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ABSTRACT
Intraspecific genomes can be subdivided into blocks with limited
diversity. Understanding the distribution and structure of these
blocks will help to unravel many biological problems including the
identification of genes associated with complex diseases, finding
the ancestral origins of a given population, and localizing regions
of historical recombination, gene conversion, and homoplasy.

We present methods for partitioning a genome into blocks for which
there are no apparent recombinations, thus providing parsimonious
sets of compatible genome intervals based on the four-gamete test.
Our contribution is a thorough analysis of the problem of dividing
a genome into compatible intervals, in terms of its computational
complexity, and by providing an achievable lower-bound on the
minimal number of intervals required to cover an entire data set. In
general, such minimal interval partitions are not unique. However,
we identify properties that are common to every possible solution.
We also define the notion of an interval set that achieves the inter-
val lower-bound, yet maximizes interval overlap. We demonstrate
algorithms for partitioning both haplotype data from inbred mice
as well as outbred heterozygous genotype data using extensions of
the standard four-gamete test. These methods allow our algorithms
to be applied to a wide range of genomic data sets.

1. INTRODUCTION
The local block-structure of genotypes within a population sheds
light on many biological questions [10]. Genotype blocks are cen-
tral to quantifying and localizing recombinations (both recent and
historical) [37, 36, 40], are widely used to identify informative
marker sets [46], and are building blocks for constructing genetic
maps [35]. Genotype-block structure also underlies many genome-
wide association methods[45], provides biochemical evidence for
selection [18], and offers a tool for ascertaining ancestral origins
[9].

The task of decomposing a genome into meaningful blocks, how-
ever, has proven to be ill-defined, inconsistent, and often ambigu-
ous [31, 34]. In part, the problem resides in the ad hoc definition
of what constitutes a genotype block. Genotype blocks are often
defined to serve a specific purpose. Examples include the min-
imum number of tagging SNPs sufficient to capture informative
genotypes [32, 46], intervals of SNPs that exceed a given thresh-
old of Linkage Disequilibrium (LD) [33], and maximal regions
whose genotype diversity falls below a threshold [10]. Partition-
ing genotypes into blocks supporting perfect phylogenies [37, 17],
and, the related, selection of blocks lacking evidence for recom-
bination [41] are also used to construct Ancestral Recombination
Graphs (ARGs).

We propose unambiguous definitions for haplotype and genotype
blocks and efficient methods for computing them. Where ambigu-
ity is unavoidable, we have uncovered properties common to all so-
lutions. Our haplotype block definition directly supports, and has
been used for, association mapping [30], construction of genetic
maps [48], and determining ancestral origins within local genomic
regions [49]. Our proposed genotype blocks can be used in much
the same way.

Dense genotype data sets that are homozygous at every allele are
available for many inbred mammal [15] and plant [6, 28] models
commonly used for association mapping. However, haplotype data
is not directly available for use in human studies. In our approach,
it is unnecessary to phase such data sets, yet, we can still identify
blocks important for exploring the local diversity structures [3, 24,
27, 29], and ancestral origins [44]. Like others [17, 41, 40], our
blocks are chosen for their lack of historical recombination evi-
dence.

Our methods can be used as an alternative to other block meth-
ods such as those in [13, 47, 16]. Particularly, the genotype block
methods we introduce may be used to inform phasing [25] and to
extend these methods to unphased genotype data. Block associa-
tion methods such as Blossoc [26] and QBlossoc [2], which utilize
small regions that admit perfect phylogenies could potentially ben-
efit from our methods.

We define our blocks in terms of SNP compatibility according to
the Four-Gamete Test (FGT) [22]. The FGT is of interest because
of its close relation to perfect phylogeny [23]. Specifically, a neces-
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(a) C(h)Uber (b) C(g)Uber

Figure 1: Example data sets and Uber-cover. The data sets used in this figure will be used as running examples. The lower portion
of the figure is the data matrix. The columns correspond to SNPs, and the rows correspond to haplotypes (a) and genotypes (b)
derived by pairing adjacent haplotypes. Blue and yellow boxes represent homozygous alleles normalized such that the first sample
is homozygous blue. Green boxes represent heterozygous alleles. The large triangles above the data matrices are the compatibility
matrices, which show the compatibility of each pair of SNPs. Gray boxes imply that a pair of SNPs definitely does not violate the
four-gamete rule. Red boxes imply that a pair of SNPs creates four gametes. Green boxes imply that a pair must be in-phase to
be compatible. Orange boxes imply that a pair must be out-of-phase to be compatible. Blue boxes imply that a pair must be either
in-phase or out-of-phase to be compatible.

sary and sufficient condition for a perfect phylogeny is that all pairs
of SNPs satisfy the FGT [21]. For unphased genotype data, we de-
fine the notion of optimistic and pessimistic compatibility based on
if a region possibly or necessarily passes the FGT. We partition the
genome into a set of potentially overlapping, maximal compatible
intervals, each of which admits a perfect phylogeny, and whose
union covers the full data set. We address the question of what is
the fewest number of such intervals required, and we also identify
suspect SNPs whose removal reduces the overall complexity of the
block structure (perhaps indicating genotyping errors, homoplasy,
or gene conversions).

