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Abstract. We present a comparative study on how to use discriminative learn-
ing methods such as classification, regression, and ranking to address deformable
shape segmentation. Traditional generative models and energy minimization meth-
ods suffer from local minima. By casting the segmentation into a discriminative
framework, the target fitting function can be steered to possess a desired shape
for ease of optimization yet better characterize the relationship between shape
and appearance. To address the high-dimensional learning challenge present in
the learning framework, we use a multi-level approach to learning discriminative
models. Our experimental results on left ventricle and left atrium segmentation
from ultrasound images and facial feature point localization demonstrate that the
discriminative models outperform generative models and energy minimization
methods by a large margin.

1 Introduction

Deformable shape segmentation is a long-standing challenge in computer vision and
medical imaging. The challenge arises from mainly two aspects: (i) modeling deformable
shape and (ii) characterizing the relationship between shape and appearance. Segmenta-
tion algorithms must address both aspects successfully. In the paper, we study the latter
from a discriminative learning perspective.

Deformable shape can be represented either explicitly or implicitly. Explicit shape
representation includes parametric curve/mesh [1], landmark-based model [2], etc. Im-
plicit representation includes level set [3], M-rep [4], etc. In the paper, we focus on
landmark-based explicit representation, in which prior knowledge about the shape can
be encoded by principal component analysis (PCA), similar to active shape model
(ASM) [2]. To have a robust segmentation performance, prior knowledge is important
to dealing with the complex shape variations by constraining the shape deformation to
a compact model space spanned by a few parameters (e.g., the dominant principal com-
ponents.). For other shape representations, prior knowledge can be encoded differently,
e.g. using bending energy, minimum curve length, etc.

Shape segmentation can be considered as seeking in the model space the shape
model best fitting an image. In order to determine how well a hypothesis model matches
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the image, we need to build a fitting function to characterize the relationship between
shape and image appearance. A good fitting function should satisfy two requirements.
First, the function can well differentiate the correct solution from its background in the
model space. Second, the function can effectively guide the search algorithms to the
correct solution.

The fitting function can be learned from a given set of example images with ground
truth annotations. In previous work, generative models are commonly used in learning;
examples of generative models include ASM [2] and active appearance model (AAM)
[5]. Generative models learn the relationship between the ground truth shapes and their
appearances to characterize the underlying generating process of data population. How-
ever, they have difficulty in satisfying the two requirements mentioned above. A gener-
ative function does not typically represent the background and therefore is sub-optimal
in differentiating the ground truth shapes from their background. Also generative learn-
ing has difficulty in controlling the overall shape of the fitting function. The learned
functions often have local extremes, cause difficulties for optimization algorithms.

The fitting function can be also constructed as the energy function in an energy
minimization approach, such as active contour model [1] and level set algorithm [6].
The local shape priors, including the elasticity and stiffness of the shape, are crafted into
energy functions, which unfortunately also suffer from the same problems as before.
They cannot guarantee to produce the lowest energy at the ground truth position and
they are likely to have local minima around strong image edges.

Given sufficient training examples, discriminative learning approaches can provide
better fitting functions. Discriminate learning has been applied successfully to object
detection applications [7–9], in which the problem is formulated as a classification
problem. In training, the image patches containing the target object are considered as
positives, and the patches containing background as negatives. In testing, the target
object is detected by scanning, using the trained classifier, the test image over an ex-
haustive range of similarity transformation. The computational load of the classification
approach is proportional to the dimensionality of parameter space. The main challenge
of extending the classification approach to deformable shape segmentation is the high
dimensionality of the model space, which makes the exhaustive search prohibitive. In
[10], a fitting function is learned using a classification method and the learned function
is optimized via gradient ascent. The learned fitting function is not smooth and may
have local maxima, making it difficult for gradient ascent to find the correct solution.

Recently, discriminative learning has been incorporated into generative models or
energy functions to improve the segmentation performance. In [11], boundary detectors
are trained to replace the generative models in ASM for better locating the boundary of
heart chambers. In [12], a foreground/background classifier is plugged into an energy
function to provide the evidence of whether the current pixel belongs to the target object
or not. The fitting functions built by these approaches improve the segmentation results.
However, they could still have local extremes.

