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Abstract

The problem of selecting a sample subset sufficient to
preserve diversity arises in many applications. One exam-
ple is in the design of recombinant inbred lines (RIL) for
genetic association studies. In this context, genetic diver-
sity is measured by how many alleles are retained in the
resulting inbred strains. RIL panels that are derived from
more than two parental strains, such as the Collaborative
Cross [2, 14], present a particular challenge with regard to
which of the many existing lab mouse strains should be in-
cluded in the initial breeding funnel in order to maximize
allele retention. A similar problem occurs in the study of
customer reviews when selecting a subset of products with
a maximal diversity in reviews. Diversity in this case im-
plies the presence of a set of products having both positive
and negative ranks for each customer. In this paper, we
demonstrate that selecting an optimal diversity subset is an
NP-complete problem via reduction to set cover. This re-
duction is sufficiently tight that greedy approximations to
the set cover problem directly apply to maximizing diver-
sity. We then suggest a slightly modified subset selection
problem in which an initial greedy diversity solution is used
to effectively prune an exhaustive search for all diversity
subsets bounded from below by a specified coverage thresh-
old. Extensive experiments on real datasets are performed
to demonstrate the effectiveness and efficiency of our ap-
proach.

1 Introduction

Selecting a sample subset sufficient to preserve the diver-
sity seen within a given data set is a recurring problem in a
variety of application domains including biology, customer
review analysis and text mining. A set’s diversity cover can
be viewed as a variation of the classical set cover problem
where at least one example including and omitting each set
element is required. Furthermore, it is useful to relax the
requirement of a strict cover by specifying a minimal di-
versity threshold (usually specified as a percentage) that is
to be retained by the selected subset. The implications and
motivation for finding diversity subsets also varies between
application domains.

Genetic Diversity

There are many experimental scenarios where the ulti-
mate objective is to maintain, or at least maximize, genetic
diversity within relatively small breeding populations. Ex-
amples include the design of breeding programs for live-
stock, the captive breeding of endangered species, and the
construction of recombinant inbred lines for genetic map-
ping in animals and plants. Allele diversity is also an im-
portant consideration when designing association studies.
In the case of genetic mapping in mice, there are several
existing RIL panels [15] with greater than 50 lines whose
genotypes are known. Economics might dictate perform-
ing a pilot study across only a subset of the available lines
[16, 10]. The following question arises: What subset pre-
serves that greatest diversity among a set of selected mark-
ers?

Low-cost genotyping technologies provide an important
tool for measuring diversity at a biomolecular level in terms
of Single Nucleotide Polymorphisms (SNPs). The knowl-
edge of a SNP’s presence, frequency, and location is lever-
aged in a wide range of experimental designs. By definition,
a SNP must be present in a minimum frequency in a popu-
lation (typically 5% in human studies). We consider a SNP
to be lost if it is not represented within a population sample,
and our goal is to minimize this loss.

It has been previously shown in [9] that over 99% of
SNPs are biallelic, which enables us to represent alleles as a
binary matrix. It is straightforward to extend our approach
to polymorphisms with more than two alleles.

Previously, pairwise phylogenetic distances were used to
identify maximum genetic diversity subsets [7, 13]. When
applied to SNPs, this approach only considers the number of
inconsistencies between column pairs in the allele diversity
matrix, which is less information than the full matrix that
our method considers.

Besides SNPs, gene expression values in other microar-
ray data can also be used as a measurement for genetic di-
versity with proper discretization. And it is a similar prob-
lem to select a subset of the samples that preserves the great-
est diversity among the genes.



Customer Diversity
In e-commerce, vendors often need to solicit customer

opinions on the objects (e.g., products and/or services) they
provide. This feedback is valuable for profiling customers,
analyzing product preferences, and building recommenda-
tion systems. There is a practical limit on the number of
objects that can be listed in a questionnaire. In fact, objects
should be selected carefully to maximize information for
subsequent analysis. That is, they should be a small number
of informative (and unbiased) representatives of all avail-
able objects of interest. Intuitively, we want the selected
objects to be non-redundant and cover the full range of cus-
tomer’s opinions (i.e., including both positive and negative
ratings). The goodness of a selection can be measured by
its customer-rating diversity coverage.

A small number of selected objects is also preferred for
certain data modelling tasks, such as classification. We
will show in the experiment section that subsets of ob-
jects, which cover large diversity, can be used to build better
(more accurate and simpler) classifiers than the full object
set.

The problem of finding an optimal diversity cover is NP-
Complete. An interesting variant of this problem is to find
an optimal diversity subset of a given size or smaller that
achieves at least a given level of diversity. In this paper, we
present practical algorithms for finding such optimal diver-
sity subsets.

Our algorithm has two phases. In the first phase, a greedy
approach is used to find an initial solution and establish
an achievable bound in terms of subset size and coverage.
Then in the second phase, an exhaustive search for all op-
timal subsets is systematically performed which is seeded
with parameters derived from the initial greedy solution.
We then employ pruning strategies to enable an efficient
search for the globally optimal solution. Extensive exper-
iments on real datasets from three applications demonstrate
the effectiveness and efficiency of our algorithm.

2 Related Work

Many algorithms have been designed to establish a sum-
mary of a data matrix such that the maximum information
(or diversity) is retained.

In [11], representative elements (rows) are selected from
the data matrix based on mutual information. The data ma-
trix is considered as a joint probability distribution between
the rows and columns. Rows are selected such that the max-
imum mutual information of the original data matrix is re-
tained in the sub-matrix of selected representatives.

Co-clustering algorithms which cluster rows and
columns of a data matrix simultaneously based on informa-
tion theory are presented in [1, 5]. Dhillon et al. [5] gener-
ates a flat partition of the data matrix into row and column
clusters that maximizes the mutual information. The algo-
rithm proposed by Chakrabarti et al. [1] partitions the rows
and columns such that the sum of the entropy in each cluster
is minimized. The sub-matrix generated by combining the
rows and columns in each cluster found by these algorithms
can be considered as a summary of the original data.

