
EFFICIENT SELECTION OF IMAGE PATCHES WITH HIGH MOTION CONFIDENCE

Peter Sand and Leonard McMillan

Laboratory for Computer Science
Massachusetts Institute of Technology

ABSTRACT
Motion confidence measures aim to identify how well

an image patch determines image motion. These kinds of
confidence measures are commonly used to select points for
optical flow estimation and feature tracking. The brute force
approach of computing confidence for every image patch
is inefficient, especially when the patches are large. The
faster approach of computing confidence for a regular grid
of patches is sub-optimal; good patches may be missed be-
cause they straddle grid boundaries. We present a new algo-
rithm that efficiently selects globally optimal patches. Our
primary innovation is the use of confidence bounds to iden-
tify image regions that should be explored by a queue-based
search algorithm.

1. INTRODUCTION
Motion confidence measures provide information about the
quality of apparent motion estimates at any given point in an
image. These reliability measures allow algorithms to iden-
tify and avoid patches suffering from the aperture problem.
Considerable research [1, 2] has addressed the issue of mea-
suring motion confidence, but very little work has focused
on efficiency—the goal of this paper.

Measures of motion confidence are important to optical
flow [3, 4]. For the sake of efficiency, several optical flow
algorithms limit their estimation to points where the flow
can be computed reliably. This implies that the point selec-
tion algorithm must also be efficient.

Confidence measures are also important to feature track-
ing [1]. In many video sequences, features are lost due to
camera motion and mistracking, requiring that the set of fea-
tures be augmented repeatedly throughout the tracking pro-
cess. When feature selection is made part of an online track-
ing algorithm (not just a pre-processing step), efficiency is
essential.

2. BACKGROUND
Many patch-based motion estimation algorithms attempt to
find a translation vector which minimizes the pixel error for
a small region [5, 2]. Given the intensity gradient gx, gy

over the image and a patch Px0,y0 centered at x0, y0, the
optimal least-squares translation estimate involves the fol-
lowing matrix:

M(x0, y0) =

∑
g2

x

x,y∈Px0,y0

∑
gxgy

x,y∈Px0,y0

∑
gxgy

x,y∈Px0,y0

∑
g2

y

x,y∈Px0,y0

When this matrix is near-singular, the motion equation
is ill-conditioned, suggesting that the image patch provides
at most normal flow, not a unique 2D translation vector. A
non-singular but ill-conditioned matrix does give a 2D mo-
tion solution, but this solution depends critically on small
changes in the inputs.

The conditioning of the matrix provides a number of
confidence metrics, including the determinant, the sum of
eigenvalues, the product of eigenvalues, the least eigenvalue,
the greatest eigenvalue, and the conditioning number (ratio
of greatest to least eigenvalues). All of these can be be found
in closed form from the matrix M . For example, using the
symmetry of M , we have that the minimum eigenvalue is
given by:

λmin =
M11 + M22 −

√
(M11 − M22)2 + 4M2

12

2

While the maximum eigenvalue is useful for normal flow
estimation, the minimum eigenvalue is useful for feature
tracking and 2D flow estimation. When the minimum eigen-
value is large, the motion is well constrained in two di-
rections (along both eigenvectors). Experiments have sug-
gested that the minimum eigenvalue is indeed useful in prac-
tice [3].

There are a number of other reliability measures [4].
Some are based on robust approaches to the least-squares
problem [6, 7]. Non-least-squares measures include Gaus-
sian curvature, properties of a single spatial gradient, and
covariance eigenvalues [8].

3. BASIC OPTIMIZATIONS
When summing gradient products across overlapping image
patches, several simple optimizations can be made. These
optimizations work for naive brute-force methods and the
more complicated method presented in this paper.

II - 2930-7803-7622-6/02/$17.00 ©2002 IEEE IEEE ICIP 2002

A substantial gain in efficiency can be obtained by stor-
ing the gradient products g2

x, gxgy, and g2
y for each pixel.

These stored values can be used instead of performing a
multiplication for every pixel of every patch. By moving the
multiplications out of the inner loop, we reduce the number
of multiplications by a factor of A, where A is the area (in
pixels) of the patch.

A further optimization involves computing a hierarchy
of gradient products which are stored in a pyramid struc-
ture. Three pyramids can be constructed: one for each of
g2

x, gxgy, and g2
y. When summing these values over a patch,

if the patch overlaps a high-level element in the pyramid,
part of the sum can be obtained directly from the pyramid.

4. CONFIDENCE MONOTONICITY
To the extent that the confidence metrics describe how much
information is provided by image patches, we expect that
the confidence increases as the patch size increases. If each
pixel provides some sort of constraint, adding pixels should
create more constraints, creating a better-conditioned solu-
tion.