A regression based approach was proposed to learn the fitting function [13]. The
target fitting function is constrained to be unimodal and smooth in the model space,
which can be used by local optimization algorithms to efficiently estimate the correct
solution. The algorithm demonstrated superior performance on segmenting corpus cal-
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losum border from clean/noisy images, segmenting the left ventricle endocardial wall
from echocardiogram, and localizing facial feature points.

In this paper, we present a comparative study on how to apply three discrimina-
tive learning approaches – classification, regression, and ranking – to deformable shape
segmentation. By using discriminative learning in the model space, the fitting function
can be learned in a steerable manner. We discuss how to extend the classification ap-
proach from object detection to deformable object segmentation. We also propose a
ranking based approach to learning the fitting function: The fitting function is trained
to produce the highest score around the ground truth and also possesses a desired shape
to guide optimization algorithms to the ground truth. To address the high-dimensional
learning challenge present in the learning framework, we apply a multi-level approach
to learn discriminative models. In section 2, we discuss how to solve the segmentation
via classification, regression, and ranking approaches. We also compare these three ap-
proaches in terms of learning complexity and computational cost at the segmentation
stage. In section 3, we address the common challenge of the three approaches, namely
learning in a high dimensional model space. In section 4, we detail the ranking based
approach. In section 5, we compare the performance the three approaches on various
test datasets.

2 Discriminative learning approaches

A shape in an image I can be parameterized by a set of continuous model parame-
ters, C, which contains both rigid and non-rigid components. Given an image I and
a hypothesis model C, we can extract a feature image x(I, C) to describe the image
appearance associated with C. For conciseness, we use x instead of x(I, C) when there
is no confusion in the given context.

There are a variety of ways of building shape models and computing feature im-
ages. Though the discriminative learning approaches presented are not bound to a spe-
cific shape model, in our implementation we represent a shape by a set of control
points. A shape model is built by aligning the training shapes using the generalized Pro-
crustes analysis [2] and applying PCA to the aligned shapes. The model C is defined as
(tx, ty, θ, s, b1, b2, . . .), including pose parameters (2D translation, rotation, and scale)
and shape parameters corresponding to a reduced set of eigenvectors associated with
the largest eigenvalues. We follow the strategy proposed in [13] to obtain a feature im-
age x(I, C) for computational efficiency. For the shape C with M control points, the
feature image x is composed by M +1 image patches cropped from I , as shown in Fig.
1. Other approaches involving more computations are can also be used, such as image
warping based on linear interpolation [5] or thin plate spline [14].

A supervised learning approach attempts to train a fitting function f(x(I, C)) based
on a set of training images {I} and their corresponding ground truth shape models {C}.
The desired output of f is specific to the discriminative approach.

Classification

A classification approach is to learn a classifier f to indicate whether a hypothesis
shape C correctly represents the one in an image I or not. The desired output y of f is
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Fig. 1. The feature image x associated with a hypothesis model C. The contour represented by
the model C is plotted as blue line. The subimage enclosed by the red box contains global fitness
information. The subimges enclosed by the green boxes contain the local fitness information. The
image x is composed by subimages with normalized orientation as shown on the right. Examples
of Haar-like features are also shown in x.

a binary value. Whether a feature image x(I, C) is positive or negative is determined
by the distance between C and the ground truth model C in the image I:

y = {1 if ‖ C − C ‖≤ ε
−1, otherwise , (1)

where ε is a threshold that determines the aperture of f . The learned f(x(I, C)) is like
a boxcar function around the ground truth. Fig. 2(A) shows an ideal learned function
f when C is one dimensional. Because the learned f only provides binary indication,
the exhaustive search is necessary to estimate the solution, which is computationally
prohibitive when the dimensionality of the model C is high.

Regression

A regression approach is to learn a regressor f with real-valued output to indicate the
fitness of a hypothesis model C to an image I . The desired output y of f can be designed
to facilitate the searching process at the testing stage. In [13], y is set to be a normal
distribution:

y = N (C; C,Σ), (2)

where Σ is a covariance matrix determining the aperture of f . The ideally learned f has
a smooth and unimodal shape, e.g., a 1D example shown in Fig. 2(B). The function f
learned in this way can be effectively optimized by general-purpose local optimization
techniques, such as gradient descent or simplex, due to the guidance provided by the
gradient of f . However, compared with a classification approach, the desired output
is more complicated and, hence, more information needs to be learned at the training
stage as it requires the regressor to produce a desired real value for each point in the
model space. Learning a regressor in a high-dimensional model space is challenging.
Recently, an image-based regression algorithm using boosting methods was proposed
in [15] and successfully applied to different applications [16, 13].
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(A) (B) (C)

Fig. 2. The learned f(I, C) when C is one dimensional: (A) a classification approach, (B) the
regression approach in [13], and (C) the ranking approach. The ground truth of the model is C.

