EUROGRAPHICS 2001 /

Real-Time Simulation of Defor mation and Fracture
of Stiff Materials

Matthias Miller ~ Leonard McMillan ~ Julie Dorsey ~ Robert Jagnow

Laboratory for Computer Science, Massachusetts Institute of Technology

Abstract

Existing techniques for real-time simulation of object deformation are well suited for animating soft materials
like human tissue or two-dimensional systems such as cloth. However, simulation of deformation in malleable
materials and fracture in brittle materials has only been done offline because the underlying equations of motion
are numerically stiff, requiring many small steps in explicit integration schemes. In contrast, the better-behaved
implicit integration techniques are computationally expensive, particularly for volumetric meshes.

W present a stable hybrid method for simulating deformation and fracture of materialsin real-time. In our system,
the effects of impact forces are computed only at discrete collision events. At these impacts, we treat objects as if
they are anchored and computetheir static equilibriumresponse using the Finite Element technique. Satic analysis
is not time-step bound and its stability is independent of the stiffness of the equations. The resulting defor mations,
or possible fractures, are computed based on internal stress tensors. Between collisions, disconnected objects are
treated asrigid bodies. The simulator is demonstrated as part of a system that provides the user with physically-

Wbrkshop on Animation and Smulation

based tools to interactively manipulate 3D models.

1. Introduction

Modeling and simulation of deformable objects has a long
history in material sciences and engineering. In computer
graphics, deformable objects have been studied for nearly
two decades 6, but, with very different objectives. In graph-
ics applications, the primary concern is usually the compu-
tational efficiency of generating plausible behaviors, rather
than the accurate prediction of exact results. As long as
the simulation looks realistic, simplifications are deemed ac-
ceptable.

Deformable models have been used across a wide range
of computer graphics applications, including the animation
of cloth, facial expressions, and general non-rigid models. In
these cases, the simulation is typically performed off-line be-
cause simulation time is significantly slower than wall clock
time.

Another application for deformable models is in real-
time systems, such as surgical training and virtual sculpt-
ing, where users interactively modify deformable models. In
real-time systems, the speed of the simulator and its stability

(© The Eurographics Association 2001.

are the two major concerns. One approach toward achieving
both performance and robustness is to use simplified phys-
ical models, such as mass-spring models 6. However, it is
difficult to express important material properties with these
approaches, such as the stress-strain relationship. Alterna-
tively, the computational cost of continuum methods are con-
siderably more expensive but they allow for the modeling of
volume conservation and yield stress information that is use-
ful for determining fracture positions and orientations. Con-
tinuum models have mainly been used in off-line simulators.
Real-time performance has only been achieved in the simu-
lation of soft materials such as human tissue or in the simu-
lation of cloth represented by a 2D mesh.

In this paper, we describe techniques for simulating the
deformation of malleable materials, such as soft metals and
plastics, and the fracture of brittle materials, such as stone
or glass. Our approach employs continuum methods and op-
erates in real-time. We have integrated these techniques into
a physically-based animation system for objects represented
by volumetric tetrahedral meshes. Simulating the dynamics
of such materials is computationally expensive because ex-
plicit integration of the equation of motion is stable only for

Muller, McMillan, Dorsey and Jagnow / Real-Time Smulation of Deformation and Fracture

small time steps. The range of possible time steps is bound
by the largest natural frequency of the system. In contrast,
implicit integration is stable independent of the size of the
time step, but at every step, a linear system of equations has
to be solved, which makes it computationally much more ex-
pensive. Implicit integration as been used in real-time simu-
lation, but only for 2D meshes, such as cloth 4.

We solve these problems by exploiting the fact that the
transient behavior of stiff materials can be neglected in a
real-time simulation without significant loss of realism. The
natural frequencies of stiff materials tend to be higher than
the frame rate of the simulator, and these vibration modes
are quickly damped, at least visually, by the object’s mass.
This makes simulation of these high frequency vibrations
dispensable. As long as an object is anchored, we only com-
pute its static equilibrium response to forces. No time steps
are involved in the process of finding the object’s final steady
state. By using this approach, we still have access to all the
stress information needed to deform the model and/or sim-
ulate its fracture. However, static analysis cannot be used
to compute the trajectories of disconnected pieces. Because
we neglect internal vibrations, we treat disconnected pieces
as rigid bodies between impacts. Their trajectories are com-
puted using rigid body dynamics. When a collision occurs,
we compute the effect of the impact force using a static anal-
ysis. The body is fractured according to its internal stresses,
and new bodies are generated if the fracture process causes
fragments to become disconnected.

