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Abstract

The distribution of digital video content over computer networks
has become commonplace. Unfortunately, most digital video en-
coding standards do not degrade gracefully in the face of packet
losses, which often occur in a bursty fashion. We propose an new
video encoding system that scales well with respect to the network’s
performance and degrades gracefully under packet loss. Our en-
coder sends packets that consist of a small random subset of pixels
distributed throughout a video frame. The receiver places samples
in their proper location (through a previously agreed ordering), and
applies a reconstruction algorithm on the received samples to pro-
duce an image. Each of the packets is independent, and does not
depend on the successful transmission of any other packets. Addi-
tionally, each packet contains information that is distributed over
the entire image. We also apply spatial and temporal optimization
to achieve better compression.

1 Introduction

With the advent of the internet, the distribution of digital video con-
tent over computer networks has become commonplace. Unfortu-
nately, digital video standards were not designed to be used on com-
puter networks. Instead, they generally assume a fixed bandwidth
and reliable transport from the sender to the receiver. However, for
the typical user, the internet does not make any such guarantees
about bandwidth, latency or errors. This has lead to the adaptation
or repackaging of existing video encoding standards to meet these
constraints. These attempts have met with varying levels of success.
In this paper we propose to design a new video encoding algorithm
specifically for computer networks from the ground up.

The internet is a heterogeneous network whose basic unit of
transmission is a packet. In order to assure scalability, the internet
was designed as a best effort network - i.e. it makes no guarantees
that a packet sent by a host will arrive at the receiver or that it will
be delivered in the order that it was sent. This also implies that it
makes no guarantees on the latency of the delivery.

A video encoding system designed for computer networks would
ideally satisfy the following requirements. The transmitted data

stream should be tolerant to variations in bandwidth and error rates
along various networking routing paths. A given data stream should
also be capable of supporting different qualities of service. Where
this quality of service might be dictated by local resources (such
as CPU performance) or the other user requirements. These re-
quirements are only partially satisfied by existing video encoding
systems. In this paper we propose a flexible video encoding system
that satisfies the following design goals:

� The system must allow for broadcast. We would like a system
where video can be transmitted to a large audience in real
time with no feedback to the source. This allows for arbitrary
scalability.

� The network can arbitrarily drop packets due to congestion
or difference of bandwidths between networks or receivers.
Since this system is targeted to error prone networks, it must
perform well under packet losses.

� The sender should be able to dynamically vary the bandwidth
and CPU requirements of the encoding algorithm. In order
to guarantee a quality of service variations in bandwidth may
be necessary. For instance, at scene changes or during a com-
plex sequence. Variations in bandwidth could also occur due
to resource limitations at the source such as channel capacity
and CPU utilization, or by a policy decision.

� The receiver should be able construct a reasonable approxi-
mation of the desired stream using a subset of the data trans-
mitted. Furthermore, the receiver may also intentionally ig-
nore part of the data received to free up resources in exchange
for reduced quality.

� The quality of the video should degrade gracefully under
packet loss by the network or throttling by the sender or the
receiver.

� Variations in the algorithm should support a wide range of
performance levels, from small personal appliances to high-
end workstations.

� Users should be able to quickly join a session in progress.

These goals place severe constraints on how the system can be
built.

We consider packets as the basic unit of network transmission
[13]. A video frame generally spans many packets. System through-
put and quality are affected by throttling packets at the sender,



packet loss in the network, and ignoring of packets at the receiver.
Therefore, we choose to regard packets as atomic in our system
design. For scalability and error handling we avoid packets that
contain prioritized data or interdependencies, such as the clustering
of data or differential encoding. These goals motivate our design
principles:

Globalness– Individual packets should contain enough infor-
mation to reconstruct the whole image. They also should be ad-
ditive - each additional packet increases the reconstructed image
quality. Conversely, for each packet that is dropped by the sender,
network or receiver, the image quality degrades.

Independence– All packets are independent of each other; any
one of them can be dropped without abrupt changes in quality, and
in many cases we can process them out of order.

These principles are quite different than current video encod-
ing systems. Typical video encoding algorithms (i.e. H.263 [1] or
ISO MPEG), use compression and encoding techniques that make
packets interdependent; when one packet is lost, all other packets
that are related to it lose their usefulness.