Ranking

Discriminative learning via ranking is originally proposed to retrieve information based
on user preference [17]. In segmentation applications, ranking approaches are used to
retrieve candidate shapes from the shape database containing example shapes [18, 14].

In this paper, we propose a ranking approach to learning partial ordering of points
in the model space. The ordering learned by the ranking function provides essential
information to guide the optimization algorithm at the testing stage. Unlike a regression
approach, which enforces the regressor to produce an exact value at each point in the
model space, ranking only tries to learn relative relations of paired points in the model
space. Let (C0, C1) be a pair of points in the model space and its associated feature
image pair (x0, x1). The ordering of x0 and x1 is determined by their shape distance
to the ground truth: the one closer to the ground truth has a higher order. We learn a
ranking function f to satisfy the constraint:





f(x0) > f(x1) if ‖ C0 − C ‖<‖ C1 − C ‖
f(x0) < f(x1) if ‖ C0 − C ‖>‖ C1 − C ‖
f(x0) = f(x1), otherwise

(3)

Fig. 2(C) illustrates the basic idea of the ranking approach. There are five points in
the 1D model space and C is the ground truth. At the training stage, a ranking function f
is learned to satisfy the ordering constrains: f(x(I, C)) > f(x(I, C2)), f(x(I, C2)) >
f(x(I, C1)), f(x(I, C)) > f(x(I, C3)), and f(x(I, C3)) > f(x(I, C4)). Similar to
the regression approach [13], the learned ranking function f is unimodal, which is
desired for local optimization techniques. However, the amount of information to be
learned in ranking is less than the one in regression. The regression approach learns
the full ordering of points in the model space, while the ranking approach only learns
partial, pairwise ordering.

We employ the boosting principle to learn our ranking function by selecting relative
features to form an additive committee of weak learners. Each weak learner, based
on a Haar-like feature that can be computed rapidly, provides a rough ranking. The
learned ranking function combines the rough ranking from weak learners and provides
the robust ordering information in the shape model space. We will discuss the detailed
implementation of the ranking algorithm in section 4.

3 Learning in a high dimensional space

The first step toward learning a discriminative function is to sample training examples
in the model space. Due to the curse of dimensionality, the number of training exam-
ples should be exponential to the model dimensionality to ensure training quality. This
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poses a big challenge to apply discriminative learning for deformable segmentation ap-
plications, in which the dimensionality of the model space is usually high. Another
challenge is that it is increasingly difficult to discriminate the correct solution from its
background, when the background points get closer to the solution. In this situation, the
image appearance of the background points becomes more and more similar to that of
the correct solution. Due to these two challenges, learning a single function in the whole
model space to accurately distinguish the solution from its background is ineffective.

We use the multi-level approach proposed in [13] to learn a series of discriminative
functions fk, k = 1, . . . ,K, each of which focusing on a region that gradually narrows
down to the ground truth. Let Ωk be the focus region of fk in the model space, which
is defined within an ellipsoid centered at the ground truth:

Ωk = {C = (c1, c2, ..., cQ)|
Q∑

q=1

(cq − cq)
2/r2

k,q ≤ 1} (4)

where Q is the dimensionality of the model space and Rk = (rk,1, . . . , rk,Q) defines
the range of the focus region. The focus regions are designed to have a nested structure
gradually shrinking to the ground truth:

Ω1 ⊃ Ω2 ⊃ . . . ⊃ ΩK ⊃ Ω 3 C, (5)

where Ω1 defines the initial region of the model parameters. It should be big enough
to include all the possible solutions in the model space. The final region Ω defines the
desired segmentation accuracy.