Feature selection has been used extensively in the clas-
sification literature [4]. Given a class label for each row in
the data matrix, the features that can maximize the classifi-
cation accuracy are selected. Regardless of the diversity re-
tention, the feature selection algorithms only select the most
relevant features. These algorithms are based on heuristic
methods and are not guaranteed to find an optimal solution.

The greedy solutions to the Set Cover problem and its
variations are studied in [8]. These algorithms find greedy
solutions which maximize the coverage over the elements
at each step. Greedy solutions are only guaranteed to be
within a specific ratio of the optimal solution.

3 Preliminaries

In this section, we develop notations that will be used in
the paper and we provide formal problem definitions.

3.1 Diversity Cover (DC)

Let S = {s1, s2, . . . , sn} represent a set of samples,
e.g., inbred lines or objects to be reviewed, and let M =
{m1,m2, . . . ,mz} represent a marker set, e.g., SNPs or
reviewers. We denote the Sample-Marker matrix as H ,
H = M × S. H is a binary matrix. In the case of
SNP data, H(i, j) = 0 represents a majority allele at SNP
mi for sample sj and H(i, j) = 1 represents that sample
sj has a minority allele at SNP mi. While in the review
data, H(i, j) = 1 represents that reviewer mi ranks ob-
ject sj positively and H(i, j) = 0 represents that reviewer
mi ranks object sj negatively. An example of matrix H is
shown in Table 1.

Table 1. A Sample-Marker Matrix
s1 s2 s3 s4 s5 s6

m1 0 1 1 1 0 0
m2 1 1 0 0 0 1
m3 0 1 1 1 0 0
m4 1 0 1 0 1 0
m5 1 0 0 0 1 1
m6 0 0 0 1 0 0
m7 0 0 0 0 1 0
m8 0 0 0 0 0 1

Given a subset of samples, S′
j ⊆ S, the diversity of

marker mi is covered by S′
j if and only if there are two

samples in S′
j , sl and sk , such that H(i, l) = 1 and

H(i, k) = 0. For the sample subset S′
j , the total fraction

of the covered markers is called the diversity coverage of
S′

j , denoted as C(S′
j), 0 ≤ C(S′

j) ≤ 1. For example, given
the matrix in Table 1, the sample subset {s4, s5} has diver-
sity coverage 0.75, C({s4, s5}) = 0.75. Obviously, for any
single sample, its coverage is 0. It is generally reasonable
to assume that the coverage of the entire sample set is 1,
C(S) = 1.

Now we define the Diversity Cover problem.
Diversity Cover (DC) Problem: Given a sample set S,

a marker set M and a sample-marker matrix H , find the
minimum subset D, D ⊆ S such that Coverage(D) = 1.

For example, given the sample-marker matrix in Ta-
ble 1, the minimum subset that covers all the markers is
{s4, s5, s6}.



3.2 Diversity Cover is NP-Complete

We show DC is NP-complete via a reduction from set
cover [3]. Given a collection of subsets, S, from the finite
universal set, U , a set cover solution is the smallest group
of subsets from S that covers all of U . Consider the fol-
lowing matrix construction for set cover. We associate each
row with an element in U and each column with a subset in
S. Each 1 in the matrix indicates an element’s membership
in a corresponding subset. Thus, set cover corresponds to
finding the smallest subset of columns that provide a 1 in
every row.

Suppose that we augment a set cover problem matrix
with an additional row (element) and column (subset) with
all 0 entries except for a single 1 at the intersection of the
new row and column. This forces a DC solution to choose
this newly added column. Moreover, if we ignore this added
column, the remaining subsets are a solution to the original
set cover problem. On the other hand, if given a solution to
the original set cover problem, one can just add the last row
to get a DC solution. Thus, DC is NP-complete.

3.3 Parameterized Diversity Cover
(PDC)

In the Diversity Cover (DC) problem, we want to find the
minimum subset that covers all markers. However, in some
cases users are willing to lose the coverage of a few markers
in order to find a smaller subset, e.g., in some SNP data, al-
most all the samples must be included to cover all the SNPs
because of the large number of singleton SNPs (i.e., SNPs
in which the rarer allele is present in a single strain). There-
fore, we modify the DC problem by allowing a ”minimum
coverage ratio”, ρ, rather than a full cover. Now we want to
find the minimum subsets that covers no less than ρ.

Parameterized Diversity Cover (PDC) Problem:
Given a sample set S, a marker set M and a sample-marker
matrix H , find the minimum subset D (or subsets), D ⊆ S
such that Coverage(D) ≥ ρ.

We can see that the DC problem is a special case of the
PDC problem when the minimum coverage ρ is set to 1.

3.4 Upper Bound of Subset Coverage

Given a sample subset, D,D ⊆ S, the upper bound of its
coverage can be calculated using the coverage of its subsets.

Property 3.1 Given sample subset D =
{s1, s2, ..., sk}, k ≥ 3, the upper bound of C(D)
is:

C(D) ≤ C(D − {sk}) + C(D − {sk−1}) + C({sk−1, sk})
2

(1)

Proof : Let D′={s1, s2, ..., sk−2}, D=D′ ⋃{sk−1}
⋃{sk}.

Let X be the marker set covered by D′ ⋃{sk−1}, Y be the
marker set covered by {sk−1}

⋃{sk} and Z be the marker
set covered by D′ ⋃{sk}:

C(D′
⋃

{sk−1}) = |X|/|M |, C({sk−1}
⋃

{sk}) = |Y |/|M |,

C(D′
⋃

{sk}) = |Z|/|M |.