We propose an encoding system that scales well with respect
to the sender’s performance, the number of receivers, and the net-
work’s performance. This system degrades gracefully under packet
loss. Briefly stated: the encoder sends packets that consist of a
small random subset of pixels distributed throughout a video frame.
The receiver places samples in their proper location (through a pre-
viously agreed ordering), and applies a reconstruction algorithm on
these samples to produce an image. Notice that since each packet
contains a small random subset of the image, there is no ordering
or priority for packets. We also apply spatial and temporal opti-
mization to achieve better compression without compromising our
global and independence principles.

Many other researchers have shown that there is an inherent
tradeoff between the amount of compression and the degree of ro-
bustness to data loss [14]. Our work is no exception; our achieved
image quality at a given level of compression is below the best
known channel encoders. For this price, we obtain the ability to re-
construct images even when receiving one packet per frame. Find-
ing fair ways to measure this tradeoff remains as future work.

2 Previous Work

Video encoding algorithms specifically tailored for the internet have
been previously proposed. ISO MPEG-1 provides high compres-
sion ratios, and it allows for bitstream resynchronization using slices.
Generally slices span multiple packets, and few encoders make an
effort to align slices within packet boundaries. The variable length
encoding and difference encoding used by MPEG-1 is very effec-
tive in reducing the bitrate, but both techniques make assumptions
about what has been previously received. If these assumptions are
wrong (caused by packet loss) [8], artifacts will develop in the new
frame. Other discrete cosine transform (DCT) based algorithms
like H.261, have been successfully adapted for use in computer net-
works by using a technique sometimes called “conditional replen-
ishment” [21]. The idea is, that instead of encoding the differences
from previous frames, they either keep old blocks or entirely re-
plenish new blocks independently encoded. These techniques re-
quire that all blocks are replenished within a specified period of
time. During heavy packet losses, important areas may not be up-
dated until the losses subside. This is an all or nothing approach: a
block will completely reach its new state or not change at all.

Layering approaches have partly alleviated this last problem.
Algorithms like L-DCT [2] and PVH [21], use a base channel to
encode a low quality representation of the block; and use additional
channels to encode enhancement information to reproduce a more
faithful block. Because enhancement layers usually depend on the
base layered being received, when the base layer packets are lost,
the block cannot be updated at all.

Error handling can also be incorporated into the network layer.
By using error correcting codes, or retransmission based schemes,
errors can be minimized or eliminated, as to create the illusion of a
reliable network stream. Open-loop approaches [32] (i.e. those that
don’t require feedback) such as, Forward Error Correction (FEC),
eliminate errors when they are well characterized. Unfortunately,
these systems must include enough redundancy in advance to deal
with the worst-case packet loss rate scenario. This leads to inef-
ficiencies. The overhead for error correction also increases total
network load. Thus the entire network is taxed due to the worse
performing route [26, 12]. The alternative is to use a closed-loop
approach. Close-loop approaches [28, 25, 7, 33] , where the re-
ceivers request the retransmission of lost packets, have the draw-
back of higher latency and are difficult to scale [6, 4]. Additionally,
since packet loses generally occur during congestion, these requests
and subsequent retransmissions can make matters worse.

Robustness to data loss can be achieved using multiple descrip-
tion coding (MDC) [23, 29, 16]. MDC coders build correlation be-
tween the symbols allowing for good reconstruction from subsets
of the data. Much of the previous work has dealt with two-channel
coding [23], which can withstand the loss half of the transmitted
data. There has also been some preliminary work on many-channel
coding [16, 29]. One can think of the NAIVE encoding as an ex-
treme example of MDC, where no decorrelating transform is ap-
plied to the original pixel data, and pictures can be reconstructed
from any received data.

The algorithm we propose bears many resemblences to work
in error concealment [3, 11, 34, 31]. While most error conceal-
ment techniques are built upon existing standards, our technique
proposes an entirely novel encoding scheme. Our encoding scheme
is tolerant to bursty errors, and does not require resynchronization.
Our reconstruction algorithm is fast, and makes no a-priori assump-
tions about the existance of specific nearby blocks or pixels.