Our contribution is an analysis of the problem of dividing a genome
into compatible intervals based on genotypes and its complexity.
We provide an achievable lower-bound on the number of such in-
tervals. While in general there are numerous ways of dividing a
genome into a minimum number of compatible intervals (a fact
overlooked by others [26, 40, 42]), we also identify non-overlapping
core subintervals common to all valid solutions. We also define
an interval set that achieves the interval lower-bound, yet maxi-
mizes the block overlap, thus minimizing the number of perfect
phylogeny trees, while providing the richest possible set of SNPs
to each tree.

2. RELATED WORK
There are three common approaches for partitioning haplotypes
into blocks. The first employs LD measures [16, 33] and assigns
blocks to regions with high pairwise LD within, and low LD be-
tween, blocks. A second class assigns blocks to regions of low
sequence diversity [32]. Lastly, there are approaches that look for

direct evidence of recombination, by either applying the FGT [22]
and defining blocks as regions free of apparent recombination or
homoplasy, or during the construction of ARGs, denoting support-
ing regions’ component subtrees [37]. Schwartz et al. [34] per-
formed an analysis of approaches and concluded that the block as-
signments of various methods differed markedly. Of these methods,
the block boundaries of the FGT were better correlated to both the
LD and diversity-based methods than these two methods were to
each other.

Our approach partitions the genome into blocks satisfying the FGT.
This is not new. The seminal work of Hudson and Kaplan provides
a sketch of a greedy algorithm that processes SNPs in sequence
order looking for runs of compatible intervals that are broken at
points of incompatibility. This method appears to be widely used
[26, 34, 40, 42]. A disconcerting feature of this approach is that
one arrives at a different interval set if the genome is scanned in the
reverse order (Fig. 4). Alternative sets of compatibility intervals
arise when the region is grown maximally around each SNP [26].
Moreover, there appears to be many other possible partitions, beg-
ging the question of which block sets have the fewest intervals, and,
of these sets, which minimizes haplotype diversity. In our model,
each block is compatible with a perfect phylogeny (a side effect of
the FGT) and overlaps between adjacent intervals are allowed.

We extend our methods to unphased genotype data. Little work
has been done on partitioning genotype data without first phasing,
however, there has been considerable work on the related topic of
phasing by perfect phylogeny [1, 4, 14, 19, 12]. Such methods de-
termine if a given genotype block admits a perfect phylogeny. Our
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(a) Flagging SNPs

Figure 2: Uber intervals with flagging SNPs highlighted in red.
Incompatibilities between flagging SNPs of adjacent maximal
compatible intervals are highlighted with green circles.

contribution is to apply the basic insights of these methods to ex-
tend the notion of a haplotype "scan" to the genotype case. Similar
work has been done [11] in which local phylogenies are built over
unphased genotype data to inform association mapping, however
this work does not take full advantage of compatible blocks, em-
ploying a single-marker approach rather than a global block struc-
ture.

Past attempts at using perfect phylogeny to analyze genotypes as-
sume they are given a region which admits a perfect phylogeny or
does so within an error model. Most previous work ([12, 19, 14,
38, 1]) determines if the given data set does in fact admit a per-
fect phylogeny, and then solves the Perfect Phylogeny Haplotyping
problem (PPH) ([19]) for the given instance. Recent extensions al-
low data to fall within some error model and subsequently handles
cases where the data does not fit a perfect phylogeny. Error mod-
els include Missing Data (MD) and Character-removal (CR), and
the algorithms attain a global perfect phylogeny while dealing with
erroneous point cases ([21, 20]).

No previous approach considers the possibility of different PPH so-
lutions as determined by the choice of block partition. While we do
not propose haplotyping by perfect phylogeny, we use related tech-
niques to partition the genome into blocks which satisfy a perfect
phylogeny that could, in practice, then be haplotyped using any
one of several previous algorithms. Introducing a genome-wide
approach to perfect phylogeny rather than filtering out data as in
[21, 20] considers many biological factors previously overlooked.
The notion of recombination-free blocks in the genome is well-
documented in humans and mice, as well as other species [16, 47,
40, 30, 28]. In many cases, regions of the genome on either side of
a recombination point should realistically admit different phyloge-
nies based on hybridization between subspecies. Simply removing
presumed erroneous data and forcing regions separated by histori-
cal recombination into a global phylogeny ignores their biological
relevance and produces a misleading solution. Our method of parti-
tioning allows for biologically meaningful, though limited, regions
with which to perform further analyses.

