Adaptive Colormap Selection Algorithm for Motion Sequences
John L. Furlani
SunSoft, Inc.

Leonard McMillan
The University of North Carolina

Lee Westover
Division, Inc.

ABSTRACT: We present a simple and intuitive algorithm for the
quantization of full-color images which has been designed to apply
to static images and motion sequences equally well. Our technique
eliminates the perils of hardware colormap flashing which is
inherent in other well known algorithms for selecting colormap
representatives. We compare our technique with existing static
image colormap generation techniques to show the quality of the
resultant quantization.

Introduction

Color frame buffer architectures which represent each dis-
played pixel as an index into a colormap are commonplace in
the computer industry. While such architectures are suitable for
many applications, they do not provide suitable fidelity for the
errorless representation of arbitrary full-color continuous tone
images. However, techniques have been developed which
attempt to select an optimized colormap for a specific full-color
image, These determine a set of colors which best represent the
color gamut of the input image.

When an input image is mapped from its original description
to a set of representatives it undergoes a quantization process.
The differences between the original values and the resulting
values are known as quantization errors. It is desirable to mini-
mize quantization errors. An important step in the quantization
process is the selection of an appropriate set of representatives,
which for the application being discussed are the various color-
map entries. In general, this selection process falls into one of
two classes: unbiased selection where the choice of representa-
tives is completely independent of the source being quantized,
and biased selection where representatives are chosen to repre-
sent a specific source. A common unbiased representative
selection scheme is “uniform” or “colorcube” quantization. In
this scheme, each dimension of the color space is subdivided
into a fixed number of levels. The total number of representa-
tives is determined by the product of the number of subdivi-
sions in each dimension.

Common variants include the unequal distribution of subdi-
vision levels among the dimensions and variable spacing of
these subdivisions based on some perceptual model. These
hybrid quantization schemes are still in the unbiased class.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copyinqus by permission of the Assoclation of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1994 ACM 0-89791-686-7/94/0010..$3.50

Multimedia 94- 10/94 San Francisco, CA, USA

341

Unbiased techniques are known to introduce visible contour-
ing when the number of representatives is small. As a result,
this technique is frequently used in conjunction with dithering
[Bayer~73] [Floyd~75] [Jarvis~76].

The predominant computer graphics work on biased repre-
sentative selection schemes was presented by [Heckbert~82].
Heckbert describes and contrasts two different biased selection
techniques: a popularity algorithm and a median cut algorithm.
Heckbert also found images quantized using his biased selec-
tion techniques were of strikingly higher subjective quality
than those produced by unbiased techniques. [Gervautz~90]
has also proposed a biased selection technique based on octree
quantization. And [Wu~1991] has proposed a biased selection
technique based on variance minimization.

[Heckbert~82] also made reference to a third biased tech-
nique which he called “A Fixed Point Algorithm for Improv-
ing a Quantizer,” based on work originally done by [Lloyd~57]
and extended by [Gray~80]. This type of quantization tech-
nique is well known in the signal processing discipline and is
often applied to vector quantities. One particularly useful tech-
nique was developed by Linde, Buzo, and Gray [Linde~80]. It
is commonly referred to as the LBG algorithm. The algorithm
that we present is based on these earlier works and falls into
this class of fixed-point algorithms. We will elaborate on many
of the algorithmic subtleties related to the particular applica-
tion of LBG to colormap optimization, as well as present some
quantitative analysis and comparisons as extensions to median
cut.

It should be noted that the coupling of the biased representa-
tive selection process to a single source image has generally
limited its usefulness for image sequences. The major difficul-
ties are a result of the hardware implementation, which typi-
cally consists of a single video lookup table, and a single
indexed frame buffer. Given such a configuration, when image
N of the sequence is updated to image N+ /, a phenomenon
known as colormap flashing occurs. This flashing is a result of
color discontinuities when for a short period of time, frame N
is displayed with the colormap from frame N+/.

There are two brute force solutions to this problem. The first
i8 to constrain both the colormap update and the image update
to occur before the first pixel of image N+ is scanned out of
the framebuffer. This has the drawback of limiting the speed at
which video can be displayed on a simple framebuffer and it
requires special code in a playback application for every
framebuffer on which the video sequence will be displayed.
The second approach requires the double-buffering of the
scan-out memory. This might be accomplished by allocating

half the available colormap for the display of even frames and
the other half for odd, thereby reducing the number of repre-
sentatives by a factor of two.

In this paper, we will introduce a simple and intuitive tech-
nique for the generation of optimized colormaps from full-
color images, based on the works of [Lloyd~57] and
[Linde~80]. We will also present a new adaptive class for rep-
resentative selection, where the selection process is guided by
a predictive model. And finally, we will present extensions of
the algorithm which allow image sequences to be displayed on
common framebuffer architectures without flashing.