3 The Algorithm

The Network Aware Internet Video Encoding (NAIVE) system sends
a random subset of samples for each video frame and reconstructs
the frame at the receiver. The random samples are distributed across
one or more network packets. Given a sufficiently uniform sam-
pling distribution, each packet can be considered as a subsampled
version of the original image. Thus, each packet satisfies our glob-
alness objective. Samples are selected in a random sequence in
order to hide errors caused by packet loss and to reduce aliasing ar-
tifacts such as blockiness at low sampling densities [22]. If packets
of samples are lost, the degradation is distributed evenly through-
out the reconstruction instead of being localized as is typical of
the sequentially encoded blocks used in other compression meth-
ods. Furthermore, the reconstruction artifacts due to packet loss
should lead to an apparent loss in resolution (blurring) rather than
introduce spurious structure as would be expected from an uniform
subsampling. Such structure is generally visible even when using
higher order reconstruction filters.

Following our design principles, each packet contains samples
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Figure 1: GrayscaleSusieimage pyramid reconstruction. The input
samples are located in multiple levels of the pyramid. Notice that
input samples in level 1 and 2 correspond to the background and
smooth regions of the image.

uniformly distributed throughout the whole image, and independent
of any previous packet sent. Our encoding system allows for ar-
bitrary packet loss, thus there is no guarantee that the client has
received any particular set of image information. This presents
us with the problem of reconstructing an image from irregularly
spaced samples.

3.1 Image Reconstruction

A viable solution to this image reconstruction problem must have
the following features:

� The method must run at frame rate. Thus, it is too expensive
to solve systems of equations (as is done when using global
spline methods [30, 19] ) or to build spatial data structures
(such as a Delauney triangulation [24]).

� The method must deal with spatially scattered samples. Thus
we are unable to use standard interpolation methods, or Fourier-
based sampling theory.

� The method must create reconstructions of acceptable qual-
ity.

In this paper we adapt the pull-push algorithm of Gortler et
al. [15]. This algorithm is based on concepts from image pyra-
mids [9], wavelets [20] and subband coding [18], and it extends
earlier ideas found in [10] and [22]. The algorithm proceeds in two
phases called pull and push. During the first phase, pull, a hierar-
chical set of lower resolution data sets is created in an image pyra-
mid. Each of these lower resolution images represents a “blurred”
version of the input data; at lower resolutions, the gaps in the data
become smaller (see pull column in figure 1). During the second
phase, push, this low resolution data is used to fill in the gaps at
the higher resolutions (compare level 2 pull and push in figure 1).
Care is taken not to destroy high resolution information where it is
available. Figure 2 shows the reconstruction of the lenna grayscale
from 5% and 22% of the original pixels.

(a)

(b)

Figure 2: Grayscale lenna image samples and reconstruction. Using
22% original pixels (a), and using 5% of original pixels (b). The
images in the left column show the input pixels. The right column
shows our reconstruction

3.1.1 Organization

The algorithm uses a hierarchical set of image pixels with the high-
est resolution labeled0, and lower resolutions having higher in-
dices. Each resolution has 1/2 the resolution in both the horizontal
and vertical dimensions. For our 320 by 240 images, we use a 5
level pyramid. Associated with the ij’th pixel valuepri;j at reso-
lution r is a weightwr

i;j . These weights, representing pixel con-
fidence, determine how the pixels at different resolution levels are
eventually combined.

3.1.2 Initialize

During initialization, each of the received pixels is used to set the
associated pixel valuep0i;j in the high resolution image, and the
associated weightw0

i;j for this pixel is set tof . f is the value chosen
to represent full confidence. The meaning off is discussed below.
All other weights at the high resolution are set to 0.

3.1.3 Pull

The pull phase is applied hierarchically, starting from the highest
resolution and going until the lowest resolution in the image pyra-
mid. In this pull phase, successive lower resolution approximations
of the image are derived from the adjacent higher resolution by per-
forming a convolution with a discrete low pass filter~h. In our sys-



tem, we use the “tent” sequence.~h[�1::1] � [�1::1]:"
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The lower resolution pixels are computed by combining the higher
resolution pixels using~h. One way to do this would be to compute
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This is equivalent to convolving with~h and then downsampling by
a factor of two.