This assumption applies only so long as the additional
constraints do not contradict the original constraints. In
general, larger patches are more likely to cross occlusion
boundaries or undergo non-translational deformation, giv-
ing a less-accurate motion estimation. However, most con-
fidence measures incorporate temporal information only for
smoothing (i.e. in the computation of the spatial gradient).
Thus the notion of contradictory motion is not directly cap-
tured by the confidence measures. As a result, a number of
the reliability metrics exhibit this kind of monotonicity.

For some confidence measures, monotonicity is easy to
verify. In the case of the sum of eigenvalues, we have λmin+
λmax = M11 + M22. Since M11 and M22 are sums of
squares of gradient values, this clearly does not decrease as
more gradient values are added to the sum.

5. CONFIDENCE SEARCHING
We present an algorithm which localizes patches of high
motion confidence. The algorithm is given an image and a
desired patch size, then asked to find the N patches of this
size with the highest confidence.

The algorithm exploits the tendency for real-world im-
ages to contain regions of low confidence, such as areas with
little texture. We save time by identifying regions of low
confidence without actually computing the confidence for
every point in the region.

5.1. Bounding functions
The primary tool used by this algorithm is a bounding func-
tion that produces an upper bound on the confidence for ev-
ery patch contained within a given region. This bounding
function can be the confidence measure itself when confi-
dence is monotonic. We may also use an upper bound on
the confidence measure, so long as the bound converges to

the true confidence measure as the region size approaches
the desired patch size.

5.2. Confidence queue search
The search algorithm uses a priority queue of rectangular
image regions. The priority value is the upper bound on the
confidence measure for that region.

The first item placed in the priority queue is the entire
image rectangle. At each iteration we dequeue the rectangle
with the largest upper bound (largest priority value), split
the rectangle along the widest dimension, and compute new
confidence bounds for each half. We then insert the new
rectangles back into the queue.

The first time we remove a rectangle of the desired patch
size, we have found the global optimum of the confidence
function (the patch of maximal confidence). If this is our
goal, we can terminate here; if we want the top N patches,
we continue with the algorithm until we have removed N
patches of the desired patch size (Figure 1).

Fig. 1. Bounds computed by the queue algorithm in the
process of finding the 100 most confident patches

5.3. Region splitting
Simply splitting each rectangle in half would eliminate those
patches that cross the boundary between the halves. We
want to consider every patch contained within the image,
so we split regions such that they overlap across a distance
equal to the desired patch width (Figure 2).

6. DISTRIBUTION OF MULTIPLE POINTS
For most motion estimation applications, we want the es-
timates to not only be confident, but to be well-scattered,
i.e. distributed throughout the image. Estimation of ego-
motion is better conditioned for widely-separated local mo-
tion estimates. For geometric reconstruction, we want well-
scattered samples to avoid gaps in the scene model. Thus we
want to find some subset of features that are both confident
and well-separated.

The general brute-force method of evaluating some con-
fidence/separation measure for every subset of patches is in-
feasible (i.e. exponential: on the order of the number of

II - 294

Fig. 2. A rectangle (large solid outline) is split into two
overlapping rectangles (dashed) where the amount of over-
lap is determined by the target patch size (small square)

pixels raised to the size of the subset). The approaches de-
scribed in this section are substantially more efficient, but
they are ad-hoc and sub-optimal in various ways (due to
greedy searching and heuristic measures of separation).

6.1. Minimum distance separation
A traditional solution to this problem is to impose a min-
imum distance between the estimates. This method gives
a straightforward greedy selection algorithm: pick the best
point, then pick the best point that is sufficiently far from
the previous points, and so on.

To implement this kind of separation using the confi-
dence queue, we simply maintain a mask of disallowed pix-
els and prune the search whenever we fall inside the mask.

6.2. Cell maxima
An approach that guarantees a certain spatial scattering is to
tesselate the image and find the best point within each cell.
This ensures a certain minimum sample density (in the case
of rectangular grid cells, at least one point per four cells
of area). Alternately, we may prefer to allocate multiple
points to cells that are found to have an abundance of high-
confidence patches.

For rectangular tessellations this can easily be handled
by the confidence queue algorithm: simply run the algo-
rithm for each cell, initializing the search with the cell bound-
aries (or expanded boundaries to allow patches that extend
partially into neighboring cells).

7. RESULTS
We perform experiments using a set of ten 640 by 480 im-
ages that represent a wide range of scenes (with various tex-
ture properties and lighting conditions).

7.1. Confidence filtering methods
Section 6 described a trade-off between selecting patches
with maximal confidence and selecting patches that are well-
scattered. A number of measures can be used to quantify
the scattering of a set of points. Presuming that we are con-

cerned with pairwise separation, not overall variance, we
take mean pairwise distance as our measure of scattering.

Our baseline algorithm is the standard optical flow ap-
proach of using a grid of points. Each grid cell is 20 pix-
els by 20 pixels, resulting in a total of 768 flow estimates.
A confidence value is computed using the minimum eigen-
value of the least-squares matrix for an 8 by 8 neighborhood
centered at the center of the cell.