Let W be the marker set covered by D . We have

W = X
⋃

Y
⋃

Z

For any marker ml in Z, either it is already covered by
D′ or it is only covered when sample sk is considered to-
gether with D′. In the first case, ml also belongs to X since
markers in X are covered by D′ ⋃{sk−1}. In the second
case, all the samples in D′ have the same value on marker
ml and sample sk has the opposite value on ml. If sam-
ple sk−1 has the same value on ml as sk, ml is also cov-
ered by D′ ⋃{sk−1} and belongs to X . Or if sk−1 has
the opposite value on ml compared to sk, ml is covered
by {sk−1}

⋃{sk} and belongs to Y . Therefore we have

Z ⊆ X
⋃

Y (2)

W = X
⋃

Y

C(D) = (|X| + |Y | − |X
⋂

Y |)/|M | (3)

For any marker ml in X − Y which is covered by
D′ ⋃{sk−1} but not by {sk−1, sk}, we know that ml is ei-
ther covered by D′ alone or by D′ together with {sk−1}
and we know that sk has the same value as sk−1 on ml.
Therefore, in either case, ml is also covered by D′ ⋃{sk}
and belongs to Z. Similarly, for any marker ml in Y − X
which is covered by {sk−1, sk} but not D′ ⋃{sk−1}, we
know that samples in D′ have the same value as sk−1 on
ml while sample sk has the opposite value to sk−1 on ml.
Therefore, ml is also covered by D′ ⋃{sk} and belongs to
Z. We can get

X − Y ⊆ Z, Y − X ⊆ Z (4)

Since (X − Y )
⋂

(Y − X) = ∅, we have

|Z| ≥ |X| − |X
⋂

Y | + |Y | − |X
⋂

Y | (5)

According to Equations 3 and 5,

C(D) =
|X| + |Y | − |X

⋂
Y |

|M | ≤ |X| + |Y | + |Z|
2|M |

Therefore,

C(D) ≤ C(D − {sk}) + C(D − {sk−1}) + C({sk−1, sk})
2

When the subset D contains only 3 samples, the upper
bound in Equation 1 becomes the exact value of C(D).

Property 3.2 Given the pair-wise diversity coverage of
three samples, si, sj and sk, the coverage of set {si, sj , sk}
is known.

C({si, sj , sk}) =
C({si, sj}) + C({si, sk}) + C({sj , sk})

2
(6)

The proof is similar and is omitted for brevity. Obvi-
ously, by using Equations 1 and 6 recursively, we can es-
tablish an upper bound of subset coverage using only the
pair-wise coverages.

Theorem 3.1 Given a sample subset D = {s1, s2, ..., sk},
we can calculate the upper bound of C(D) using only the
pair-wise coverage C({si, sj}), si, sj ∈ D according to
Equations 1 and 6.



For example, the upper bound of C({s1, s2, s3, s4}) is
C({s1, s2, s3, s4}) ≤ [2C({s1, s2}) + 2C({s3, s4})
+C({s1, s3}) + C({s2, s3}) + C({s1, s4}) + C({s2, s4})]/4

Note that for a sample subset D, we can get several cov-
erage upper bounds based on Theorem 3.1 by exchanging
the order of the samples in D. We discuss the details of
calculating a diversity upper bound using Theorem 3.1 in
Section 4.2.4.

4 Algorithms

In this section, we present our Exhaustive Subset Enu-
meration (ESE) algorithm that solves the Parameterized Di-
versity Problem. Our algorithm guarantees to find all the
minimum sample subsets that have diversity coverage no
less than ρ. The ESE algorithm has two phases. In the first
phase, a greedy algorithm, Parameterized Greedy Diversity
Subset (PGDS), is used to find an initial sample subset SG

that has C(SG) ≥ ρ. Then in the second phase, we present
an optimal K-ρ Diversity Subset (KρDS) algorithm to ex-
haustively search for all sample subsets with sizes K and
smaller and with coverages no less than ρ. The initial sam-
ple subset SG and several pruning strategies are used to re-
duce the searching space. The pseudocode of the ESE algo-
rithm is shown in Figure 1.

Input:

• Sample Set S, Marker Set M , Sample-Marker Matrix H

• Minimum Diversity Coverage ρ

Output: A set of minimum sample subsets, I . ∀S′ ∈ I, C(S′) ≥ ρ Method:

1. SG=PGDS(ρ, S, M , H).

2. K=|SG|.
3. I=KρDS(K,ρ, S, M , H).

Figure 1. The ESE Algorithm

4.1 Parameterized Greedy Diversity Sub-
set Algorithm

In Section 3, we proved that Diversity Cover is NP-
complete and can be mapped to Set Cover. There is a
well known greedy algorithm for the Set Cover problem.
It chooses the subset that maximizes the increase in cov-
erage in each step until all the elements are covered. The
greedy algorithm can achieve an approximation ratio of
H(z), H(z) =

∑z
k=1

1
k ≤ ln z + 1 and z = |M | [3].

In the first phase of ESE, we design a similar algo-
rithm, Parameterized Greedy Diversity Subset (PGDS), to
find greedy approximations to the Parameterized Diversity
Cover problem. The PGDS algorithm also chooses the sam-
ple that maximizes the increase in the diversity coverage in
each step. There are two differences in the PGDS algorithm
compared with the greedy approach of the Set Cover prob-
lem.

1. The PGDS algorithm cannot pick the best first sam-
ple based on coverage because every single sample has
zero coverage. Therefore, PGDS is restarted with each
sample and we pick the smallest subset from the n gen-
erated subsets, where n is the number of samples.