3. PRELIMINARIES
Throughout this paper we assume a data set of m SNPs spanning
n haplotypes (or genotypes) that are represented as a binary data

(a) C(p)Max

Figure 3: Pessimistic Max-k cover over the example set of geno-
types. In the compatibility matrix, red indicates that the corre-
sponding SNP pair is possibly incompatible, gray indicates that
the pair is definitely compatible.

matrix S or ternary matrix Sg where each column corresponds to
a SNP, and each row is a haplotype or genotype (Fig. 1). Alleles
0 and 1 represent alternative homozygous alleles and 2 represents
heterozygous alleles.

A compatible interval over a set of haplotypes is a sequence of
contiguous SNPs over S for which there are no violations of the
FGT between any SNP pair. A compatible interval, Ix = [bx, ex],
includes all SNPs between the starting SNP sbx and ending SNP,
sex . Fig. 1(a) shows a data set of 16 haplotypes and 44 SNPs, to-
gether with eight compatible intervals, I1 through I8. Each interval
covers a consecutive set of SNPs. For example, I3 covers from s8
to s26. The triangular matrix above the SNP matrix is the pairwise
compatibility matrix. If two SNPs exhibit four gametes, the corre-
sponding matrix element is marked incompatible (red). Darkened
triangles indicate sub-matrices corresponding to SNP pairs in the
compatible intervals. Note that no triangles enclose red elements.

Compatible intervals over genotypes (Sg) are less straightforward
due to ambiguities caused by heterozygous alleles. We define the
notion of optimistic and pessimistic compatibility, whether geno-
types are possibly or nessesarily compatible, respectively. Resolv-
ing genotype intervals requires more considerations when perform-
ing the FGT. Pairs of SNPs are evaluated to determine which ga-
metes phasing could produce. In cases of homozygous-homozygous
and homozygous-heterozygous pairs, the possible gametes are triv-
ially determined. For example, the 0-0 produces only the 0-0 ga-
mete and 0-2 produces the 0-0 and 0-1 gametes. Ambiguity is
caused only by the 2-2 case– when there exist heterozygous alleles
in the same sample at two different loci. These cases can produce
two different sets of gametes, either 0-0 and 1-1, which we call in
phase gametes, or 0-1 and 1-0, which we call out of phase gametes.
There are three compatibility cases if 2-2 pairings exist. The am-
biguous cases must be in phase in order to be compatible (if one
of the 0-1 or 1-0 gametes are not present), must be out of phase (if
one of the 0-0 or 1-1 gametes are not present), or truly ambiguous
when all 2-2 pairs must simply be produce the same set of gametes
since it is always possible to produce four gametes with opposite
phasings of two 2-2 pairs.

The optimistic algorithm forms a graph with a vertex representing
each locus and an edge representing a phasing (in phase, out of
phase, or ambiguous) between two vertices. An interval is opti-
mistically compatible iff there exists a bipartition of the graph into
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two sets A and B such that no edge within A is out of phase, no
edge within B is out of phase, no edge between sets A and B is in
phase, and all ambiguous edges are uniquely resolvable to as either
in phase or out of phase. We use an algorithm similar to [14] to
partition the genome into blocks of genotypes which admit a per-
fect phylogeny. Similar to the haplotype "scan", we introduce SNPs
one-by-one and test whether the resulting interval is internally com-
patible. For haplotypes, this is accomplished by pairwise compar-
isons of previous SNPs with every newly introduced SNP. For the
genotype case, we define two interval types. For optimistic inter-
vals, we use the idea of what Eskin et al [14] refer to as equal and
unequal resolution to create a bipartite graph for each proposed in-
terval. We "scan" SNPs as described in the haplotype case, adding
these SNPs as vertices to the graph until the graph is no longer
realizeable, thus ending an interval. Pessimistic intervals are unam-
biguously compatible regardless of the choice of phasing. When
the scan is performed, an interval is ended as soon as it reaches a
SNP which is possibly incompatible with any previous SNP in the
interval. This is equivalent to considering all non-gray points as
incompatible (red) and performing a haplotype scan to produce the
pessimistic genotype intervals (see Fig. 3).