The baseline approach is compared with several others:
finding the best 768 points according to the confidence mea-
sure (with no penalty for closeness), finding the best point
in each of the 768 cells (Figure 3), greedily selecting 768
points while maintaining a minimum distance of 8 pixels,
and greedily selecting 768 points while maintaining a mini-
mum distance of 16 pixels (Figure 4).

Fig. 3. The Best-Per-Cell patch distribution method

Fig. 4. The Min-Dist-16 patch distribution method

Mean Mean
Normalized Normalized

Method Confidence Separation
Grid-Centers 1.000 1.000
Best-Overall 13.448 0.577
Best-Per-Cell 2.943 0.999
Min-Dist-8 4.483 0.866
Min-Dist-16 2.305 0.989

II - 295

The best 768 points do indeed have a high confidence,
but many of the points are close together, as indicated by the
scattering metric. The best-per-cell and min-dist methods
are more successful at handling the trade-off: they maintain
good scattering while finding points with substantially more
confidence than the simple grid approach.

7.2. Efficiency of the confidence queue
Here we compare a naive algorithm (exhaustive search) for
selecting patches of high confidence with the our queue-
based algorithm (implemented with a heap-based priority
queue). Both methods compute gradient products outside
the inner loop, but do not use gradient product pyramids.

We first run each algorithm to determine the best 100
patches in the image (without separation constraints). We
then run each algorithm to determine the best single point
within each of 100 grid cells (where each grid cell is 64 by
48 pixels). In each case, we perform the experiment on 8
by 8 and 16 by 16 pixel patches. Mean running times are
reported in seconds, on a 500MHz desktop PC.

Method Patch Size Naive Queue
Best-Overall 8 x 8 4.107 1.738
Best-Per-Cell 8 x 8 3.498 1.565
Best-Overall 16 x 16 12.028 1.786
Best-Per-Cell 16 x 16 11.227 2.281

In each case, the confidence queue algorithm outper-
forms the naive algorithm. As expected, the queue algo-
rithm has better relative performance on the larger patch
size, since larger patches cause the naive algorithm to ex-
ecute longer inner loops.

7.3. Behavior of the confidence queue
The running time of the naive algorithm is independent of
the image content, in contrast to the queue method. The
performance of the queue algorithm is related to the rate of
convergence of the bounding function (i.e. how good the
bounds are) and the shape of the confidence function for
a particular image. If the confidence function has similar
values across the image, the algorithm is unable to prune its
search.

Using our set of sample images, we are able to perform
a limited exploration this dependence on image content. For
each image, we compute the median confidence across all 8
by 8 patches in the image, using this as a crude measure
of the distribution of “texture” in the image. We plot this
against the running time of the queue algorithm and find
substantial correlation (Figure 5).

8. CONCLUSION
We present an algorithm for efficiently finding patches with
high motion confidence, using a variety of different con-
fidence measures. The algorithm has performance which
exceeds a naive algorithm on our test cases.

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Fig. 5. A plot of median confidence (vertical axis) vs. run-
ning time of the queue-based algorithm

As described, the queue approach finds exact, globally-
optimal solutions, but it also provides a framework for de-
veloping a variety of approximate algorithms. Given a true
bounding function (such as a monotonic confidence met-
ric), the queue finds the same solutions as the brute-force
exhaustive search method. However, if the bounding func-
tion is highly optimistic, we may be able to find patches of
reasonably high confidence faster than any exact algorithm.
Thus we hope in the future to develop approximate algo-
rithms for confidence optimization that approach real-time
performance.

9. REFERENCES

[1] A. Fusiello, E. Trucco, T. Tommasini, and V. Roberto, “Im-
proving feature tracking with robust statistics,” 1999.

[2] Jianbo Shi and Carlo Tomasi, “Good features to track,” in
CVPR, 1994, pp. 593–600.

[3] J.L. Barron, D.J. Fleet, S.S. Beauchemin, and T.A. Burkitt,
“Performance of optical flow techniques,” CVPR, 1992, pp.
236–242.

[4] S. S. Beauchemin and J. L. Barron, “The computation of op-
tical flow,” ACM Computing Surveys, vol. 27, no. 3, 1995, pp.
433–467.

[5] B.D. Lucas and T. Kanade, “An iterative image registration
technique with an application to stereo vision,” in IJCAI81,
1981, pp. 674–679.

[6] E.P. Simoncelli, E.H. Adelson, and D.J. Heeger, “Probability
distributions of optical flow,” in CVPR, 1991, pp. 310–315.

[7] M.J. Black and P. Anandan, “A framework for the robust es-
timation of optical flow,” in ICCV, 1993, pp. 231–236.

[8] D. J. Heeger, “Optical flow using spatiotemporal filters,” In-
ternational Journal of Computer Vision, vol. 1, pp. 279–302,
1988.

II - 296