In segmentation applications, the initial focus region Ω1 is highly elongated due
to the variation in parameter range. It is desirable to first decrease the range of the
parameters with a large initial range. The evolution of the range is designed as:

rk+1,q = { rmax
k /γ if rk,q > rmax

k /γ
rk,q otherwise , (6)

where rmax
k is the largest value in Rk and γ is a constant controlling the shrinking

rate of focus regions (we empirically set γ = 2.9 for all experiments). Geometrically,
the region gradually shrinks from a high-dimensional ellipsoid to a sphere, and then
shrinks uniformly thereafter. Fig. 3(A) shows the evolution of the focus regions in a 2D
example.

(A) (B)

Fig. 3. (A) The three nested focus regions defined by R1(black), R2(red) and R3(green), (B) The
result of 2D sampling used for the ranking approach. The lines connect the points on the same
ray.

At the testing stage, we apply optimization algorithms sequentially to the learned
functions to refine the segmentation results. At the kth stage, we want the solution fallen
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within the region Ωk to be pushed into the region Ωk+1. In order to achieve this, the
learned function fk should be able to differentiate the instances in the region Ωk+1

from those in the region Ωk −Ωk+1 and provide effective guidance to the optimization
algorithms especially in the region Ωk − Ωk+1. Data sampling strategies should be
accordingly designed.

For the classification approach, the positive examples are sampled from the region
Ωk+1 and the negatives from the region Ωk − Ωk+1. The choice of shrinking rate γ is
balanced by two factors. A large γ means a small positive region which requires a fine
search grid to detect the solution at the testing stage. This causes high computational
expense at the testing stage. On the other hand, a small γ means a large positive region in
which the image appearance of the instances has large variation. This causes confusion
to the classifier at the training stage.

For the regression approach, gradient sampling is proposed [13]: the learned regres-
sors provide guidance to optimization algorithms based on local gradient. Because the
regressor fk has large gradient in the region Ωk − Ωk+1, more training examples are
drawn from the region Ωk −Ωk+1 to insure the training quality in this region.

The ranking approach is to learn the partial ordering of instances in the model space.
Because we perform a line-searching type of optimization, the ordering of instances
along the rays starting from the ground truth is the most important. This ordering pro-
vides the essential information to guide the optimization algorithms to the ground truth.
Also by learning the ordering information from enough rays, the learned ranking func-
tion is unimodal which has a global optimum at the ground truth.

We propose a sampling algorithm to sample training pairs for training the ranking
function fk. First, we select a ray starting from the ground truth with random direction.
Second, we sample J + 1 points {C0, C1, . . . , CJ)} on the selected ray, where C0 is
at the ground truth and the remaining J points are sampled from the line segment in
the region Ωk − Ωk+1. These points are ordered based on the distance to the ground
truth. The parameter J is proportional to the length of the line segment. The reason
of sampling only from the line segment is that the ordering on this part of the ray
is most important for training fk, which is used to push the solution from the region
Ωk − Ωk+1 to Ωk+1. Finally, from the training image I , we draw J pairs of training
examples {(x(I, Cj), x(I, Cj−1)), j = 1, . . . , J)}, where x(I, Cj−1) should be ranked
above x(I, Cj). We continue this process to sample as much rays as possible that can be
fitted into computer memory. Fig. 3(B) shows the sampling result in a 2D model space.

4 Ranking using boosting algorithm

In this section, we present a ranking algorithm based on RankBoost [17] to learn the
ordering of the sampled image pairs. Mathematically, we learn a ranking function that
minimizes the number of image pairs that are mis-ordered by the learned function.
Let Φ be the sampled training set and (x0, x1) ∈ Φ be a pair of images. Following
the sampling strategy proposed in the previous section, x1 should be ranked above x0,
otherwise a penalty D(x0, x1) is imposed. We use equal weighted penalty D(x0, x1) in
our experiments. The penalty weights can be normalized over the whole training set to
a probability distribution

∑
(x0,x1)∈Φ D(x0, x1) = 1.
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1. Given: initial distribution D over Φ.
2. Initialize: D1 = D.
3. For t = 1, 2, . . . , T

– Train weak learner using distribution Dt to get weak ranking gt.
– Choose αt ∈ R.
– Update: Dt+1(x0, x1) = Dt(x0,x1) exp[αt(gt(x0)−gt(x1))]

Zt
where Zt is a normalization

factor (chosen so that Dt+1 will be a distribution.)
4. Output the final ranking: f(x) =

∑T
t=1 αtgt(x).