Prior Work

Both [Heckbert~82] and [Gervautz~90] used subjective
evaluations in the analysis of their selection techniques. While
such qualitative techniques - based on subjective perception -
have their use, we have chosen to use quantitative measures to
facilitate comparative analysis. [Heckbert~82] defined “opti-
mal” quantization as a process which minimizes some error
metric for a given image and a given number of representa-
tives. In an effort to clarify this definition, we have chosen to
describe the aforementioned case as “optimal with respect to
an error metric.” There are many possible candidate error met-
rics which have been suggested for use in computer graphics,
including mean square error (MSE), which is defined by Equa-
tion 1, and mean absolute error (MAE), which is defined by
Equation 2.

Equation 1:
M-1N-1
MSE = ‘%"... -onz-:o (pixel’ [m, n) - pixel[m,n])®
Equation 2:
M-1N-1
MAE = mm) ongoql(pixel’ [m, n] - pixef{m, n}) 2

In the case of the median cut method, a biased scheme, it has
been suggested by [Lippman~89] that when the “larges cell is
selected for subdivision... this insures that the peak error is
minimized.” Heckbert also suggests that other criteria might
be used to select the appropriate box for further subdivision.
He describes one other criterion which he suggests would tend
to minimize the mean square error better than the median crite-
rion. At best these biased selection techniques only indirectly
address the issue of minimizing a specific error metric.

In contrast, the fixed point class of selection schemes
attempts to directly minimize the chosen error criterion. While
an optimal solution is not guaranteed, [Linde~80] has proven
that the algorithm converges in a finite number of iterations to
at least some local minimum.

It should be noted that quantization error is not necessarily a
good measure of perceptual quality. An good example of this is
demonstrated by the dithering process where the addition of
low-level noise enhances the perceived image quality yet
increases the quantization error. As better perceptual error
models are developed, they can easily be adapted for use as
LBG decision criteria.

The LBG algorithm [Linde~80] is an iterative algorithm,
which starts from some initial guess and eventually converges
to a local minimum. The algorithm can be divided into two dis-
tinct parts, an analysis phase followed by an adaptation phase.
In the analysis phase, statistics are gathered about the distribu-
tion of the input training sequence. An error metric is chosen
which designate how well the quantization matches the input
training sequence. In the adaptation phase, these metrics are
used to migrate the current quantization values toward another
quantization of the input training sequence. If the resultant
quantization error is within a distortion threshold, €, the quanti-
zation is considered final.

We apply the LBG algorithm to the selection of color-map
entries for the display of both static and dynamic computer
images. The first application is the generation of high-quality
colormaps from still images. In its application to still images,
we augment the basic migration aspects of the LBG algorithm
with the outright setting of colormap values to facilitate a more
rapid convergence. In addition, we show how the iterative
nature of the algorithm naturally extends to a dynamic input
stream of video images.

Throughout the remainder of the paper, we will refer to the
algorithm we are describing as the Adaptive Colormap Selec-
tion (ACS) algorithm.

Applying ACS for Static Image
Colormap Generation

In this section, we describe how the algorithm works for
generating a colormap from a static image. In the next section,
we extend this static image algorithm and use it for a sequence
of images. Like the LBG algorithm, we break down the ACS
algorithm into two distinct parts, an analysis phase followed by
an adaptation phase.

The analysis phase is a straightforward nearest color compu-
tation from each pixel in the image to one of the entries in the
colormap.

foreach pixel in the input image {

determine the colormap entry, E;, nearest
to the pirel

Add pixel’s contribution to the following
statistics kept for E;:

N;i:number of pixels represented by E;
M;:mean value of pixels represented by E;
S;: variance of pixels represented by E;
D;:mean error of pixels represented by E;

}

The adaptation phase is a bit more complex and is different
from the adaptation in a straight translation of the LBG algo-
rithm,

foreach colormap entry E;{

if (N; > Minusage) {
migrate the entry toward M;;

} else {
if (N; == 0)assign enfry more useful color
else label entry as under-utilized

}
}

342

The LBG algorithm does not specifically handle the case
where a given representative is under-utilized. [Linde~80] sug-
gests that in such cases an arbitrary vector [color] be assigned
to the under-utilized entry. Before assigning an arbitrary color
to an under-utilized entry, we use the image statistics to assign
a color which attempts to improve the perceived quality of the
quantized image. This accelerates convergence and helps to
reduce contouring and other artifacts by breaking up entries
which have a large error or large usage by using more entries
in that area.

The following sections describe in more detail each step in
the algorithm.

Analysis Phase

The analysis phase gathers statistics about the image and
performs a nearest color computation of each pixel in the
image to an entry in the current colormap. In fact, some color-
map entries may be marked as “unusable” and thus not avail-
able to the nearest color calculation. What defines an
“unusable” entry is discussed in detail in Section 3.2.1. After a
pixel has been mapped to its nearest colormap entry, some sta-
tistics are gathered for the entry in the colormap. The statistical
elements gathered are:

* The total number of pixels mapped to the entry.