Fig. 1(b) shows a data set of 8 genotypes and 57 SNPs, together
with four of its optimistic compatible intervals. It remains true that
no interval may enclose an incompatible SNP pair. However, unlike
the haplotype case, intervals are not necessarily bounded by red
elements. As described, SNPs may be implicitly incompatible with
a given interval if their addition forms an unrealizeable graph.

A compatible interval is maximal if it cannot be extended in either
direction. All intervals in Fig. 1(a) (I1, I3, I4, I6, and I8) are max-
imal, since further extension includes one or more incompatible
SNP pairs. We denote the set of all maximal compatible intervals as
CUber . Throughout, we will denote a cover over a genome gener-
ically by C. A cover of a set of haplotypes will be represented by
C(h). An optimistic cover of a set of genotypes will be represented
by C(g) and a pessimistic cover by C(p). The darkened triangles
in Fig. 1(a) depict C(h)Uber . The two SNPs adjacent to a maximal
compatible interval, sbx−1 and sex+1, are the flagging SNPs of the
interval (Fig. 2). Note that flagging SNPs are incompatible with at
least one SNP of the maximal compatible interval that it flanks.

A cover,Cx,y , is an ordered set of intervals,Cx,y= {I1, I2, . . . , Ic},
where bi ≤ bi+1, and every SNP in the range [x, y] is covered by
some interval in C but no SNP outside [x, y] is covered by any in-
terval in Cx,y . Cx,y also satisfies ei ≤ ei+1, since otherwise Ii+1

is a fully contained subset of Ii. We call C1,m a complete cover of
S, and ‖C‖ is its cardinality. We will frequently refer to a cover,
C, where ‖C‖ = c, as a c-interval cover, or simply as a c-cover.
In addition, we will refer to special instances of complete covers by
using descriptive subscripts, in which case a range from [1,m] is
implied. For example, in Fig. 1(a), {I1, I3, I4} is aC(h)1,29 cover,
{I1, I3, I4, I6, I8} is a complete 5-cover. In this paper, we are par-
ticularly interested in complete k-covers, where k is a reachable
lower bound on the number of intervals for the given SNP set.

In the following sections we provide an effective method for find-
ing minimum-length complete covers for a given SNP set. Thus,
establishing k as a tight lower bound. In general, there is no one
unique k-cover for a given data set. We provide several algorithms
that generate various k-covers in time linear to the number of geno-
types. In addition, we examine features which are common to all k-
covers of a given data set. We then present a linear-time algorithm

for finding a cover composed entirely of maximal compatible inter-
vals fromCUber , where ‖CUber‖ ≥ k. Finally, we present an algo-
rithm for finding the k-cover with maximal overlap, the Maximal-
k-Cover (CMax). The cover CMax is of particular interest since it
leads to the construction of a parsimonious set of perfect phylogeny
trees where each incorporates maximal information (i.e. the max-
imum number of SNPs per tree). Finally, we present an algorithm
for finding critical SNPs in S whose removal reduces, ‖CMax‖,
from k to k− 1 or smaller, using a number of tests that are propor-
tional to ‖CUber‖ rather than m.

4. A LOWER BOUND ON THE NUMBER
OF INTERVALS IN A COMPLETE COVER

4.1 Left-to-Right and Right-to-Left Covers
We first define two non-overlapping covers, the Left-to-Right cover
(C(h)LR), and the Right-to-Left cover (C(h)RL). A simple greedy
algorithm, LRScan, whose pseudocode is given in Appendix B,
finds C(h)LR over a set of haplotypes and it has been previously
described in [40]. It begins at the leftmost SNP (s1), and either ex-
tends or terminates the current active interval as it considers each
SNP in sequence order. LRScan performs FGTs of the candidate
SNP against those SNPs already in the active interval. If four ga-
metes occur, the active interval is closed, and a new interval begins
from the candidate, otherwise the SNP is added to the active inter-
val. This continues until the last SNP is reached, thus closing the
final interval (see Fig. 4(a)).

The run-time of LRScan depends on the number of SNPs, m, and
the number of the FGTs performed for each SNP. Since the maxi-
mum number of distinct compatible SNP patterns (SDPs) that can
be mutually compatible among n haplotypes is 2n − 3 [38], the
FGT requires only O(n) operations per SNP, assuming a constant-
time overhead for each FGT. Therefore, the complexity for LRScan
is O(mn), and thus is linear in the number of genotypes.

A similar greedy Right-to-Left scan algorithm (RLScan) generat-
ing C(h)RL can be defined via straightforward modifications to
(LRScan). Likewise C(h)RL can be generated by merely revers-
ing the input sequence, applying LRScan, and adjusting the indices
of the resulting intervals, including their starting and ending posi-
tions. Note that a cover’s interval indices are assigned according to
the sequence order, regardless of the scanning direction.