1.1. Related Work

To improve the numerical stability of the simulation of stiff
materials Terzopoulos et al.1% proposed a hybrid model that
breaks a deformable object into a rigid and a deformable
component. The rigid reference body captures the rigid-body
motion, while a discretized displacement function gives the
location of mesh nodes relative to their position within the
rigid body. This method is intended to improve the numerical
condition of the underlying equations of motion, however, it
does not significantly decrease the computational cost of the
simulation. Our approach is similar, but it is hybrid in time.
We neglect the displacements from the rigid reference frame
between collision events, which makes the simulation both
stable and fast. However, when objects collide, we compute
the displacements, stresses and fracture bases on a continu-
ous model.

O’Brien etal.?, described a technique for simulating brit-
tle fracture of stiff materials. They discretized the continuum
mechanics equations using the Finite Element method based
on constant strain tetrahedra. Their use of an explicit inte-
gration scheme restricts the time step of the simulation to
very small values that are not suitable for real-time anima-
tion. Another problem is the crack-tip propagation or growth
rate. Because the cracks can only grow one tetrahedron per

time step, many iterations are required to break an object
in two or more pieces. Our approach is similar in that we
use the same continuous model and the constant-strain tetra-
hedron approximation to compute displacements and stress
tensors. However, we solve for static equilibrium configura-
tions rather than integrating the general equation of motion,
and we do this only at collision events. We use the orienta-
tion of stress tensors to compute fracture planes and cracks,
thus making the rate and size of crack propagation indepen-
dent of the tetrahedral mesh’s granularity.

Real-time performance in simulating deformation based
on continuous models has been achieved for soft materials
such as human tissue for use in virtual surgical training sys-
tems. Zhuang * uses the Finite Element method to simulate
global deformation of human tissue in real-time. However,
his explicit integration scheme is appropriate only for soft
materials and not suitable for cloth — which is stiff in cer-
tain directions — or other stiff materials like plastic or stone.

Baraff et al.# describe a technique for simulating cloth us-
ing an implicit integration scheme. The implicit integration
method can take large time steps without loss of stability.
However, for every time step, a system of linear equations
has to be solved. Cloth is represented as a 2D mesh of trian-
gles. The method is not as well suited for 3D meshes of tetra-
hedra. First, the number of vertices is substantially larger in
a volumetric model, and second, the linear system is not as
"banded" as in the 2D case, which makes implicit integration
computationally expensive for 3D objects.

Recently, Smith et al.® have proposed a novel approach
for simulating brittle fracture of stiff materials in real-time.
They represent objects as a set of point masses connected
by distance-preserving linear constraints. The forces exerted
by these constraints during impact are computed using La-
grange multipliers. In contrast to our approach, these rigid
constraints do not allow for computing object deformations
caused by collision forces, nor do they yield strain orienta-
tion information that we need for our fast crack propagation
procedure.

1.2. Overview

In the next section, we describe the continuous model that
we use. We discretize it using the Finite Element method
based on constant strain tetrahedra. After showing how to
compute static responses, we introduce our hybrid algorithm
to simulate the dynamics of freely moving objects. Then we
show how to accelerate the core procedures of the Finite EI-
ement method. Last, we present a collection of our results.

(© The Eurographics Association 2001.

Muller, McMillan, Dorsey and Jagnow / Real-Time Smulation of Deformation and Fracture

2. Modeling Deformation

Our virtual animation system provides tools for manipulat-
ing objects. These objects are represented by 3-dimensional
tetrahedral meshes. A tool generates a local force field. The
shape of that force field depends on the type of tool as well
as on the direction and intensity of its application. The task
of the physical simulator is to compute the deformation of
the object and the fracturing process based on the applied
force field.

A variety of models have been used to simulate the be-
havior of deformable objects. Mass-spring models are sim-
ple and fast to compute. However, models that treat objects
as a continuum yield a range of important additional infor-
mation, not to mention results that are more accurate. The
deformations of objects in a continuous model are described
by a set of partial differential equations. For realistic objects,
these equations cannot be solved analytically. The Finite EI-
ement method is a standard technique to solve partial dif-
ferential equations 1. Here, the object is subdivided into el-
ements of finite size. Over an element, the continuous de-
formation field is interpolated from deformation values at
the nodes. By connecting elements, the deformation field is
interpolated over the entire object in piecewise continuous
fashion. Instead of solving for a continuous vector field, de-
formations at discrete points or nodes in the objects have to
be computed, and the differential equations at these nodes
are treated as set of simultaneous algebraic equations.