This computation can be interpreted as follows: Suppose we
have a set of continuous tent filter functions associated with each
pixel in the image pyramid. Suppose~B0

i;j(u; v) is a continuous
piecewise bilinear linear tent function centered ati; j and two units
(high resolution pixels) wide,~B1

i;j(u; v) at the next lower resolu-
tion is a tent function centered at2i; 2j and is four units (high reso-
lution pixels) wide,~B2

i;j(u; v) at the next lower resolution is a tent
function centered at4i; 4j and is 8 units wide, and so on. These
continuous functions are related using the discrete sequence~h:
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This means that one can linearly combine finer tents to obtain a
lower resolution tent. The desired multiresolution pixel values can
be expressed as an integral over an original continuous imageP (u; v)
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If one approximates this integral with a discrete sum over the re-
ceived pixel values, one obtains
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It is easy to show that the values computed by Equation 3 can be
exactly and efficiently obtained by applying Equation 1 hierarchi-
cally.

This method creates good low resolution images when the orig-
inal samples are uniformly distributed. But when the original sam-
ples are unevenly distributed, Equation 3 becomes a biased estima-
tor of the desired low resolution value defined by Equation 2 for it
overly emphasizes the over sampled regions. Our solution to this
problem is to replace Equation 1 with:
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The valuef represents full confidence, and themin operator is
used to place an upper bound on the degree that one image pyra-
mid pixel corresponding to a highly sampled region, can influence

(a) (b)

Figure 3: Grayscale lenna test image reconstruction with 10% of
samples: (a) using f = 1, (b) f = 1/8

the total sum. Any value of1=16 � f � 1 creates a well defined
algorithm. Iff is set to one, then no saturation is applied, and this
equation is equivalent to Equation 1. Iff is set to1=16, then even a
single sample under the sum is enough to saturate the computation
for the next lower resolution. In the system we have experimented
with many values, and have obtained the best results withf = 1=8.
Although complete theoretical analysis of the estimator in Equa-
tion 4 has yet to be completed, our experiments show it to be far
superior to Equation 1. Figure 3 shows the reconstruction of the
lenna grayscale image with 10% of its samples reconstructed using
(a) f = 1, (b) f = 1/8.

The pull stage runs in time linear in the number of pixels summed
over all of the resolutions. Because each lower resolution has half
the density of pixels, the computation time can be expressed as a ge-
ometric series and thus this stage runs in time linear in the number
of high resolution pixels at resolution0.

3.1.4 Push

The push phase is also applied hierarchically, starting from the low-
est resolution in the image pyramid, and working to the highest res-
olution. During the push stage, low resolution approximations are
used to fill in the regions that have low confidence in the higher
resolution images. If a higher resolution pixel has a high associated
confidence (i.e., has weight greater than or equal tof ), we disre-
gard the lower resolution information for that high resolution pixel.
If the higher resolution pixel does not have sufficient weight, we
blend in the information from the lower resolution.

To blend this information, the low resolution approximation of
the function must be expressed in the higher resolution. This is done
using an interpolation sequence also based on the tent sequence but
with a different normalization:h[�1::1] � [�1::1]:"

1=4 1=2 1=4

1=2 1 1=2

1=4 1=2 1=4

#

Push is done in two steps: we first compute temporary values
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This computation is equivalent to upsampling by a factor of 2 (adding
0 values), and then convolving withh. These temporary values are



now ready to be blended with thepr values already at levelr, using
thewr as the blending factors.
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analogous to the “over” blending performed in image composit-
ing [27].

3.1.5 Compression in the NAIVE Framework

To some extent, NAIVE achieves both compression and resiliency
by relying on a random subset of samples from an image to re-
construct the missing information. However, neither the selection
nor reception of the samples is related to the specific content of the
transmitted image. Since the goal of any compression algorithm is
the elimination of redundancy in the target signal, we have also de-
veloped techniques to exploit the specific contents of a given video
stream to achieve greater compression.