We define a similar notion over a set of genotypes. As described
in Section 3, the only difference is the manner in which the FGT is
performed. We find an optimistic left-to-right (C(g)LR) and right-
to-left (C(g)RL) cover by closing an interval only when the subse-
quent SNP will be definitely and unambiguously incompatible with
a SNP in the interval (regardless of the phasing chosen). Likewise,
a pessimistic interval (C(p)LR and C(p)RL) is closed off if there
exists a phasing of the genotype set for which the next SNP will be
incompatible with SNPs already in the interval.

The run-time of the pessimistic genotype scan is alsoO(mn). Like
the haplotype case, there is a limit on the number of distinct SNPs
that can be compatible among n genotypes which is linear in n.
Similarly, the adjusted FGT requires onlyO(n) operations per SNP
to determine if there exists any possible incompatibility.

The run-time of the optimistic genotype scan is more complex. Es-
kin et al ([14]) propose an alogorithm with O(nm2) complexity to
determine if a single region admits a perfect phylogeny. We use a
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(a) CLR and CRL (b) CUber with cores (c) CMax

Figure 4: Shown above is the progression of covers. (a) depicts CLR (green) and CRL (orange) and their overlap (cores) outlined in
red. (b) shows CUber and the cores from (a). In (c), each CMax interval (a subset of CUber) encloses exactly one core.

similar algorithm, adding SNPs incrementally. Since each interval
is bounded and we scan linearly across the genome, this allows for
an O(nm2) algorithm to partition the entire genome.

4.2 Properties of CLR and CRL

Our first theorem states, "The covers CLR and CRL have the same
number of intervals k, and k is the minimal number of intervals
possible for any complete cover." A proof of this and an associ-
ated Lemma 1 are provided in Appendix A. Moreover, certain core
subintervals are common to all complete k-covers of a given SNP
set. We define the intersections of corresponding intervals from
CLR and CRL as cores (Fig. 4). According to Lemma 1, eR

i ≤ eL
i

and bLi ≥ bRi (Fig. 10(a), Appendix), therefore Corei = [bLi , e
R
i ].

Lemma 2 and a detailed proof of this claim are included in Ap-
pendix A. Theorem 2 states, "For any complete k-cover C1,m=
{I1, . . . , Ik}, the ith interval contains the entire ith core: Corei ∩
Ii = Corei, and, it does not contain any part of another core
Corej ∩ Ii = φ, 1 ≤ j ≤ k, j 6= i. This is due to the interleav-
ing of the non-overlapping intervals of CLR and CRL. Corei is
necessarily compatible with both CLRi and CRLi and cannot be
extended beyond the outside boundary of either. Therefore, no part
of any two cores may be a part of the same interval. A k-cover must
contain k intervals each containing one core exclusively. This leads
to two corollaries. The first is that any interval that does not contain
an entire core is not part of any complete k-cover and the second
is that the ith core is only contained within the ith interval of any
k-cover. Cores have several interesting properties worth noting. All
SNPs in a core are compatible, since each core is an intersection
of two compatible regions and adjacent cores must contain at least
one pair of incompatible SNPs. Proofs of these properties are given
in Appendix A.

5. MAXIMAL-K-COVER ALGORITHM
First we introduce UberScan, which generates the set of all the
maximal compatible intervals, CUber . UberScan (Appendix B),
is similar to the LRScan. Whenever a compatible interval ends at
SNP si, instead of starting the next interval from si+1 as LRScan
does, UberScan finds the nearest SNP sj (j < i+ 1) that is incom-
patible with si+1, and the following SNP, sj+1, begins the next
interval. Note that si+1 is a flagging SNP of the previous maximal
compatible interval and sj is a flagging SNP of the next maximal
compatible interval. UberScan is a simple modification of LRScan
with added bookkeeping to track of the index of the last occur-

rence of each unique SNP pattern1. A similar analysis of LRScan
shows that UberScan also takes O(mn) time. UberScan gener-
ates CUber , containing all maximal intervals of S, and generally,
‖CUber‖ � k. CUber contains all candidates for the Maximal-k-
cover, CMax, since a cover with maximal overlap must be com-
posed of maximal intervals.

5.1 Finding the Maximal-k-cover by finding the
longest path in a k-partite graph

A Maximal-k-cover, CMax, is of particular interest as it covers
the entire SNP set using the fewest, k, maximal intervals. While,
CMax is not necessarily unique, alternate solutions are generally
similar. Next we provide a fast graph algorithm to compute all
Maximal-k-covers.