2. The PGDS algorithm stops once the coverage of the
sample subset exceeds the minimum threshold ρ.

The details of the PGDS algorithm are shown in Fig-
ure 2. The algorithm considers each sample in step 2, and
the minimum subset among all the S′ is reported as SG. The
time complexity of PGDS is O(kn2) where k = |SG|.
Input:

• Sample Set S, Marker Set M , Sample-Marker Matrix H

• Minimum Coverage ρ

Output: sample subset SG having C(S′) ≥ ρ
Method:

1. SG = {}.
2. for all si ∈ S, i = 1 . . . n.

3. S′ = {si}, R = S − S′, c = 0.

4. while c < ρ

5. S′ = S′ ⋃{sl}, which

C(S′
⋃

{sl}) = Maxsj∈R(C(S′
⋃

{sj})).

6. R = R − {sl}, c = C(S′).

7. if |S′| < |SG|
8. SG = S′.

Figure 2. The PGDS Algorithm

For example, if we are given the matrix in Table 1
and set ρ = 1, the subset found by PGDS is SG =
{s1, s4, s5, s6} which is larger than the optimal minimum
subset {s4, s5, s6}.

4.2 Optimal K-ρ Diversity Subset Algo-
rithm

In the first phase of the ESE algorithm, the PGDS algo-
rithm finds an initial subset SG satisfying C(SG) ≥ ρ. It
establishes an upper bound on the size of the optimal sub-
sets in I , i.e., any subset S′ which has C(S′) ≥ ρ should
have size smaller than or equal to subset SG. Let K=|SG|,
the exhaustive enumeration need to be performed only on
the subsets having size no larger than K. The exhaustive
enumeration can take exponential time in principle. How-
ever, with efficient pruning strategies, our enumeration al-
gorithm, KρDS, performs much better in practice, finding
the optimal subsets quickly.

The KρDS algorithm searches all possible combina-
tions of samples up to size K in an enumeration tree. Fig-
ure 3 illustrates part of the enumeration tree of the matrix
in Table 1 and represents our search when we do not apply
any pruning strategies. Each node in the tree stores a sample
subset S′ and the corresponding C(S′). The root represents
the empty set. For each child node, the sample subset has
one more sample than its parent node.

The KρDS algorithm performs a depth-first search
[3] on the enumeration tree. By imposing an order on
the samples, the algorithm is able to perform a systematic
search by enumerating all combinations, i.e., no combina-
tion is missed or revisited. Without loss of generality, let’s
assume the order is s1, s2, . . . , sn. For example, the depth-
first search order on the enumeration tree in Figure 3 is
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Figure 3. Enumeration Tree of the Matrix in Table 1

{s1, s1s2, s1s2s3, s1s2s3s4, s1s2s3s4s5, s1s2s3s4s5s6, s1s2s3s4s6,

s1s2s3s5, s1s2s3s5s6, s1s2s3s6, . . .}.
Among all the subsets that achieve the coverage thresh-

old ρ, only the minimum sample subsets are reported. For
example, if we set ρ = 0.8, only the nodes {s1, s2, s3}
and {s4, s5, s6}, which are below the dashed line in Fig-
ure 3, satisfy the ρ-threshold and subset-size constraints.
Note that among all the nodes below the line, only those
on the boundary need to be examined since nodes below the
boundary have subsets of larger size. Details of the basic
KρDS algorithm are shown in Figure 4.
Input:

• Sample Set S, Marker Set M , Sample-Marker Matrix H
• Minimum Coverage ρ, Maximum Size K, K = |SG|

Output: A set of minimum sample subset, I ,

∀S′ ∈ I, C(S′) ≥ ρ, |S′| ≤ K
Method:

1. Initialize.

• Candidate minimum sample subset list, cList=∅.
• Current sample subset, cSample=∅.
• Remaining sample subset, rSample=S.

2. Enumerate(cSample, rSample).
3. I=the minimum subsets in cList.

Subroutine: Enumerate(cSample’, rSample’)
Method:

1. if |cSample’| ≥ K

2. return.

3. for each si ∈ rSample’

4. if C(cSample’
⋃

{si})≥ ρ

5. Insert set cSample’
⋃

{si} into cList.

6. else

7. cSample”=cSample’
⋃

{si}.

8. rSample”=rSample’ - {si}.

9. Enumerate(cSample”, rSample”).

10. rSample’=rSample’ - {si}.

Figure 4. The KρDS Algorithm

The enumeration tree is dynamically materialized ac-
cording to a depth-first searching order. At each node, the
coverage of the corresponding sample subset S′ is calcu-
lated based on the sub-matrix H ′ = M ′ × S′, where M ′
is the set of markers that are not covered by the sample set
in the parent node. The use of the dynamically generated
sub-matrix can efficiently reduce the runtime of the KρDS
algorithm.

In the worst case, the KρDS algorithm takes exponen-

tial time. In order to accelerate the search, we use several
pruning strategies to reduce the search space.

4.2.1 Pruning Strategy 1: Dynamically Limit the Size
of the Minimum Sample Subset

In the first phase of ESE, the greedy algorithm PGDS pro-
vides an upper bound of the size of the minimum sample
subset. When the KρDS algorithm searches the enumera-
tion tree, it does not need to check any node of more than
K samples.

The size of the minimum sample subsets can also be up-
dated dynamically during enumeration. It is possible that
K may be larger than the minimum size. The value of K is
updated to be the size of the smallest subset S′, satisfying
C(S′) ≥ ρ, found so far. All remaining nodes represent-
ing larger subsets can be pruned from the enumeration tree
without further examination. For example, if K is 9 and the
algorithm finds a subset of 8 samples that can satisfy the
threshold ρ, K is revised to 8 and any subsequent subsets of
more than 8 samples are pruned from the enumeration tree.

Pruning strategy 1 is applied at step 5 of subroutine Enu-
merate() in Figure 4. When cSample’

⋃ {si} is inserted
into cList, its size is compared with that of the smallest sub-
set in cList. If cSample’

⋃ {si} is smaller, K can be up-
dated accordingly and all the subsets in cList having larger
size can be dumped.