2.1. Continuous Model

In one dimension, Hooke’s law of elasticity can be stated as
follows:

ARy Al

The scalar stress c measures the force AR, applied per-
pendicular to the surface AA. This force causes a deforma-
tion (strain) € of the object measured by the change in length
perpendicular to AA with respect to the original length of the
object. The scalar elasticity Modulus E relates the strain € to
the stress .

In three dimensions, forces, orientations of surfaces, and
node displacements can be represented as 3-dimensional
vectors, and the quantities that relate them, namely ¢ and €
can be expressed as 3 by 3 matrices. The derivation of these
tensors can be found in continuum mechanics textbooks 2.
In this paper, we focus primarily on how these quantities can
be computed efficiently. The following equations are very
similar to those presented by O’Brien et al. 7, although we
have chosen to use matrix notation for reasons of compact-
ness and ease of manipulation. Matrix notation also exposes

(© The Eurographics Association 2001.

various symmetries that we will later take advantage of to
speed up the computation of forces.

Let u = [ug,up, U3]T be the spatial coordinates of an un-
deformed object point. The deformation of the object can
be described by a function p(u) = [p1, p2, p3] ", which maps
locations in the undeformed coordinate frame to locations
in world coordinates. This function must be differentiable
within connected pieces of the object. In three dimensions,
there are several ways to measure deformation. One ap-
proach is to use Green’s strain tensor, which is invariant with
respect to rigid body transformations applied to p, and van-
ishes when the material is not deformed. It is accurate for ar-
bitrary deformations. However, the fact that it is non-linear
causes some difficulties that we will treat later. Green’s 3 by
3 symmetric tensor reads:

e=Ju(p)Ii(p) -1, @)

where Ju(p) is the Jacobian of the vector function p with
respect to the vector u.

Hooke’s law relates stress, , to the strain, €. For isotropic
materials, this relation can be expressed using only two con-
stants pand A, which are the Lamé constants of the material:

0 = 2ue + ATrace(e)l 3)

Both the strain and stress tensors are symmetric and func-
tions of the material coordinates u. They are used to compute
the elastic potential density, 1, as

n= %Trace(cs). (4)

The total elastic potential is obtained by integrating n over
the volume of the body. According to the principles of en-
ergy conservation, the internal work (elastic potential) has
to be equal to he external work done by the external forces.
Thus, given an external force field, the deformation function
p can be computed as the solution to a partial differential
equation.

2.2. Finite Element Formulation

The Finite Element method approximates the deformation
function p as piecewise smooth between discrete elements.
The elements can be of arbitrary shape as long as they share
nodes and faces with adjacent elements and cover the re-
gion of interest. We use tetrahedral meshes because they
are simple, flexible and computationally inexpensive. Within
a tetrahedron, a linear approximation of p is used. Such
linear deformations yields constant strain and stress ten-
sors within each element. Therefore, these quantities can be

Muller, McMillan, Dorsey and Jagnow / Real-Time Smulation of Deformation and Fracture

moved outside of any integration over an element’s volume.
Like O’Brien et al. 7, we assume constant strain tetrahe-
dra and use barycentric coordinates for interpolating within
them. We will restate these formulas and later show how to
compute them efficiently as well as show how to compute
the static equilibrium using a non-linear strain tensor.

Let my, my, m3, my be the coordinates of the four nodes
of a tetrahedron in the undeformed material coordinate
frame, and let X1, X2, X3, X4 be their deformed world coordi-
nates. First we need the linear continuous deformation func-
tion p(u) for this tetrahedron, which maps m; to its corre-
sponding X;. Let b = [by, by, bs, b4]T be barycentric coordi-
nates defined in terms of the element’s nodal positions in the
undeformed coordinate frame.

u _ mg mp M3 My
[1}_{1 11 1 P ©)

We use these barycentric coordinates b to identify the in-
terpolated point, u, with its corresponding position in world
coordinates, p:

p X1 X2 X3 X
HE R e

These relations can be combined to define a direct map-
ping

O el LT R
where

[mp omy o mg my -t 8

B_[l 1 1 1}' ®

This defines our linear deformation function p, allowing
the computation of the strain tensor, €, the stress tensor, ¢
and the potential density n defined in Eq. 2, Eq. 3 and Eq. 4.
These terms turn out to be constant within each element.