We consider only those maximal intervals in CUber that entirely
enclose a single core and no part of a second core, as defined by
CLR and CRL (4.2). According to Theorem 2, these intervals are
the candidates for Maximal-k-covers. Next, we organize the can-
didates into k groups according to the core it contains. Each core
is contained within at least one maximal interval, thus, no group is
empty. We then examine the overlap between groups. A candidate
interval in group i can only overlap candidates from groups i−1 or
i + 1, since any two candidates enclosing non-adjacent cores (say
Corex and Corey) imply that at least one of them contains part of
the core between Corex and Corey , contradicting its qualification
as a candidate.

The Maximal-k-cover problem is solved by recasting it as finding
the longest path in a directed k-partite graph. Specifically, each
candidate maximal interval is mapped to a node and each group
as a part, with part i containing all the candidates covering Corei.
An edge connects nodes corresponding to overlapping candidates.
Each edge’s weight is the amount of overlap between the two inter-
vals. The edge is directed towards the candidate that contains the
next core in the sequence. As shown previously edges only exist
between adjacent parts. Finally, we add a source with edges to all
nodes in part 1 and a sink with edges from all the nodes in part k,
both types of edges have weight 0. Finding a CMax solution corre-
sponds to finding the longest path in this directed graph with k+ 1
edges from source to sink. Note that the greedy approach of taking
the largest interval that encloses each core does not always yield a

1Recall that the maximum number of distinct SNP patterns within
a compatible interval is 2n− 3, or O(n).
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(a)

Figure 5: The distribution of cover sizes for genotypes resulting
from all pairings of a set of haplotypes. For ’a’ distributions,
data was simulated using the infinite sites model and recombi-
nation. The source haplotypes cover size (the "ground truth")
is represented by the solid black line. For ’b’ distributions,
a contrived haplotype set was made by phasing a pessimistic
genotype result of ’a’. The source haplotypes cover size is the
dashed black line.

correct answer, as shown in the fourth core of our running example
(compare Fig. 2 (a) and Fig. 4 (c)).

The problem is a single-source shortest path problem for a weighted
DAG, except that we search for longest path (maximizing instead
of minimizing the sum of weight on the path) with a constraint on
the number of steps. The constraint can be ignored since all edges
lead from one part to the next, thus any path from source to sink
will have k + 1 steps. The problem can be solved using dynamic
programming and requires only Θ(|V |+ |E|) time, where V is the
set of nodes, and E is the set of edges [8].

5.2 Critical SNPs
A critical SNP is any SNP whose removal reduces k, the minimum
number of intervals required to cover the given SNP set. To check
whether a SNP is critical, one could simply remove each SNP and
recalculate k by either a LRScan or an RLScan. This naive ap-
proach requires m scans, and takes O(nm2) time. However, it is
unnecessary to test every SNP. In fact, only flagging SNPs of max-
imal compatible intervals need to be considered. A flagging SNP
bounding an interval on one side prevents the interval from grow-
ing toward an adjacent interval on that side, therefore a flagging
SNP must be removed to allow any interval to grow, a necessary
condition of reducing k. A complete proof is given in Appendix
A. Since each maximal compatible interval has two flagging SNPs,
one on each side of the interval, the total number of flagging SNPs
is O(‖CUber‖). The running-time for computing critical SNPs is
O(nm‖CUber‖).

6. PROPERTIES OF GENOTYPE INTERVAL
COVERS

Determining four-gamete compatibility and compatible intervals
over unphased genotype data is ambiguous in that there are many

possible interpretations (phasings) of a set of genotypes as hap-
lotypes. We define two approaches for determining compatibil-
ity among genotypes without explicitly phasing. The optimistic
method determines intervals for which there might exist a phasing
such that the interval is four-gamete compatible. The pessimistic
method determines intervals by choosing phasings such that the
current SNP is incompatible with the current interval wherever pos-
sible.

We compared the haplotype and genotype intervals on three data
sets. First, we created simulated genotype data using a simple
infinite-sites model of mutation with cross-over recombination -
this served as a data source devoid of confounding factors such as
experimental error and homoplasy. In the second, we used real data
from F1 crosses between isogenic mouse strains. Lastly, we used
two populations of HapMap data.

6.1 Relating Genotype and Haplotype Covers.
In simulated data, one can explore relationships between the com-
patible intervals of genotypes and the compatible intervals of their
"source" haplotypes. Such simulated data can be used as ground
truth data for a set of genotypes. The number of intervals in a pes-
simistic genotype cover is greater than or equal to the number of
ground truth intervals. Thus, the number of intervals in an opti-
mistic and pessimistic genotype scan are lower and upper bounds
on the true number of intervals. Proof of these claims are provided
by Theorems 4 and 5 of Appendix A.