4.2.2 Pruning Strategy 2: Order Samples by Pair-wise
Coverage

For each node, we can estimate the increase in coverage for
each sample from rSample′ based on its pair-wise cover-
age with every sample in cSample′. For example, in Fig-
ure 3, consider node cSample′ = {s1, s2}, rSample′ =
{s3, s4, s5, s6}. We know that the pair-wise coverages are:

• s3: C({s1, s3}) = 0.5, C({s2, s3}) = 0.25

• s4: C({s1, s4}) = 0.75, C({s2, s4}) = 0.25

• s5: C({s1, s5}) = 0.25, C({s2, s5}) = 0.75

• s6: C({s1, s6}) = 0.25, C({s2, s6}) = 0.5

For each sample in rSample′, we use the sum of its pair-
wise coverage with each sample in cSample′ as its score.
This score is an (optimal) estimate of the additional cover-
age this sample can bring.

Score(s3) = 0.75, Score(s4) = 1, Score(s5) = 1, Score(s6) = 0.75



We sort, in descending order, the samples in rSample′
based on their scores so that in the sub-tree of node
cSample′ = {s1, s2}, sample s4 and s5 will be added first
followed by s3 and s6. We can see that subsets having larger
coverage are searched first in this case.

The sample sorting is conducted at each node dynami-
cally. The pair-wise coverage of all samples can be calcu-
lated in advance and retrieved to compute the scores. At the
root of the enumeration tree, the samples are initially sorted
according to their order selected by the PGDS algorithm.

Pruning strategy 2 can be used before step 3 of subrou-
tine Enumerate() in Figure 4. Samples in rSample’ are
sorted accordingly.

In some cases where the estimated size of minimum sub-
sets, K, by PGDS is equal to or close to their actual size,
pruning strategy 2 itself cannot reduce the search space dra-
matically. However, when combined with the following
pruning strategy, it always delivers a substantial improve-
ment in efficiency.

4.2.3 Pruning Strategy 3: Estimate a Branch Upper
Bound on Coverage

The coverage of sample subsets generally increases mono-
tonically when adding new samples. For each node in the
enumeration tree, we can calculate an upper bound,
C(cSample′

⋃
rSample′), on the coverage of any sample

subsets represented in the subtree. Any subsets represented
in the branch must have coverage no larger than that value.
We call it the branch-upper-bound. For example, consider
node {s1, s3, s5} in Figure 3, cSample′ = {s1, s3, s5} and
rSample′ = {s6}. The upper bound is C({s1, s3, s5, s6}),
which is 0.825. If the branch-upper-bound of the subtree is
less than the minimum coverage threshold ρ, we can safely
prune the subtree.

It is inefficient to calculate the upper bound at each node
independently by adding up the samples in cSample′ and
rSample′. However, we can calculate it simultaneously
with the depth-first search by tracking the samples that are
absent in the subtree under each node.

Given a node with its cSample′ and rSample′ =
{si1 , si2 , ..., siq

}, its left-most child node has the same
branch-upper-bound. Let cSample′′1 and rSample′′1 be the
current and remaining samples at the left-most child node.
We have

cSample′′1
⋃

rSample′′1 = (cSample′
⋃

{si1})
⋃

(rSample′−{si1})
= cSample′

⋃
rSample′

where si1 is the first sample in rSample′.
For the jth child nodes (1 < j ≤ q) of the current node,

we have

cSample′′j
⋃

rSample′′j = (cSample′′j−1

⋃
rSample′′j−1)−{sij−1}

Therefore, we can calculate the branch-upper-bound of
a node according to the upper bound of its parent node or
its siblings. The branch-upper-bound at the root node is 1
since every sample appears in some nodes. When we pro-
ceed along a branch, this value decreases as more samples
are absent in the sub-tree. For example, if we know that the
upper bound at node {s1, s3} in Figure 3 is 1,

• for its child node {s1, s3, s4}, the upper bound is still
1 because {s1, s3, s4} is the left-most child node of
{s1, s3}.

• for {s1, s3, s5}, sample s4 is absent, its upper bound
becomes 0.875.

• for {s1, s3, s6}, sample s4 and s5 are absent. Its
branch upper bound on coverage becomes 0.75.

Pruning strategy 3 can be used before step 4 of subrou-
tine Enumerate() in Figure 4. If the upper bound on branch
coverage is less than ρ, the subroutine can stop and return
to its previous level.

As mentioned earlier, pruning strategy 2 can improve
the efficiency of pruning strategy 3. After we sort the suc-
ceeding samples at each node in the tree, the last several
branches are likely to be pruned by strategy 3 because they
contain only those samples that have the least increase in
coverage. Our experiments on real datasets suggest that us-
ing pruning strategies 1 and 3 together reduces the runtime
of the KρDS algorithm by 70% − 80%. Combining prun-
ing strategies 1, 2 and 3 can reduce the runtime by more
than 95%.

4.2.4 Pruning Strategy 4: Refine the Branch Upper
Bound on Coverage

In pruning strategy 3, we estimate the branch-upper-bound
using the current sample subset and all its succeeding sam-
ples in rSample’. This upper bound is loose because in
many cases, we cannot include all the succeeding samples
into the current subset. For example, if the current node
represents a subset of p samples and there are q succeed-
ing samples in rSample’, we can at most include a subset
of K − p samples from rSample’ during the search in the
subtree under the current node. If we can calculate the max-
imum increase in coverage after adding any subset of K−p
samples from rSample’, we get a tighter upper bound than
the one in pruning strategy 3.

