determine the color of these intersection points and how to insart them back to the 4D
gace while mantaning the smplextiled gructure. Findly, the smplex-based barry-
centric coordinate interpolation is independent of the qudity of correspondences and it
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therefore may give equa importance to low quality correspondences as to high qudity
ones.

The scam rendering, however, is an implicit but more generd dterndive to the
amplex-based 4D continuous light field rendering. First of al, our scam representation
uses a generdized form of the condrant planes. Since we continuoudy interpolate the
correponding scam  images, we maintain the continuity on dl condrant planes.
Secondly, our scam-rendering agorithm firgt projects al scams onto the image plane and
then blend them. Notice if two condraint planes intersect in 4D space, projections of the
rays nearby the intersection point should be close to each other on the image plane. By
collecting and blending scams in cetan neighborhood, our rendering agorithm
maintans a continuous interpolation between them. In paticular, in the scam melric, if
we only take the projection metric and ignore the smoothness and disparity, we are
exactly implementing barry-centric coordinate interpolation. Finaly, our scam-rendering
algorithm takes advantage of the knowledge of the qudity and the type of the scams and
it iIs more robust than the gmplex-based rendering in presence of low-qudity
correspondences. The caching methods discussed in the previous chapter also make our
rendering speed comparable with smplex-based rendering.

8. Resaults

We have developed a user-guided scam rendering system where the users are able to
specify image regions to be correlated. Because locd correspondences are faster to
generate and are more religble, the user can focus ther efforts on important festures. We
have tested our dgorithm on vaying degrees of spaseness and qudity of the
correspondences.

The user interface is shown as Figure 12. The sysem darts with a conventiona light
fiedd rendering system, where the user can specify the foca plane by disparity and the
system renders the new view in red time. Users can choose any par of images from the
light field and any pair of regions to be corrdated. A dynamic programming engine then

generates al correspondences and users can view scam images of them to decide whether

33



they want to keep or remove them. The new view is then rendered in red-time usng
forward-mapped scam rendering and backward-mapped light field rendering. Users can
then decide whether more correspondences needed to be provided to improve rendering
qudity.

The pumpkin dataset shown in Figure 13 is congructed from a 4x4 sparse light fied.
Figure 13(a) renders the new image usng standard light filed rendering methods with the
focd plane optimaly placed a the depth associated with the average disparity as
suggested by plenoptic sanpling [4]. Aliasang atifacts ae dill visble because the light
fiedd is undersampled. We then add in correspondences for the pumpkin, asis shown in
13(b), the head in 13(c), the fish and part of the red stuffed animd in 13(d) by corrdating
rectangular regions respectively usng the dynamic programming agorithm. As a reult,
recondructions in the ydlow regions of the syntheszed images ae dgnificantly
improved in dl images Boundaries between the light fidd rendered parts and scam

rendered parts maintains smoothness.

Figure 12: Scam rendering sysem dlows the user to change foca plane digance, assgn
regions to be correlated, display scam images and it renders the new view in redl-time,



(©) (d)

Figure 13: Light fidd and scam rendering: (a) light field rendering with optima disparity;
(b), (c), (d) scam rendering with correspondences of objects in the yelow regions below
each image while rest of the scene rendered by light field as ().
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(c) (d)

FHgure 14. Light fidd and scam rendering with view dependencies (a) light fidd
rendering with optimal disparity; (b) scam rendering with correspondences of the red
duffed anima and the screen; () scam rendering with correspondences of multiple
objects, (d) scam rendering as (c) with additiona correspondences of the reflected lights
on the back wall.

36



9. Conclusons and FutureWork

In this aticle we have presented a light fidd decompostion technique and an image-
based rendering dgorithm for light filds with a sparse collection of correspondences.
We use a specid data Sructure caled a scam to gore light field regions associated with
correspondences and to accelerate interpolation of abitrary rays in it with two-plane
parameterization. We implemented the dgorithm in an interactive and red-time system
that allows users to ad in the assgnment of new correspondences and quickly re-renders
the view. We have tested our agorithm on correspondences with varying degrees of
goarseness and show it is robust with low-fiddity correspondences. Our reconstructions
ae comparable to those of a lumigragph while it doesn't require complete geometric
models.

For those pats of the image without accurate correspondence information, our
method uses the traditiond light fiedld method for interpolating the radiance a the desired
ray. As a result, in these regions, we expect to see diasng artifacts due to under-sampling
inthelight fidd.

However, there are speciad cases where such artifacts are less apparent, in particular,
in areas of low texture. Our method generates effective recongtructions in these regions
where, one should note, it is aso difficult to establish correspondences.  Using traditiona
dereo vison methods, it is dso difficult to establish accurate correspondence near
occluding boundaries and on specular surfaces. However, if any high-confidence
correspondence can be edablished from any imaege par from the set of dl light fidd
images, our technique will generdly provide reasonable reconstructions.

In the future, we would like to extend our scam representation as an dterndive
modding method to the image-based and geometry-based approaches. We adso want to
dudy the surface radiance properties from scams by better characterizing their color
vaiance and digributions. As is shown in previous chgpters, most scam images have
amogt congtant colors and hence can be used to compress the light fiedd. We want to
study how we can efficiently represent the light field with compressed scam images.
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