In particular, video sequences commonly exhibit significant spa-
tial and temporal correlations that are generally concentrated in
lower frequency ranges. At first glance it would appear that a ran-
dom sampling strategy, like the one used in NAIVE, runs counter
to any effort to reduce spatial and temporal correlation (since ran-
domizing a correlated function tends to decorrelate it). However, if
the notion of a sample is expanded to include not only pixels from
the highest resolution level of the pyramid hierarchy, but also the
subsequent lower resolution levels, significant reductions in spatial
correlation can still be achieved. Likewise, if the persistence of a
given sample from the reconstruction pyramid is lengthened from
a single frame period to multiple frame intervals, similar temporal
reductions are also possible.

Often there are cases when an image encoder benefits from
transmitting only low-resolution information about some region.
Perhaps that region contains little or no high frequency detail, or
perhaps the region is considered insignificant and the current instan-
taneous bandwidth available does not support the transmission of a
full resolution image. To accommodate this ability our algorithm
allows the encoder to insert lower resolution samples directly into
an appropriate level of the pull-push image pyramid,p

r

i;j for r > 0.
When low-resolution samples are received they are placed directly
into the reconstruction pyramid at the appropriate resolution. Also,
the ”pulling” of higher resolution samples onto a lower-resolution
sample is suppressed. In order to effectively apply this capabil-
ity both perceptual and information theoretic concerns should be
considered. Thus, as is typical of most digital video compression
methods, there is a considerable art to making the best use of this
capability. More details about how multi-resolution samples are
encoded are given in subsection 4.1.

In video sequences image regions can change slowly. Our sys-
tem takes advantage of this temporal coherence by allowing pixels
from previous frames to be included in the pull-push reconstruc-
tion process. The persistence of a given sample is controlled by
two mechanisms. First, all samples are aged at a constant rate with
newer samples superceding older ones. After a sample’s age limit
is reached, it no longer takes part in the image reconstruction pro-
cess. Secondly, entire regions, or blocks, of old samples can be
invalidated. This invalidation is typically used in areas of rapid mo-
tion or at scene changes. There are many tradeoffs to be considered
when using these methods. More information about the aging and
invalidation of samples is described in subsection 4.2.
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Figure 4: Offset Table: There are N 16x16 blocks in the image.
The i’th entry points to a sample in block number i modulo N. On
any selection of N consecutive entries, there is a sample from every
block

3.2 Packetization

The pull-push algorithm provides a means of reconstructing an im-
age from non-uniform samples. From our principle of globalness
we need to pick samples from the whole image. And these have to
be selected at random to avoid visible artifacts and to allow the ap-
pearance of simultaneous update everywhere in the image [5]. We
guarantee coverage of the whole image by dividing it into 16x16
blocks and making succesive passes over the image selecting one
random sample from each block on each pass.

In order to minimize the information transmitted, the sender and
the receiver agree on the ordering of samples, such that the sender
only needs to send the location of the first sample in a packet. This
is done as follows. The image is split into 16x16 blocks, this means
that there are 256 samples per block. Say there are N blocks in
an image. We generate a table, called the “offset table”, that has
256*N entries. The i’th entry in the table points to a sample in block
numberi mod N. The first entry contains the coordinate of a random
sample in the first block; the second entry contains the coordinate of
a sample in the second block; The N+1th entry contains the location
of a sample again in the first block. The random ordering of the
samples within a block is established by assigning a pseudo-random
number to each pixel. The pixels are then sorted into a list according
to this random number. The offset table can then be constructed by
selecting a pixel from each of the N lists. The sender and receiver
are synchronized through the transmission of a seed for the random
number generator. With the seed and frame size information the
receive can construct the offset table. This is the only information
that must be transmitted via a reliable protocol such as TCP/IP.

This ordering guarantees that if we pick N consecutive samples,
they will span the whole image without large clusters. Additionally,
we can compute the block that a sample belongs from its table offset
modulo N. See figure 4.

The reconstruction explained so far applies to a grayscale im-
age. This same idea can be extended to the chrominance compo-
nents of color images. We encode color images by sampling the
chrominance components at a resolution 1/4 of the luminance im-
age, similar to MPEG. To encode them, we maintain another offset
table with 8x8 blocks to correspond to the 16x16 blocks of the lu-
minance components. We encode the chrominance samples inde-
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Figure 5: Packet Format

pendently of the luminance samples.