The elastic force on the ith node, fj, is defined as the par-
tial derivative with respect to x; of the elastic potential den-
sity, 11, integrated over an element’s volume. Using Eq. 4 and
Eq. 7 we get

f = ‘—2’ BGoG B x;. ©)

where v is the element’s volume in the undeformed coordi-
nate frame and where

(10)

OO OoOR
oo o
oOPFr OO

In Section 3 we discuss how to compute these force vec-
tors efficiently by exploring symmetry and other properties
of the strain and stress tensors.

In order to compute the static equilibrium, we also need
to compute the Jacobian of the internal forces and stresses
with respect to the nodal positions x;. First, we rewrite Eq.
9:

[f1.f2.f3,f4]T = FE(xq. ...). (11)

Only the deformed coordinates, x;, of FS vary since the
undeformed coordinates m; are constant during the anima-
tion. The index e represents element number e in the mesh.
For technical reasons, we expand Fg to the unprimed func-
tion Fe which has the positions of all N nodes in the mesh
as input and produces force vectors for all nodes. It ignores
positions of nodes that do not belong to element e and pro-
duces zero forces for these nodes. Now, the global function
F can be computed as a sum of all the Fe’s, as forces coming
from adjacent tetrahedra can be added at the nodes

E
[fl, ..,fN]T = F(Xl7 ..,XN) = z Fe(Xl,..,XN), (12)
e=1

or simply,

f=F(x) (13)

where f = [fq, ..,fN}T and x = [x1, ..,xN}T.

2.3. Static Analysis

In a static analysis, we solve for the positions of all nodes
(x) such that the internal forces F(x) are in balance with the
externally applied forces fext

F (Xeq) = fext. (14)

To compute the coordinates Xeq, We have to solve a non-
linear system of 3N equations. The non-linearity of F is due
to the fact that we are using a non-linear strain tensor in Eq.
2. The most common method to solve systems of non-linear
algebraic equations is the Newton-Raphson iteration 8. First
we replace F(x) by its first-order Taylor series approxima-
tion at xy:

(© The Eurographics Association 2001.

Muller, McMillan, Dorsey and Jagnow / Real-Time Smulation of Deformation and Fracture

F (X +AX) = F () + J(x) Ax+O(||Ax|?) (15)

where J € R33N s the Jacobian of F and J;j = g—)'(zj!. We
can now rewrite Eq. 14 as

F(xeq) = F(xk+Ax) = F(xx) +I(Xk) AXx =fext (16)

or

J(xi) AX = fext — F (Xg). 17

Given an estimate of xy for xeq, we first evaluate J at po-
sition xi and solve this linear system for Ax. Then, Xyy1 =
Xk + AX is the next guess for Xegq.

2.4. Simulating Plastic Behavior

So far, our analysis has dealt with only perfectly elastic ob-
jects. Such objects remain deformed as long as forces are
applied. When the forces are removed, such objects resume
their original shape. There is another interesting class of ma-
terials that exhibit plastic deformations, such as malleable
metals or clay. A perfectly plastic material absorbs the elas-
tic energy. That is, it keeps its deformed shape when the
forces are removed.

To simulate the plastic behavior of malleable materials,
we proceed as follows: Whenever the deformed coordinates
x deviate too much from the original shape of the object m,
we copy the deformed world coordinates to the undeformed
coordinates, thereby absorbing the elastic potential energy.
Figure 5 shows a clay teddy bear. The deformations caused
by impacts are absorbed and accumulate over time.

2.5. Fracture Modeling

In the process of computing the forces for the static analy-
sis, the stress tensors for all tetrahedra in the mesh have to
be evaluated. The stress tensor ¢ is a symmetric 3 by 3 ma-
trix and has thus 3 real eigenvalues. These eigenvalues corre-
spond to the principal stresses, and their eigenvectors to the
principal stress directions 1. A positive eigenvalue indicates
tension while a negative value represents compression.