Suppose that the current sample subset is
cSample = {si1 , si2 , ..., sip

} and the succeeding samples
are rSample = {sj1 , sj2 , ..., sjq

}. cSample covers the
marker subset Ma, Ma ⊂ M , and the uncovered marker
subset is Mb, Mb = M − Ma. Since marker set Mb is
uncovered by cSample, all the samples in cSample have
the same value on each marker in Mb. Therefore, we
can use a dummy sample sj0 to represent the diversity of
cSample on Mb. When adding a subset of samples from
rSample, S′, into the current subset cSample, the increase
of coverage is the coverage of S′ ⋃{sj0} on Mb. We can
calculate the pair-wise coverage on Mb between any two
samples in {sj0 , sj1 , sj2 , ..., sjq

}. Let the set of pair-wise
coverage be Cpair = {c1, c2, ..., cm|m = (q + 1)q/2}.
Note that coverage is still calculated based on |M |, so that
the total coverage on M can be calculated by adding the
coverage on Mb (increase of coverage) and the coverage on
Ma (current coverage) together.

In order to know the maximum increase in coverage after
adding any subset of K − p samples from rSample’, we
need to calculate the upper bound of the coverage of any



(K − p) samples from rSample together with sj0 on Mb.
However, in order to make the problem easier, we loosen the
requirement and calculate the upper bound of the coverage
of any K − p + 1 samples of rSample’

⋃{sj0} on Mb.
According to Theorem 3.1 in Section 3, by recursively

applying Equation 1, we can get the upper bound of the
coverage of any u samples using their pair-wise coverage.
The upper bound should be in the following form

Cmax ≤
(u−1)u/2∑

i=1

ai · C(sj , sk), a1 ≥ a2 ≥ a3... (7)

Now we have q + 1 samples in total and we know the
set of all their pair-wise coverage Cpair, we can calculate
the upper bound of the coverage of any subset of K − p +
1 samples by replacing C(sj , sk) in Equation 7 with the
(K−p)(K−p+1)

2 largest pair-wise coverage in Cpair. If the
pair-wise coverage in Cpair are sorted in descending order,
the upper bound of increasing coverage after adding K − p
samples into cSample is

�C ≤
(K−p)(K−p+1)/2∑

i=1

ai · ci, ci ∈ Cpair (8)

Let C be the current coverage, C = |Ma|
|M | . If C + �C

is still less than ρ, the KρDS algorithm does not need to
search the subtree under the current node because there is
no sample subset in the subtree that is not larger than K in
size and with coverage not less than ρ.

Equation 8 provides a tighter upper bound than the
one in pruning strategy 3 especially when there are large
number of samples in the data. However, in order to
get the upper bound, pair-wise coverage on Mb between
{sj0 , sj1 , sj2 , ..., sjq

} must be computed. Note that the co-
efficients ai in Equations 7 and 8 are constants and can be
calculated for each size of sample sets in advance. The com-
putation and the pruning can be inserted before step 7 of
subroutine Enumerate() in Figure 4. We can see that prun-
ing strategies 3 and 4 are used in different places in the al-
gorithm. In fact, these two strategies can be used together
though strategy 4 provides tighter upper bound. Pruning
strategy 3 is much faster than strategy 4 and, therefore, it is
used as the pre-pruning step before pruning with strategy 4.

Though calculating the pair-wise coverage of
{sj0 , sj1 , ..., sjq

} at each node takes time, we demon-
strate in our experiments that the extra time used for
coverage calculation is negligible compared with the
runtime saved by pruning branches using pruning strategy
4. Also, as a side product, the actual increase in coverage
for adding each sample from rSample′ into cSample′ is
known during the pair-wise coverage calculation. There-
fore, in pruning strategy 2, instead of ordering the samples
by the estimated score, the algorithm can now order the
samples in rSample′ by their actual increase in coverage.

5 Experiments

In this section, we present results on synthetic and real
data to show the efficiency of our algorithms and the effec-
tiveness of the selected sample subsets. One real dataset is

a SNP panel from recombinant inbred mouse strains. The
other two real datasets are of customer review type.

Data

• Perlegen data1: The Perlegen dataset contains
genotypes from 15 commonly used laboratory
mouse strains2, {129S1/SvImJ, A/J, AKR/J,
BALB/cByJ, BTBR T+ tf/J, C3H/HeJ, CAST/EiJ,
DBA/2J, FVB/NJ, KK/HlJ, MOLF/EiJ, NOD/LtJ,
NZW/LacJ, PWD/PhJ, WSB/EiJ} and a reference
strain (C57BL/6J). These 16 strains account for over
85% of all inbred strains used in biomedical research.
The dataset contains 8, 322, 543 SNPs in total. The
dataset is imputed using the method described in [12].

• Congressional Voting Records data3: The voting
dataset includes votes from 435 Congressmen on 16
key votes. The votes can be ’yes’ or ’no’ and are de-
noted by 1 and 0. The 435 congressmen are classified
into two groups, 267 democrats and 168 republicans.

• Jester data4[6]: The Jester dataset contains 4.1 Million
ratings (-10.00 to +10.00) of 100 jokes from 73,421
users. We discretize the data by replacing positive rat-
ings by 1 and negative ratings by 0. Since none of the
73,421 users completes the review for all the 100 jokes,
we use jokes that were reviewed by more than 70% of
the users and then select users who reviewed all these
jokes. Thus, the dataset we use contains 46,268 users
and 30 jokes without missing values.

• Synthetic data: The synthetic data is randomly gen-
erated. The dataset is a binary matrix consisting of
40, 000 rows and 100 columns. We consider the rows
as markers and columns as samples.

The synthetic dataset is mainly used to demonstrate the
efficiency of our algorithms. And the three real datasets are
mainly used to demonstrate the effectiveness of the selected
sample subsets.

Except as otherwise noted, we use all the four pruning
strategies collectively in the experiments because this com-
bination provides the best runtime performance. The algo-
rithms are implemented in MATLAB, and all experiments
are conducted on a PC with CPU P4 3GHz, 1G RAM and
80G HDD.