We need to send very little overhead information with each
packet. Each packet consists of: the frame number; table offset
of first chrominance sample, number of chrominance samples, and
the samples themselves; and table offset of first luminance sample,
with the remaining of the packet filled with luminance samples (see
figure 5). We use 1024 bytes as our default packet size. This struc-
ture satisfies our global and independence properties. If a packet
has more than N luminance samples (where N is the number of
blocks in a frame), then there will be one sample in every block of
the image guaranteed by the way we traverse the offset table.

4 Enhancements

The baseline approach described above works well for images whose
details are uniformly distributed throughout the whole image. Most
images, though, have localized regions of detail. And most se-
quences bear a high level of temporal coherency across frames. We
can take advantages of these characteristics to produce better qual-
ity video with the same or less amount of data.

4.1 Spatial Locality

In image regions with mostly low frequency content, our encoding
system allows us to directly transmit lower resolution samples, and
the receiver can insert these directly into lower resolution pyramid
levels.

In our encoding system, we encode the sample value and reso-
lution level in the same byte. We use 7 bits of precision for level 0
samples, and 6 bits of precision for level 1 and level 2 samples. If
the least significant bit is 0, the sample is a level 0 sample; if the
least significant bits is 01 or 11 the sample is a level 1 or level 2
sample respectively. With this change we keep the packet structure
unchanged, except for how sample values are interpreted.

Samples that are inserted at lower resolution levels, correspond
spatially to many more samples at finer levels. Thus, when a low
resolution sample is sent, fewer higher resolution samples are needed
for that block.

To manage the bookkeeping for this information, we use a spe-
cial table, called the SKIP TABLE. There is a SKIP TABLE entry
for each block. The SKIP TABLE contains the encoder/decoder
agreed upon number of samples for this block that will be skipped.
When a packet is received, all entries in the SKIP TABLE are ini-
tialized to 0; thus each block is guaranteed to have one sample.
When a sample is inserted into a lower resolution level, we load the
skip table entry for that block, with a predefined constant, agreed
upon by the sender and the receiver. In our system, when a sample
is sent for level 1, we skip the next 3 samples for this block. When
a sample is sent for level 2, we skip the next 15 samples for this
block.

Each time that block occurs in the sequence we inspect the skip
table entry to see if it is non-zero, if it is, we decrement the skip

table, and go to the next block without reading a sample from the
packet. Otherwise, we insert the current sample into the block ac-
cording to the offset table entry.

4.2 Temporal Locality

Temporal locality can be exploited even when packets are inde-
pendent of each other. MPEG and H.261 exploit temporal locality
by reusing block of pixels that are closely located in the previous
frame, encoding this location and their difference. In our approach,
we don’t make any assumptions about the previous frame or what
packets the receiver has processed. We simply take advantage of
the fact that pixels in a block may not change significantly across
many frames, in which case, we reuse them to reconstruct a higher
quality image. In NAIVE, pixels from previous frames can be kept
around for up to 20 frames, and used as equal participants in the
pull-push algorithm. When a block has changed significantly, a
KILL BLOCK signal is encoded for that block, and all pixels for
that block from previous frames are discarded. For scene changes,
a KILL ALL BLOCKS signal will discard all previous pixels from
previous frames.

We flush the previous frame samples for a given block by using
a special word (KILLBLOCK) instead of encoding the sample.
When this code is seen, the block that corresponds to the offset for
that sample, will be marked, and all corresponding samples from
previous frames are flushed. Additionally, we do not increment the
pointer into the offset table, such that the next sample in the stream
falls in the current block. We encode the KILLBLOCK signals
for new blocks in all the packets of a given frame. Currently, there
exists a possibility of reusing samples from a wrong frame under
few error scenarios; but this contition can be remedied by encoding
a sequence number with the KILLBLOCK signal (analogous to
MPEG-2 slice id information).