Fig. 4. The RankBoost algorithm [17].

The learning goal is to search for a ranking function f that minimizes the ranking
loss,

rlossD(f) =
∑

(x0,x1)∈Φ

D(x0, x1)bbf(x0) ≥ f(x1)cc, (7)

where bbπcc is defined to be 1 if the predicate π holds and 0 otherwise. In RankBoost,
the ranking function f(x) takes an additive form:

ft(x) = ft−1(x) + αtgt(x) =
t∑

i=1

αigi(x), (8)

where each gi(x) is a weak learner residing in a dictionary set G. It maps a feature image
x to a real-valued ranking score. The strong learner f(x) combines the weighted ranking
scores from weak learners to obtain a robust ranking. Boosting is used to iteratively
select weak learners by leveraging the additive nature of f(x): at iteration t, one more
additive term αtgt(x) is added to the ranking function ft−1(x). The weak learner gt(x)
is selected from the set G and its associated weight αt is computed to minimize the
ranking loss

(gt, αt) = arg min
g∈G,α∈R

∑

(x0,x1)∈Φ

D(x0, x1)bbft−1(x0)+αg(x0) ≥ ft−1(x1)+αg(x1)cc.

(9)
The RankBoost algorithm is shown in Fig. 4. We now discuss the choice of weak

learners below.

Weak learner

The input to a weak learner is a feature image x. We use Haar-like features as primitives
to construct the dictionary set G. Each weak learner g(x) is associated with a Haar-like
feature h(x; η), where η specifies the attribute of the feature, including feature type
and window position/size. We further restrict that the features must be contained within
one of the image patches in x. Fig. 1 shows some examples of the Haar-like features.
By choosing Haar-like features with different attributes, we obtain the over-complete
feature representation of the image x. These features can be computed rapidly using a
set of pre-computed integral images with different orientations [7].
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For each feature h(x; η), we use a 1D binary function g(x; η) with L bins to produce
a weak ranking:

g(x; η) = βl; if h(x; η) ∈ (ul−1, ul] (10)

where {ul; l = 0, . . . , L} evenly divide the output range of the feature h(x; η) to L bins
and βl ∈ {0, 1} is the value of the lth bin.

Based on the discussion in [17], when the output of a weak learner has range [0, 1],
the weak learner should be trained to maximize the function:

r =
∑

(x0,x1)∈Φ

D(x0, x1)(g(x1; η)− g(x0; η)). (11)

Following the definition in (10), the function r can be rewritten as

r =
L∑

l=1

βlel, el :=
∑

h(x1)∈(ul−1,ul]

D(x0, x1)−
∑

h(x0)∈(ul−1,ul]

D(x0, x1). (12)

It is easy to show that in order to maximize r, the lth bin value should be determined
as:

βl = {1 if el > 0
0, otherwise , (13)

At each boosting iteration, we exhaust all weak learners and find the one that pro-
duces the largest r value. Then the associated weight α is computed as

α =
1
2

ln
(

1 + rmax

1− rmax

)
. (14)

5 Experiments

We tested the proposed discriminative learning approaches on three problems. The
boosting principle is used in all three approaches to select and combine weak learners.
For classification, we implemented the cascade of boosted binary classifiers based on
Adaboost [7], which has been successfully applied to fast object detection. For regres-
sion, the regression based on boosting proposed in [13] was applied. To fairly compare
these three algorithms, we used the same set of Haar-like features discussed in Section
4. We also compared the three algorithms with other alternative approaches, such as
ASM [2] and AAM [5]. In order to enhance the performance of ASM, we also im-
plemented an enhanced ASM version that replaces the regular edge computation by
boundary classifiers, which is similar to the approach proposed in [11, 12].