5.1 Efficiency Analysis

In this section, we demonstrate the efficiency of the
PGDS and the KρDS algorithm using the synthetic data
and some of the real datasets.

1http://mouse.perlegen.com/mouse/index.html
2We regard each mouse strain as a sample.
3http://www.ics.uci.edu/ mlearn/MLSummary.html
4http://www.ieor.berkeley.edu/ goldberg/jester-data/



Scalability

For the synthetic data, we vary the number of rows, the
number of columns and the minimum coverage ρ respec-
tively. The default values for these settings are: number
of rows=40k, number of columns=80 and minimum cover-
age ρ=0.965. While we are varying one of the settings, the
other two use the default values. The runtime performance
of PGDS and KρDS is shown in Figure 5. The runtime of
both algorithms increases linearly when the number of rows
increases in Figure 5(a). And the runtime increases quadrat-
ically when the number of columns and ρ increase for both
algorithms as shown in Figure 5(b) and (c).
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Figure 5. Scalability: Runtime on Synthetic Data

For the real datasets, we only vary the minimum cover-
age ρ setting and use all the rows and columns. Both PGDS
and KρDS can finish searching the Voting data in 1 sec-
ond. Therefore, we only show the runtime performance on
Perlegen and Jester data in Figure 6.
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Figure 6. Scalability: Runtime on Real Data

The runtime performance on the Jester data is similar to
that of the synthetic data for both algorithms. For Perlegen
data, KρDS can even be faster than PGDS because of the
pruning strategies. Also, the runtime of KρDS begins to
drop when ρ is larger than 0.985. The reason is that the
entire searching space becomes smaller when ρ > 0.985.
The minimum subsets have size larger than 9 when ρ >
0.985 and causes the shrinking of the entire searching space
because a subset of 10 samples or more contains more than
half of the samples in the data.

Note that the total runtime of the ESE algorithm is the
sum of the runtime of PGDS and KρDS.

Comparison of Subsets Found by PGDS and
KρDS

As we discussed in Section 4, the sample subsets found
by PGDS may not be the optimal subset, i.e., either there

exists a smaller subset that can achieve the minimum cov-
erage ρ or there exists a subset with the same size but has
larger coverage. Thus, in this section, we compare the sub-
sets found by PGDS and KρDS. In the first part of the
experiments, we vary minimum coverage ρ and compare
the size of the minimum subsets found by both algorithms.
Then we use the set of sizes of the minimum subsets found
by KρDS in the first part, and compare the optimal cover-
age that is achieved by the two algorithms for each of the
subset size. The results are shown in Figure 7.
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Figure 7. Comparison of Subsets

As we can see, on the synthetic dataset, PGDS finds a
larger subset when ρ becomes large. And for subsets of
size 8 and 10, the true optimal subset found by KρDS has
larger coverage than the subset found by PGDS. However,
as shown in Figure 7(c-f), PGDS always find the same opti-
mal subset as KρDS on the real datasets. The result on the
Voting data is the same as the Perlegen and Jester data and
is omitted.

Efficiency of Pruning Strategies

In this section, we compare the efficiency of the pruning
strategies discussed in Section 4. We vary the minimum
coverage parameter ρ and compare the runtime performance
on Perlegen and Jester data. The synthetic data is not used
because it is too large for KρDS to search without any one
of the pruning strategies. And the Voting data is too small
to be used to show the difference.
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Figure 8. Efficiency of Pruning Strategies



Figure 8(a) shows the results on the Perlegen data. We
observe that pruning strategies (1,2,3) and pruning strate-
gies (1,2,3,4) give the best performance, which is orders
of magnitude faster than other strategy combinations. The
reason that pruning strategy 4 does not improve the perfor-
mance significantly when used in combination with strate-
gies 1,2 and 3 is that the Perlegen dataset only contains
16 samples. This is sufficiently small that the two upper
bounds from strategies 3 and 4 are close to each other. Us-
ing only pruning strategies 1 and 2 (sorting) just slightly
reduces the runtime. This is because sorting only helps
the KρDS algorithm find minimum subsets faster, but can-
not reduce the search space by pruning sub-trees. Using
only pruning strategies 1 and 3 saves about 70% − 80% of
the runtime of enumerating with strategy 1 only. Without
sorting, strain subsets offering good coverage are randomly
distributed in the enumeration tree. Strain sorting helps to
bring these branches together in the enumeration tree so that
effective pruning can be achieved.

On the Jester data, the KρDS algorithm can finish the
tasks in reasonable time only with pruning strategies (1,2,3)
or pruning strategies (1,2,3,4). And for pruning strategies
(1,2,3), it also can not afford a minimum coverage ρ larger
than 0.96. As we can see, pruning strategies (1,2,3,4) are
orders of magnitude faster than pruning strategies (1,2,3).
As we discussed in Section 4, pruning strategy 4 has a large
advantage over pruning strategy 3 when the number of sam-
ples becomes large.

5.2 Effectiveness Analysis

In this section, we apply our algorithm on the three real
datasets and demonstrate the effectiveness by analyzing the
selected sample subsets.

Perlegen Data

The Perlegen dataset has 16 samples and more than 8M
SNPs. As we discussed in Section 1, in the design of re-
combinant inbred lines, an important measurement for a set
of lines (samples) is its diversity coverage on the SNPs. A
subset of 8 strains was hand selected for the Collaborative
Cross [2] by biologists based on the phylogenetic relation-
ships assumed for strains. We compare this subset with the
best 8-strain subsets found by the ESE algorithm in Table 2.