The maximum tensile stress criterion assumes that frac-
ture of a material occurs when the maximum tensile stress
exceeds a specific stress threshold, which is a material pa-
rameter. For all tetrahedra, we evaluate the largest eigenvalue
dmax Of . If dmax is greater than the fracture threshold of the
material, we split the tetrahedral mesh along a plane o per-
pendicular to the eigenvector of dmax. Most isotropic materi-
als break in this way, since this is how the greatest deforma-
tion energy is released 5. Depending on the size of dmax and

(© The Eurographics Association 2001.

Figure 1: Tetrahedra within radius r ;5. from the tetrahe-
dron under tensile stress are marked depending on their po-
sition with respect to the fracture plane o

the material type, we determine a radius r f,5c of impact. All
tetrahedra within distance r ;5 from the greatest stress tetra-
hedron, where the crack originates in our model, are marked
with a plus or a minus depending on whether their center of
mass lie on the positive or negative side of the fracture plane
o. Then, tetrahedra with opposite signs are disconnected (see
Figure 1). The orientation and position of o can also be used
to split large tetrahedra before the mesh is separated (Figure
4).

O’Brien 7 models fracture by splitting single tetrahedra
per time step. A dynamic crack growth simulation over mul-
tiple time steps is more accurate than our technique. How-
ever, realistic results can only be achieved with very small
time steps because cracks within brittle materials propagate
at very high speeds (at approximately the speed of sound
within the material) 5. The crack growth rate of our tech-
nique is independent of both, the time step and the granular-
ity of the tetrahedral mesh. Both properties are crucial if the
time step size of the simulator does not permit the compu-
tation of a more accurate crack propagation. Moreover, the
fact that cracks in homogeneous isotropic materials tend to
be locally planar ® justifies our simplified approach.

2.6. Dynamics

Static analysis can only be performed for supported objects.
We therefore anchor our models to a ground plane before
forces are applied — just as objects have to be fixed to a
workbench before they can be machined. For simulating free
floating objects, an anchoring method that captures their mo-
tion and dynamics is needed. The standard technique for
simulating the dynamics of deformable objects is to integrate
Newton’s equations of motion using numerical methods like
Euler’s integration scheme. The equations of motion used in

Muller, McMillan, Dorsey and Jagnow / Real-Time Smulation of Deformation and Fracture

conjunction with the Finite Element method have the follow-
ing form:

MX+CX+F(X) Zfext, (18)

where the coordinates x are functions of time, x and X their
time derivatives, M is the mass matrix and C the damping
matrix 3. At equilibrium, when x = Xeq, X =0and x =0, Eq.
18 becomes Eqg. 14. The dynamic equation defines a coupled
system of 3N ordinary differential equations.

To solve the equations of motion, the continuous 3N-
dimensional function x(t) is approximated by a series of
vectors x°,x%,...x",..., where x" approximates X(nAt). In
a first step, Eq. 18 is transformed into a system of 2 x 3N
equations of first derivatives

X =V

Mv =-Cv— F(X) +fext ’ (19)

where v is an additional vector of 3N velocities. Although
there are mathematically more accurate integration methods,
the Euler method is more numerically stable than higher or-
der methods per number of function evaluations, especially
when dealing with very stiff equations 8. The implicit form
of Euler’s method approximates Eq. 19 by

Xn+1 — Xn +Atvn+l
MV — MV At(—CvMH - F (XM 3.
(20)
In order to find the values of xX™* and v"**1, a coupled

system of nonlinear algebraic equations has to be solved. As
with our static analysis, we use the Newton-Raphson method
to find a solution iteratively. Only the diagonal entries of the
Jacobian generated by Eq. 20 differ from the Jacobian used
in the static analysis Eq. 17 if C and M are lumped (diago-
nal).

2.7. Hybrid Dynamics

Itis possible to simulate a few hundred elements in real-time
using implicit integration and the fast Jacobian-computation
discussed in Section 3. However, for simulating even larger
models efficiently, we have devised a hybrid dynamics ap-
proach. The key idea is to separate rigid body dynamics from
internal effects such as vibration and fracturing.

We evaluate elastic forces only during collision events
while treating the body as rigid otherwise. This is a rea-
sonable simplification for stiff materials. As discussed pre-
viously, the natural frequencies of stiff materials tend to be
much higher than rendering frame rates, and these vibrations
are quickly damped. Therefore, this approximation has little

impact on the visualization. Malleable materials that absorb
the deformation energy of collisions can also be modeled
using this simplification if we assume that all deformations
occur at the instant of contact.