To handle the challenge of learning in a high dimensional space, we used the multi-
level approach to learn a series of discriminative functions. In training, the initial error
ranges of the parameters are set to control the sampling range. The initial error ranges of
the shape parameters are assumed to be 3

√
λ, where λ’s are eigenvalues from PCA. We

sampled as many training examples as computer memory allows. For our computer with
2GB memory, about 400K training examples are used. In testing, for each test image we
randomly generated an initial contour, whose pose parameters are within the error range



10

(A) LV ASM enhanced ASM Classification Regression Ranking
level 1 n/a n/a 15.85±5.51 11.09±4.31 10.12±3.26

15.15±4.65 10.43±3.11 9.69±2.69
final level 26.20±17.64 17.91±6.80 14.77±6.53 10.07±4.52 9.93±3.56

23.43±12.03 17.07±5.82 13.86±5.25 9.41±3.06 9.37±2.62
time (s) 0.94 1.43 18.7 3.15 2.86
(B) LA ASM enhanced ASM Classification Regression Ranking
level 1 n/a n/a 16.37±5.96 14.72±13.59 11.66±6.14

15.60±4.95 12.10±4.02 10.79±3.69
final level 30.14±17.72 18.66±10.09 15.95±6.78 14.12±16.04 11.40±6.75

28.01±12.44 16.93±5.83 15.17±5.95 11.03±4.64 10.44±4.14
time (s) 0.75 1.26 18.1 2.80 2.18
(C) AR AAM Classification Regression Ranking
level 1 n/a 18.28±7.07 17.40±6.34 14.80±5.63

17.23±5.29 16.59±5.30 13.99±4.49
level 2 n/a 12.94±6.11 8.39±4.09 6.84±2.48

11.88±3.60 7.72±1.92 6.47±1.87
final level 19.70±23.83 11.66±6.77 5.76±3.99 5.79±2.95

15.87±17.23 10.53±4.35 5.10±1.38 5.31±2.07
time (s) 0.91 29.4 4.70 3.49

Table 1. The mean and standard deviation of the segmentation errors. In each cell, there are two
rows: the first row reports the mean and standard deviation obtained using all testing data and
the second row using 95% of testing data (excluding 5% outliers). For ASM and AAM, we applied
multi-resolution searching but only reported the benchmarks of the final results.

defined in training and shape parameters are zeros (mean shape). Starting from an initial
solution, the learned functions are sequentially applied to refine the solution. For the
classification approach, we exhaustively searched around the initial solution and found
the candidate having the highest classification probability as the starting point for the
next level. For the regression and ranking approaches, we used the simplex optimization
method [19] due to its tolerance to shallow maxima caused by image noise.

5.1 Endocardial wall segmentation: left ventricle

Segmenting the endocardial wall in echocardiographic images is a challenging task
due to the large shape/appearance variation of the heart chambers and signal dropouts
in images. In [13], the fitting functions trained by regression are used to locate the
endocardial wall of the left ventricle (LV) in an apical four chamber (A4C) view. In this
experiment, we followed the exact setting in [13].

The data set has 528 A4C images from different patients. The LV walls are anno-
tated by experts using contours with 17 control points. The size of the LV in an image
is roughly 120 × 180 pixels. Half of the dataset is used for training and the remaining
half for testing. The initial range of the pose is set as [50, 50, π/9, 0.2], which means 50
pixels in translation, 20 degrees in rotation, and 20% in scale in the extreme. The model
C includes five shape parameters which account for 80% of the total shape variation. In
training, two levels of discriminative functions are learned.

The segmentation error is defined as the average Euclidean distance between cor-
responding control points of the segmented shape and the ground truth. In testing, we
set the initial pose of a testing image to be a random perturbation of the ground truth
within the initial range [50, 50, π/9, 0.2]. The average initial error of all testing images
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(A) (B)

(C) (D)

Fig. 5. Sorted errors of the experiment results. The horizontal axes are testing numbers and ver-
tical axes are segmentation errors. (A) LV segmentation, (B) LA segmentation, (C) facial feature
localization, and (D) the errors of the multi-level refinement using the ranking approach in the
third experiment.

is 27.16 pixels. We tested the classification, regression and ranking algorithms, along
with ASM and its enhanced version. Table 1(A) shows the mean and standard deviation
of the test errors of the above algorithms. The average computational time is also listed
in the table. Fig. 5(A) is a plot of the sorted errors, where points on the curve with the
same horizontal position do not necessarily correspond to the same test case. Fig. 6
shows some segmentation results using the ranking approach.