Fig. 5(a) represents the distribution of the set of all possible "pair-
ings" of a fixed haplotype set into genotypes. For ’a’ distributions,
the "ground truth", or the number of intervals required to form a
cover using the source haplotypes, is 5. Notice that the covers
resulting from every optimistic genotype scans fall closer to the
"ground truth" than those from every pessimistic scans. From our
experimental results, we observe this is a common case. In con-
trast, ’b’ distributions represent the same plot for a contrived, non-
biology based, haplotype data set. These represent the distribution
of the cover size of all genotypes that can be formed by pairings of
the haplotype set that acheives one of the pessimistic covers from
’a’ (this can always be acheived, as discussed in 6.2). Specifically,
the "true" cover size for this contrived set is 23. Notice that the dis-
tribution is different from the biology-based model. In particular,
the optimistic and pessimistic distributions are closer together and
the "ground truth" is nearer the pessimistic estimations.

6.2 Acheiving Genotype Covers by Phasing
In many circumstances, it is useful to determine if a particular geno-
type cover or interval set is acheivable by phasing. Pessimistic
genotype covers can always be acheived (see Algorithm 2 given
in Appendix B). However, there does not always exist a phasing to
accomplish a given optimistic genotype interval, in practice many
candidate covers can be proposed, and it is trivial to verify candi-
date intervals using existing PPH methods ([19, 14, 1, 4]).

7. EXPERIMENTS AND RESULTS
We tested the performance of our algorithms on real datasets. The
first is based on 8 inbred mouse strains and selected F1 crosses
between these strains using a newly developed genome-wide geno-
typing platform ([44]). The second and third are human datasets
from the International HapMap Project [7]. The first HapMap dataset
describes a population of Utah residents from northern and western
Europe (CEU). The second is a Yoruba population from Ibadan,
Nigeria (YRI). The mouse genome contains 20 chromosomes (chro-
mosome 1-19 and chromosome X). The number of SNPs per chro-
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(a) (b) C(h)Max (c) C(g)Max

Figure 6: (a) shows the k-partite graph used to find C(h)Max for the running example. The node represents the interval, and edges
connect intervals that overlap, with weight representing the number of shared SNPs. The longest path (bold) computed from source
to sink corresponds to CMax. It contains intervals I1, I3, I4, I6, and I8 from CUber , with a total overlap of 17. (b) is the Maximum-
k-cover of the set of haplotypes, C(h)Max, containing I1, I3, I4, I6, and I8. (c) is the optimistic Maximum-k-cover of the set of
genotypes, C(g)Max.

mosome varies from 15K to 50K and includes strains: 129SvlmJ,
A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HILtJ, PWK/PhJ, and
WSB/EiJ along with 37 F1 crosses. The inbred founder mouse
strains were used in the haplotype analysis, while the F1 crosses
were used in the genotype analyses. With this mouse data set, we
are able to ascertain an approximate ground truth, sans genotyp-
ing errors, with real-world rather than simulated data. Only fully
informative SNPs among the 8 strains were used in our analysis,
reducing the 600K total SNPs to 340K.

We found compatible intervals for 23 human chromosomes from
the phased HapMap data (Chromosome 1-22 and Chromosome X).
The CEU dataset has 348 haplotypes (174 individuals) with 34K -
222K SNPs per chromosome and the YRI dataset, has 348 haplo-
types (174 individuals) with 38K - 252K SNPs per chromosome.
Since the phasing method used by HapMap also imputes missing
data, all data was used to evaluate the haplotype methods. The
phased CEU data set has 2.6M SNPs and YRI has 2.9M SNPs.

Our algorithms were implemented in Python 2.6 and experiments
were performed on a 2.67GHz Intel Core i7 processor with 8.0GB
of RAM.

7.1 Run-times
The performance of interval scanning algorithms (LRScan, RLScan
and UberScan) is linear in the number of genotypes, which enables
us to compute CLR, CRL, and CUber efficiently. The run-times
of all three scans and the Max-k-cover algorithm was recorded for
all the data sets. Fig. 7(a) gives the times for calculating the hap-
lotype interval covers on the mouse data set (inbred founders) and
genotype covers for the F1 crosses. Fig. 7(b) shows run times for
all covers over the HapMap CEU data set (YRI is similar). As
shown, the run-times for haplotype and pessimistic genotype scans
are linear in the number of genotypes. Optimistic genotype scans
are quadratic in the number of SNPs in the largest interval, which is
not bounded by the number of genotypes as in the other scans, but
is far smaller than the size of the genome. Since the LRScan and
RLScan are symmetric procedures, they have similar run-times.
UberScan involves more bookkeeping and, thus, has higher times
than the other scans. The optimistic genotype scan times are much
higher than the haplotype and pessimistic scans due to the com-
putationally intensive graph algorithm which must be performed at

each step. Run-times for all scans vary additionally across chromo-
somes depending on properties of the data such as interval size.