We compute the rigid body components of every free-
floating object as follows:

M = Xm
0 1
Xem = 7 2 MiXi
(21)
i = X —Xem

10 = Semererid —rarg),

where M is the object’s total mass, xgm is the center of mass,
ri is the offset of a point from the object’s center of mass,
and 1° is the body’s inertial tensor, which is a symmetric
3 x 3 matrix. We describe the orientation of the body by a
3 x 3 orthogonal matrix A such that the actual positions of
vertices can be evaluated as Xj = X¢m + Arj.

Each rigid body has four state variables, its position Xcm,
its center of mass velocity vem, its rotational orientation A,
and, its angular velocity m. In general, these states can be
initialized according to specific user inputs or according to
simulation objectives.

In the case where a new rigid body can also be generated
due to a fracture, the state of all elements in the child compo-
nents are initialized based on the previous state of the parent
object. Each child’s state variables are initialized as follows:

ng = ng + P x (Xem — Xgm)
A" — Identi
v (22)
o = o
L0 — 190

where the superscript p indicates a state value of the parent
body.

Using Euler’s method, we evaluate each body’s state vari-
ables for the next time step based on its current state as fol-
lows:

XQFF1 = X¢m+ At Vi

ViRl = Vi AR

AL = AT AL " X A -

LML = LAty (ri x i))
- | | I

|n+1 — An+1|0(An+1)T

(DI'H-J. — (I n+1)71|_n+1.

(© The Eurographics Association 2001.

Muller, McMillan, Dorsey and Jagnow / Real-Time Smulation of Deformation and Fracture

Figure 2: Only tetrahedra within radius g from collision
point P are deformed. All other tetrahedra are fixed and sup-
port the object for a static analysis

2.7.1. Collision Response

Whenever a collision occurs, the effect of the impact force
on the body is evaluated. Here, our method deviates from
a pure rigid body simulation. As a first step, we compute
the deformation caused by the collision force using equation
Eq. 14. For a static analysis, the body must be anchored.
We fix the positions of all tetrahedra that are further away
from collision point P than a distance rq (see Figure 2).
The radius rqq is a user-specified simulation parameter that
is typically defined as fraction of the size of the rigid body.
Anchored tetrahedra model the effect of the body’s inertia.

Once the deformed coordinates are determined, the stress
tensors and fracture planes can be computed as described
in Section 2.5. After the fracture process, the old body is
deleted and one or more child bodies are generated, depend-
ing on whether the body gets disconnected. These new bod-
ies inherit dynamic properties from their parent body via Eq.
Eq. 22.

2.8. Collision Detection

Performing real-time collision detection between de-
formable rigid bodies proves challenging for a variety of
reasons. Vertex positions within a single rigid body are con-
stantly changed as the body is deformed by collision forces.
This dynamic characteristic of the data limits possibilities
for precomputing efficient data structures. It also creates a
potential for intra-object collisions. Furthermore, the rigid
bodies in our system are rarely convex, which limits the
use of common closest-feature tracking algorithms. Finally,
as new bodies are generated by the fracture algorithm, the
faces of the new rigid body are in close proximity to the
faces of the parent body. Thus, even though the bodies are
not in contact with one another, boundary hierarchy algo-
rithms will likely have to traverse the data to each of its leaf
nodes and check each pair of neighboring faces for intersec-
tion. Bounding hierarchies are efficient when the rigid bod-
ies are separated, but cumbersome during the fracture pro-

(© The Eurographics Association 2001.

cess, when bodies tend to be closely aligned along irregu-
larly shaped interfaces.

To determine regions of possible collision, we divide our
model space into a regular three-dimensional grid, and then
walk through all of the rigid bodies, marking each grid cell
with the rigid bodies that lie inside. For cells containing mul-
tiple rigid bodies, we look for intersections between the ver-
tices of one body and the tetrahedral subvolumes of the other
bodies. In practice, the cost of this method does not vary sub-
stantially as the positions of the bodies are changed.

The algorithm has two primary shortcomings. First, by
only checking for vertex-tetrahedra intersections, it is pos-
sible to miss some collision events, such as edge-edge colli-
sions. Furthermore, it ignores intra-object collisions, which
occasionally result from substantial model deformation.