Blocks that do not change will slowly improve in quality be-
cause they are reusing samples from previous frames; therefore we
wish to add more samples to the blocks which are changing more
rapidly and are not reusing samples. We accomplish this by in-
serting negative values in the SKIP TABLE in the following way.
When a block is killed, we set its corresponding SKIP TABLE entry
to a negative value (currently -10). After we have gone around once
for all blocks in the image, we only visit blocks that have a nega-
tive SKIP TABLE entry and increment its SKIP TABLE for each
sample received. This continues until there are no more negative
SKIP TABLE entries left. This increases the reconstructed quality
of blocks that are not reusing previous samples. This does not vio-
late our globalness principle, since we still have at least one sample
per every block if they fit in a packet.

5 Results

In this section we evaluate the performance of our compression sys-
tem. Before we proceed it is important to note two caveats. First,
the policies of the encoder will greatly determine the quality of the
decompressed stream. The encoder can make many decisions. For
example, it can make decisions about which blocks to flush or keep,
what offset to start sending samples from, from which levels sam-
ples should be drawn, what proportion of luminance/chrominance
samples to use, among other decisions. We have manually found
reasonable settings for our video streams. In the optimal case, the
encoder would make these decisions automatically. Secondly, we
have used the signal-to-noise ratio metric (SNR) for evaluating our
results. It is well known that SNR is not an optimal measurement
for image quality. It is acceptable for comparing the algorithms
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Figure 6: Rate-distortion curve on the grayscale 512x512 “Lena”
test image.

based on the same transform with different settings [17]. A better
measurement would be based on models of the human visual sys-
tem; but these are usually harder to implement or compute than the
SNR.

Figure 6 shows the rate distortion curve for 512x512 grayscale
image, compressed for different target bit per pixels (bpp) and dif-
ferent packet sizes. Large packet sizes are important for large im-
ages. If the packet is not larger than the number of blocks in an
image, then there will not be enough space to go around all the
blocks once, and more importantly, the algorithm will not make use
of the SKIP TABLE, which allows it to get more samples in needed
areas. The drawback of using large packets is that they are more
likely to fragmented and lost. When a packet is fragmented, and
one of its fragments get lost, the whole packet is lost. For small im-
ages, a packet size of 1024 bytes is adequate. For our experiments
we used a packet size of 1024 bytes because it is compatible with
the maximum packet size of most networks.

Figure 7 shows how the quality degrades gracefully for differ-
ent kinds of video sequences. For these sequences, temporal and
spacial locality has been used. The first sequence,Walk, contains
a men in suits walking from a car, the scene has high detail and
motion. The second sequence,Claire is a standard head and shoul-
ders shot. Lastly, theInterview, consists of three scenes: a person
walking into a room, a head and shoulders shot of the person talk-
ing inside the room, and close up of her face. All three sequences
contain 100 frames, and were encoded at 1bpp. To generate all the
data, the sequences were decoded with different packet drop rates
calculating the average SNR of all frames. The packet drop rate de-
termines the independent probability that a packet will be dropped.
Over a whole sequence, a video encoded at 1bpp and decoded with
a packet drop rate of 30%, will have a receive bpp of 0.7bpp. The
slope of all three curves is very similar, showing that it degrades
slowly regardless of the kind of video.

The algorithm handles bursty packet losses well. Figure 8 shows
the frame by frame SNR for the 10 secondInterview (320x240
color) sequence compressed at 0.33 bpp. This sequence is com-
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Figure 7: Average SNR of 3 color sequences with 100 frames en-
coded at 1 bpp2 and decoded with different packet drop rates yield-
ing different bpp. receive rates.

posed of three shots. The first 22 frames is a shot sequence of the
person walking into an office. The stride of the person and camera
angle makes the shot contain one slow motion frame and one fast
motion frame, to give the resulting wave-like shape for the SNR
during that shot. The second shot is a head and shoulders shot of
the person being interview in her office. This shot lasts until frame
77. The last shot is a close up of the person. The quality of the
image is above 30dB for most of the sequence, there is a short dip
between frame 77 and frame 78, but it does not take long to recover.

Figure 9 shows the same sequence under bursty packet loss.
The dashed line represents the actual bit rate during the reception of
each frame. This figure shows that even under heavy loss (receiving
less that 0.1 bpp), the quality does not degrade significantly. At the
end of the first burst, in frame 28, the quality level recovers rapidly.
Additionally, the quality hardly degrades during the second burst,
between frames 37 and 47.