Table 2. Perlegen Data: Comparing the 8-strain sub-
sets of the Collaborative Cross with the maximum di-
versity solution found by ESE

Coverage
Collaborative 129S1/SvImJ, CAST/EiJ, PWD/PhJ, WSB/EiJ, 0.8926
Cross Subset NZW/LacJ, C57BL/6J, NOD/LtJ, A/J
ESE Subset 129S1/SvImJ, CAST/EiJ, PWD/PhJ, WSB/EiJ, 0.9575

KK/HlJ, DBA/2J, MOLF/EiJ, FVB/NJ

As we can see, the ESE subset achieves higher cov-
erage than the Collaborative Cross subset. Four strains
are common to both subsets: 129S1/SvImJ, CAST/EiJ,
PWD/PhJ and WSB/EiJ. Aside from 129S1/SvImJ, all
strains are wild-derived from the three major Mus musculus

subspecies. We plot the distribution of the diversity cover-
age of random set of 8 samples in Figure 9. The coverage
of the Collaborative Cross subset, 0.8926, is labelled by the
red dotted line in the figure. The Collaborative Cross subset
has coverage larger than more than 70% of the randomly se-
lected 8-sample subsets while the ESE subset is obviously
the one has the largest coverage.
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Figure 9. Perlegen Data: Distribution of Diversity
Coverage of 8-sample Subsets

Voting Data

The Voting data includes votes of the 435 Congressmen
on 16 key votes. We consider the congressmen as markers
and the key votes as samples. Our ESE algorithm finds two
sample subsets that consist of 5 samples and have diversity
coverage = 1, i.e., all the markers (congressmen) are cov-
ered. The two subsets are listed in Table 3.

Table 3. Voting Data: Subsets of 5 Samples found by
ESE that have coverage = 1

Subset 1 handicapped-infants, physician-fee-freeze
religious-groups-in-school, mx-missile, duty-free-exports

Subset 2 physician-fee-freeze, el-salvador-aid
anti-satellite-test-ban, mx-missile, synfuels-corporation-cutback

As we discussed in Section 1, these subsets can be used
to generate simpler yet more accurate classification models.
We use Weka 5, which is a data mining software in Java, to
build different classifiers based on all the 16 samples and
the two 5-sample subsets. Classification accuracy is calcu-
lated by using 10-fold cross-validation. The accuracy of the
classifiers are listed in Table 4.

Table 4. Voting Data: Accuracy of Classifiers based
on full set and subsets
Classifiers Full Sample Set Subset 1 Subset 2 Random Subset

RandomTree 92.8% 95.4% 95.17% 86.66%
PART 95.4% 95.17% 95.86% 86.89%

NaiveBayes 90.11% 94.25% 93.33% 86.66%
KStar 92.87% 94.25% 93.56% 86.66%

BFTree 95.4% 95.17% 95.86% 87.12%
NBTree 95.4% 95.4% 95.86% 86.66%

SMO(SVM) 95.86% 95.63% 95.63% 87.12%

As shown in Table 4, except for SMO(SVM), the high-
est accuracy always occurs in one of the subsets found by
ESE for all the other classifiers. As expected, the randomly
selected subset which also consists of 5 samples always has
the lowest accuracy. Moreover, the decision trees built by
NBTree on Subsets 1 and 2 are much simpler than that of
the full sample set because of the smaller number of sam-
ples. The trees are omitted here for space restriction.

5http://www.cs.waikato.ac.nz/ml/weka/



Jester Data

We discussed in Section 1 that subsets of samples can
also be helpful in designing customer review study. By ap-
plying our ESE algorithm on the Jester data, we get many
sample (joke) subsets that are small and cover most markers
(reviewers). Given the minimum coverage ρ, the number of
qualified sample subsets and their sizes are listed in Table 5.
The sample (jokes) subsets in Table 5 suggest that review-
ers’ ratings on a small number of objects are sufficient to
retain most diversity.

Table 5. Jester Data: Number of qualified sample
subsets and their sizes for given ρ

ρ size number of qualified subsets
0.9 5 122
0.95 8 73
0.97 10 34

According to the experiment results we presented in this
section, we demonstrated that our algorithms are both effi-
cient and effective.

6 Conclusion and Discussion

In this paper, we introduced the Parameterized Diver-
sity Cover problem: given a sample-marker dataset and a
minimum coverage threshold ρ, find the minimum sample
subset that achieves coverage ρ. We propose an efficient
exhaustive subset enumeration algorithm (ESE) which can
find the optimal solution. The algorithm has two stages: (1)
a greedy approach, PGDS, is used to first find an approx-
imate solution for minimum subset with coverage no less
than ρ; (2) an enumeration algorithm, KρDS, then searches
for the optimal solution in the enumeration tree using sev-
eral pruning strategies. We have evaluated the performance
on three real datasets.

In the diversity cover problem, each marker is given
equal weight. The problem can be extended to allow a
weight to be associated with each marker. The weight can
be assigned to reflect the importance of each marker and
may be dynamically adjusted. For instance, groups of mark-
ers may be highly correlated. The weight of each uncovered
marker is 1 before any sample is selected, and is assigned
to the lowest dissimilarity of this marker to any covered
marker6. The goal of this weighted diversity cover problem
is to select samples such that the total weight of all markers
is maximized.

In our future work, we will continue to investigate and
evaluate alternative approaches that may offer further per-
formance gains. An alternative greedy strategy for PGDS is
to start from the full set of samples and remove the sample
that minimizes the decrease in coverage in each subsequent
step until no sample can be further removed without vio-
lating the minimal coverage requirement. Note that a sim-
ilar strategy can also be employed in the KρDS algorithm
which enumerates the sample subsets that can be removed

6A marker is weighted 0 if it has perfect correlation with a covered
marker and is weighted 1 if it is completely independent of any covered
marker.

without losing more than 1 − ρ coverage. In some cases
where a minimum subset of coverage ρ contains more than
half of the samples, these alternative strategies can have a
better runtime performance because they imply a smaller
search space.
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