5.2 Endocardial wall segmentation: left atrium

In this experiment, we tested the algorithms on segmenting the endocardial wall of
the left atrium (LA) in the apical two chamber (A2C) view. LA segmentation is even
harder than LV segmentation. The LA appearance is more noisy because the LA, being
in the far field of the ultrasound probe, is more difficult to image. We collected 417 A2C
images with the LA walls annotated by experts using 17 control points. The LA roughly
occupies 120 × 120 in an image. We used 208 images in training and remaining 209
images in testing. The initial range of the pose is set as [50, 50, π/9, 0.2]. The model C
includes four shape parameters which account for 88% of the total shape variation. In
training, we trained two levels of discriminative functions. In testing, the average initial
error is 26.82 pixels. We used the same experimental setting as in the LV segmentation.
The benchmarks are shown in Table 1(B) and Fig. 5(B).

5.3 Facial feature localization

In the third experiment, we tested the performance of the algorithms on the AR face
database [20]. There is a total of 508 images with annotations which include 22 control
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Fig. 6. Segmentation results with a variety of errors obtained by the ranking approach. For each
pair of images, the left one shows the initial contour position and the right shows the segmentation
results after the multi-level refinement. The initial positions and the results are green line. The
ground truths are red line.

points3. The color images were converted to gray-scale. The size of a face is roughly
250 × 300 in an image. We used half of the data for training and half for testing. Ex-
amples of the same subject were not used in both training and testing data. The initial
range of the pose is [100, 100, π/9, 0.2]. The model C includes 5 shape parameters
which account for 73% of the total shape variation. In training, we trained three levels
of discriminative functions. In testing, the average initial error is 47.19 pixels. We used
AAM [21] for comparison. The benchmarks are shown in Table 1(C) and Fig. 5(C). Fig
5(D) shows the errors after each level of refinement when using the ranking functions
in testing.

Fig. 7 shows the 2D slices of learned classifiers and ranking functions on a testing
image. These slices are obtained by varying the 1st and the 5th parameters of the model
in the error range while fixing the remaining parameters as the ground truth, where the
1st is a translation parameter and the 5th is a shape parameter corresponding to the
largest eigenvalue. The learned functions have desired shapes which make optimization
algorithms perform well on this testing image.

5.4 Discussion

In the three experiments, the segmentation algorithms using discriminative fitting func-
tions consistently outperform the previous algorithm by a large margin. The perfor-
mance of the ASM algorithm is boosted by using discriminative boundary classifiers;
however, it still suffers from the local extremes because the boundary classifier is local.
The relative poor performance of the classification approach is due to the coarse search

3 The annotations are provided by Dr. Cootes, which is available at
http://www.isbe.man.ac.uk/˜bim.
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Fig. 7. The 2D slices of the learned classifiers (top row) and ranking functions (bottom row) on a
testing image. The left column shows the first level, the middle shows the second level, and the
right shows the third level.

grid in exhaustive search. If we use a fine search grid, the segmentation accuracy is
expected to improve. It is interesting to see the performance of the algorithms specifi-
cally designed to train classifiers in a high dimensional model space, such as marginal
space learning [11]. The ranking approach outperforms the regression approach, espe-
cially in the challenging situation, such as LA segmentation. The main reason might be
that ranking only attempts to learn a partial ordering information in the model space
and hence its learning complexity is lower than regression. We will verify this as future
work. Like all discriminative learning problems, the discriminative learning approaches
suffer from the problem of overfitting especially when the variation of training data can-
not totally covers that of testing. Further, the number of sampled data points is hardly
sufficient when the model space is high. Because of these problems, the fitting function
does not have desired shape on some test data and the local optimization algorithm fails
to converge to the ground truth.

Recently, a ranking based algorithm for face alignment was independently proposed
[22]. It presents a ranking approach to learning an alignment score function and com-
pares with a classification based algorithm [10]. Compared with the method in [22],
we use a different ranking algorithm and apply the multi-level approach to improve the
segmentation accuracy. We also compare more algorithms on different kind of data.

6 Conclusions

We have presented a discriminative learning framework for deformable shape segmen-
tation and shown that all three discriminative methods, classification, regression, and
ranking, can be applied. We have also addressed how to sample a high-dimensional
space and proposed a RankBoost algorithm that does feature selection. Finally, we have
demonstrated that the discriminative models outperform generative models and energy
minimization methods by a large margin in our experiments on segmentation of left
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ventricle and left atrium from ultrasound images and facial feature point localization.
In the future, we will further investigate how to sample a high-dimensional space more
efficiently and extend this framework to arbitrary shape representations.
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