The complexity of the algorithm is simple enough to allow a
software-only implementation. Table 1 shows the decoding frame
rate for different sequences. The algorithm was run on a common
Intel Pentium Pro 200Mhz processor running Linux and the X win-
dows system. The frame rate is not very sensitive to the amount of
data received. The decoding time is dominated by the pull-push al-
gorithm after all the samples received from the network have been
placed in the image. The color sequence ran at 50% lower frame
rate, than the comparable grayscale sequence. This makes sense,
since we have to reconstruct the chrominance data which is half the
size of the luminance data for color sequences. Displaying QCIF
sequences in real time would not be a problem, and with a faster
machine and an efficient display system, the same might be possi-
ble for CIF sequences.

6 Conclusions

The NAIVE system that we have presented is an initial step towards
a video compression system tailored specifically for computer net-
working environments. NAIVE satisfies our initial design goals. It
supports broadcast over large-area network and maintains scalabil-
ity. NAIVE is tolerant to packet loss at any point along the network
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Figure 8: Base: SNR for each frame vs. the bpp received per frame,
constant receive rate of 0.33 bpp

Test Sequence fps 1bpp fps 0.5bpp

interview (color 320x240) 23.5 25.3
susie (gray 352x240) 34.81 36.32
qclaire (gray 176x144) 76.7 84.9

Table 1: Decoding frame rates (without displaying) for different
sequences.

from the sender to the receiver. In fact, the intentional dropping
of packets at the source is one method of increasing the effective
compression of the bit stream. Similarly, the selective dropping
of packets at the receiver effectively sheds CPU load. A NAIVE
sender can also dynamically vary its transmission bandwidth when
required by the video sequence in order to maintain a given quality
level. In all cases, the receiver of a NAIVE video stream is able to
reconstruct a reasonable approximation of an entire frame using a
minimum of information (i.e. a single packet). The reception of ad-
ditional packets further enhances the quality of the frame. Finally,
our system degrades gracefully under severe packet losses.

Fundamentally, the randomizing of samples used in our NAIVE
method has the effect of decorrelating the input signal and effec-
tive compression methods essentially depend on highly correlated
input signals. Thus, our NAIVE algorithm sacrifices compression
ratio, as compared to other video compression techniques, in or-
der to achieve our design goals. We believe that other compression
techniques can be layered onto our NAIVE methods to achieve sub-
stantially improved compression. For instance, differential encod-
ing methods could be applied to all samples in a packet following
the initial sample. Variable length encoding techniques can be ap-
plied within individual packets to reduce redundancy in the trans-
mitted symbols. We are also hopeful that motion compensation
techniques can be applied within our framework by encoding mo-
tion vector for each block. These motion vectors would imply that
a block of samples in all pyramid levels would be copied to the
current block. Thus, the sender would make no specific assump-
tion concerning which samples are available at the receiver, only
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Figure 9: Bursty: SNR for each frame vs. the bpp received per
frame, there are bursty errors, so the receive rate drops sporadically

that those samples within the transferred block would form the best
basis for reconstructing the desired block. It is also possible to in-
corporate embedded coding techniques to the samples within each
packet. This would potentially allow for trading off the quantization
of samples for increased sampling density.

Another shortcoming of our NAIVE method is that the sender
is fundamentally unable to make any quality guarantees to any par-
ticular receiver. The need for such a guarantee might arise based
from an economics driven approach where particular receivers pay
a premium for assurances of a given quality level. Layering is an ef-
fective technique for satisfying such requirements. We believe that
our NAIVE method could be extended to provide layering. Finally,
we plan to integrate audio into our framework in the near future.
We’ll either adapt the NAIVE mechanisms to audio or use one of
the standard protocols for audio distribution.

In summary, we view our NAIVE algorithm as starting point for
the development of a new class of video compression methods that
are well suited for computer networks. By considering the realities
of real networks we believe that is possible to define new classes of
algorithms that are scalable in broadcast applications and degrade
gracefully under variations in network activity.
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