The k-partite graph component of the Max-k-cover algorithm takes
the intervals of CUber as input. Fig. 8(b) shows the run-time of the
Max-k-cover algorithm as a function of the number of intervals
‖CUber‖. The run-time of the Max-k-cover algorithm has a linear
relationship with the cardinality of CUber .

7.2 Interval and Core Statistics
We also collected various statistics over the CMax intervals and
cores, including interval lengths in terms of SNPs and genomic po-
sition, and the number of distinct haplotypes. The interval lengths
shown in Figure 9 illustrate the prevalence of many long blocks
(suggestive of conserved regions) punctuated by smaller intervals
indicative of hot spots. Numbers of distinct haplotypes (Fig. 9(b))
indicate the relative diversity within each block. Note that the max-
imum number of distinct haplotypes is Min(n, s + 1), where s is
the number of unique SNPs in the interval.

A large percentage of Max-k intervals in the optimistic genotype
cover of the human CEU data set contain only a single SNP. By
definition, these are Critical SNPs - removing one reduces the to-
tal number of intervals k by at least one. Such one-SNP inter-
vals, which are incompatible with SNPs immediately adjacent, are
not likely to be informative regarding recombinations and prob-
ably represent other biological or experimental artifacts such as
genotype errors, homoplasy, or gene conversions. This explains
the prevalence of intervals with two unique haplotypes as shown in
Fig. 9(b), and the large number of single-SNP intervals, as shown
in Fig. 9(a). Fig. 9(a) also shows the distribution of interval sizes in
SNPs of the Max-k cover after the SNPs making up these single-
SNP intervals have been removed. Notice that the average interval
size is greater for all three cover types after removing these data.

The relationship between the haplotype covers and the optimistic
and pessimistic genotype covers is illustrated in Figures 8 and 9.
Fig. 8(a) shows the number of intervals in a k-cover of the CEU hu-
man data set for each chromosome. These covers demonstrate The-
orems 4 and 5 (Appendix A) that ‖C(g)‖ ≤ ‖C(h)‖ ≤ ‖C(p)‖.
Thus, the genotype scans serve as effective upper and lower bounds
on the "ground truth".
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(a) Mouse cover run-times (b) HapMap CEU cover run-times

Figure 7: Run-times to calculate covers over real data sets. (a) shows CLR, CRL, and CUber run-times versus the number of size of chromosome
in SNPs for haplotype, optimistic genotype, and pessimistic genotype covers over the mouse data set. (b) similarly dipicts run-times of the HapMap
CEU population.

8. DISCUSSION AND FUTURE WORK
By providing an effective means of partitioning haplotypes and
genotypes into meaningful blocks on a genome-wide scale, we have
enabled several new areas for exploration. An obvious application
of FGT compatible intervals is to construct local perfect phylogeny
trees, in an effort to find sets of frequently recurring and compat-
ible trees [43]. This question is of particular importance in model
organisms such as laboratory mice that are thought to derive from
small set of founders (i.e., fancy mice) [44], and in communities
where there are ongoing efforts to generate new model popula-
tions for systems biology [5]. Our method is effectively used in
Yang et al (2010, in preparation) to identify meaningful blocks over
which the historical subspecific origin of laboratory mice can be an-
alyzed. Moreover, one can precisely define the core of such trees
and quantify their variability. Both local phylogenetic trees derived
from compatible SNP intervals and the limited haplotype diversity
of compatible SNP intervals can be incorporated into disease as-
sociation studies, as has been recently demonstrated [39, 26, 30].
With our introduction of a method for finding compatible intervals
over outbred populations, it may be possible to gain the same bene-
fits working with less controlled populations, including the human
genome.

The prevalence of single-SNP cores in our results also suggests new
methods for cleaning data. There are several possible sources for
these small local features including genotyping errors, gene conver-
sions, and homoplasy. In addition to the obvious benefits of elim-
inating putative errors from a given data set, the other two sources
for single-SNP cores are of great interest to biologists, but are not
well-characterized. One would expect that a systematic greedy re-
duction of an interval set from k to k − 1 or k − 2 intervals would
expose larger scale structure and phylogenetic trees with improved
support.
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