3. Implementation

For real-time simulation, fast computation of the core pro-
cedures of the Finite Element method is crucial. We have
achieved a ten-fold speedup by taking advantages of special
properties of the strain and stress tensors.

3.1. Forces

Most of the computing time is spent within the computation
of the nodal forces f; based on their actual coordinates X; in
Eqg. 9. A direct implementation requires 4 x 4 x 3 x 3 x 2 =
288 multiplications. We reduce this number dramatically by
first splitting the sum into two parts, the evaluation of 4 x 4
weights

W =BGoG' B’ (24)

with G as defined in Eq. 10, and the computation of the force
components:

fi = V—OIWXi (25)
2

Fist we note that the f; are independent of the undeformed
position and the orientation of the tetrahedron, which means
that we can make [my,...,my] lower triangular via a rota-
tion (as determined by a QR decomposition). This causes
Boo, Bo1 and Pio to be zero. Then we precompute all prod-
ucts BjjBw . By taking advantage of the symmetry in Eq. 24
of and the zero entries, only 45 values need to be computed
and stored. This computation can be performed before sim-

ulating, or whenever a new tetrahedron is generated.

Second, because the stress tensor is symmetric, we have
Wij = wii. The fact that Boo, Bo1 and B1o are zero cancels out

Muller, McMillan, Dorsey and Jagnow / Real-Time Smulation of Deformation and Fracture

most of the addends in Eqg. 24. By unrolling all the loops,
and making use of the above observations, we achieved a
speedup of 10.

3.2. The Jacobian

For static analysis as well as for implicit integration in a dy-
namic analysis, we need the Jacobian J of F. The 3N by
3N matrix J can be computed by adding the local 12 by 12
matrices Je of each element. Also, if during the simulation
tetrahedra are deleted or generated by the fracturing process,
their matrices can be subtracted and added dynamically to
the global matrix J. The components of Je are

ofij

aer’
where fjj is the jth component of the force vector at the
ith node of tetrahedron e and xs is the sth component of the
deformed coordinate of noder (i,r€1...4and j,s€1...3).
The derivatives of the weights with respect to xrs are

(26)

W =BGo'G'BT, 27)

where ¢’ is the the derivative of the stress tensor with respect
to xrs. For derivatives of the forces we get

fij = VTO'(w’xi +Wx)) (28)

The acceleration methods discussed in the previous sec-
tion can also be applied to computation of the entries of J,
and likewise results in a ten fold speedup.

3.3. Linear Solver

Static analysis yields a linear system (Eq. 17) of the form
Ax = f. It is impractical to solve this linear system directly.
As a result, iterative solution techniques are commonly de-
ployed. We use the iterative Conjugate Gradients method 8 to
compute an approximation of x and smooth the approxima-
tion using the Gauss-Seidel method. The speed and stability
of the Gauss-Seidel method can be improved significantly by
simultaneously solving the three equations of every vertex
of the tetrahedral mesh called Block-Gauss-Seidel-method
of order 3.

4. Results

The following examples demonstrate that with our hybrid
simulation technique, malleable and brittle objects can be
animated in real-time without significant loss of realism. All

animations are computed with rates in the range of 5 to 10
frames per second on an SGI Octane 2 (R12000, dual 400
MHz). The integration of the rigid body equations takes be-
tween 10 to 20 milliseconds per time step in all the exam-
ples. The time to compute deformation and fracture depends
on the number of tetrahedra in the object and for our mod-
els (1000 - 4000 tetrahedra) varies between 10 and 80 mil-
liseconds. The real-time system can also dynamically texture
exposed surfaces without substantially impacting the frame
rate.

A video demonstration in AVI format can be downloaded
from our webpage at graphics.lcs.mit.edu/simulation.

4.1. Vase

The frames from the animation sequences shown in Figures
3 and 4 demonstrate brittle fracture of a china vase com-
posed of 1440 tetrahedra striking the ground. Because of the
material properties of the object, the vase fractures with only
minimal deformation. Cracks grow instantaneously and sep-
arate the body into multiple new objects. The velocities and
angular momenta of these objects are derived from the state
of the original object as described in Section 2.7. Pictures
(@) and (b) of Figure 7 show internal tensile and compres-
sive stresses in red and green respectively. Because stress is
measured by a tensor rather than a scalar, a tetrahedron can
be under tensile and compressive stress at the same time. We
only display the largest stress component. This is why green
and red tetrahedra may appear next to each other.

4.2. Clay Teddy

Figure 5 shows a teddy bear modeled with 3747 tetrahedra.
It is made of soft clay that deforms at the instant of impact.
The deformations are computed as the static response to col-
lision forces, which are absorbed by the material. After sev-
eral hits (a), the bear’s shape (c) deviates substantially from
the undeformed model (b).

4.3. Cinder Blocks

Our third example demonstrates a real-time collision detec-
tion sequence in which one cinder block is dropped onto an-
other (see Figure 6. Each block is modeled with 824 tetra-
hedra. Our system renders solid textures to the exposed sur-
faces of the blocks, dynamically generating new textures as
additional faces are exposed by the fracture process. Figure
7(c) shows the internal stresses at the moment of impact.

5. Conclusions

We have described a fast method for simulating the deforma-
tion and fracture of malleable and brittle objects in real time.

(© The Eurographics Association 2001.

Miiller, McMillan, Dorsey and Jagnow / Real-Time Smulation of Deformation and Fracture

Figure 3: Drop of a vase demonstrates brittle fracture

Figure 4: The appearance of the fracture boundaries are improved by splitting tetrahedra before the mesh is separated

By employing a hybrid simulation strategy that alternates be-
tween a rigid body dynamics simulation and a continuum
model at the point of impacts, we are able to compute robust
solutions to otherwise stiff system equations. Our continuum
model finds the static equilibrium of the system after all the
initial transient behavior has settled out. The added informa-
tion provided by this solution allows us to compute plausible
deformations and fracturing of an interesting class of plastic
and brittle materials.

One limitation of our system is that it only considers de-
formation and fracture behaviors at the instant of contact.
We have also found that the problem of real-time collision
detection for object in a near-contact state along a signifi-
cant boundary, such along a fracture line, is at least as time-
consuming as the system simulations. Furthermore, appro-
priate collision responses are extremely important in judging
the realism of an animation.

We are excited by the performance of our current system
and we are investigating a range of applications that might
benefit from simulation approach. We are planning to use our
system in a real-time sculpting environment, within which
we are hoping to incorporate more dynamic simulation ca-
pabilities.

References

1. K. J.Bathe. Finite Element Proceduresin Engineering Analy-
sis. Prentice-Hall, New Jersey, 1982.

(© The Eurographics Association 2001.

10.

11.

T.J. Chung. Applied Continuum Mechanics. Cambridge Univ.
Press, N, 1996.

R. D. Cook. Concepts and Applications of Finite Element
Analysis. John Wiley & Sons, N, 1981.

A. Witkin D. Baraff. Large steps in cloth simulation. In Com-
puter Graphics Proceedings, Annual Conference Series, pages
43-54. ACM SIGGRAPH, August 1998.

E. E. Gdoutos. Fracture Mechanics. Kluwer Academic Pub-
lishers, Netherlands, 1993.

S. F. Gibson and B. Mitrich. A survey of deformable models
in computer graphics. Technical Report TR-97-19, Mitsubishi
Electric Research Laboratories, Cambridge, MA, 1997.

J. F. O’Brien and J. K. Hodgins. Graphical modeling and an-
imation of brittle fracture. In Computer Graphics Proceed-
ings, Annual Conference Series, pages 287-296. ACM SIG-
GRAPH, August 1999.

C. Pozrikidis. Numerical Computation in Science and Engi-
neering. Oxford Univ. Press, N, 1998.

J. Smith, A. Witkin, and D. Baraff. Fast and controllable sim-
ulation of the shattering of brittle objects. Computer Graphics
Interface pages 27-34, May 2000.

D. Terzopoulos and A. Witkin. Physically based models with
rigid and deformable components. |EEE Computer Graphics
& Applications, pages 41-51, November 1988.

Y. Zhuang. Real-time Smulation of Physically Realistic
Global Deformation. Ph. D. thesis of Univ. of California, CA,
2000.

Miiller, McMillan, Dorsey and Jagnow / Real-Time Smulation of Deformation and Fracture

(@) (b) (©

Figure 5: Clay teddy bear after dropping (@), front view before (b) and after deformation (c)

L Y
y y

Figure 6: Collision detection demonstrated with two cinder blocks

Figure 7: Visualization of tensile (red) and compressive (green) stress within objects

(© The Eurographics Association 2001.