* The total of each color component which is used for
computing the average color mapped to the entry.

* The total of the square of each color component which is used
for computing the standard deviation of the colors mapped to
the entry.

* The total error caused by the nearest color mapping of the
pixel to the colormap entry. The error is defined as the
euclidean distance between the pixel value and the colormap
entry value.

Adaptation Phase

Once the statistics are gathered for the entire image, the
adaptation phase of the algorithm begins for generating the
next iteration’s colormap.

Entry Classification

Each of the entries in the colormap is placed into one of
three classes based on the gathered statistics.

The first class of entries is made of those which are consid-
ered to have not been used enough during this step for continu-
ing their use in the next step. Determining whether an entry
should be used in the next step is based upon a number of fac-
tors.

A usage threshold is used for determining whether an entry
was used “enough” times. This threshold is stochastically
determined between high and low thresholds which are based
on the number of pixels each colormap entry would represent
given a uniform distribution of pixels to colormap entries. We
found that tying the value threshold to the optimal distribution
ensured it was independent of the size of the input image. We
did not find an optimal single level for this threshold. Some
input sequences produced better results with a lower threshold
and others with a higher threshold. Determining the threshold

stochastically produced better images than selecting a single
threshold for the iteration. If an entry’s count is below the
threshold, it is classified as “under-utilized.”

The number of pixels which use a particular colormap entry
may not sufficiently describe the importance of the pixels
which utilize the colormap entry. Often, an image will have a
small region which contains a unique color. These colors are
not used by many pixels, but if the color were to be dismissed
from the image the image detail and quality would greatly suf-
fer. To avoid removing these important colors from the color-
map, before an entry is actually turned off there must be
another colormap entry which has a similar color. We divide
the colorspace into 64 uniform subregions. If a color entry is
the only entry in its subregion, then it will not be “tumed off.”
An entry which has been “turned off”” cannot be used by the
nearest color computation in the next iteration.

The second class of entries is made of those which are con-
sidered to have been used enough during this step for their
continued use in the next step. The colormap value associated
with these entries will migrate toward the average color of the
pixels which were mapped to this entry during the nearest
color computation. The color value migration process is
described in the Entry Migration section.

The third class of entries is made of those which were not
used at all during this step and thus can be placed anywhere in
the colorspace. These are the entries which were “turned off”
during the previous iteration due to their underutilization.
Since they were not used at all during this iteration, we are free
to move them anywhere in the colorspace.

Entry Migration

Colormap entries which were classified as being “used
enough” in the classification step are now migrated to the aver-
age of the colors which were mapped to the eatry. The total of
each color component is divided by the total number of times
the entry was used by the image. This represents a desired
color which the colormap entry should more closely match.

We introduce two parameters, 7,,,, and o, which are used to
control the migration of colors. The migration parameter, 1,,,,,
limits the euclidean distance a colormap entry can migrate in a
single iteration. The error reduction parameter, o, controls the
rate at which the total MSE for a colormap entry is adjusted
after a migration. The total MSE for an entry is modified by a
when its color is migrated.

FIGURE 1. How #,,,, affects the convergence rate.
70

MAE

iteration

343

‘When one is computing the colormap for a single image,
Imax is usually set to a value which permits unlimited move-
ment of entries throughout the colorspace. Por still image col-
ormap generation, colormap flashing is not an issue.

Resetting Entries

Colormap entries which were not used in the current pass
can be set to any value in the colorspace. The primary goal is to
reduce the total MSE generated by mapping the image to the
colormap. In addition, an unacceptable artifact from using col-
ormaps is contouring or banding because a single color is in the
colormap for a region which contains many slightly different
colors in the original image. To help alleviate this, we set the
new colormap entries based on algorithms for reducing the
MSE and the total number of pixels a single entry represents.

For each unused entry, we perform the following steps:

* Locate a target colormap entry with either the highest MSE or
the highest usage count.

¢ Compute the standard deviation of the pixels mapped to the
target colormap entry.

* Place the new entry within a radius equal to the standard
deviation away from the target colormap entry.

* Reduce the MSE or the usage count of the target colormap
entry by a.

The above steps have the effect of providing more colors in
areas of the color space which are lacking colors as exempli-
fied by a high MSE value. In addition, colors with too many
pixels using them will have more colormap entries allocated to
their area in hopes of bringing down the total number of pixels
using a single color and thus reducing contouring.

If a target colormap entry has a high MSE or a high usage
count, we only place a few new colormap entries using the
aforementioned steps around it. Once we’ve placed six new
colormap entries (one for each side of the cube surrounding the
target colormap entry), we set its total error and usage count to
zero. This ensures the colormap entry will not be chosen again
for the assignment of other available colormap entries. If all of
the used colormap entries have met these criteria, we assign
the remaining unused colormap entries to random values. We
have found through experimentation that placing colors ran-
domly through the colorspace provides good results in this
extreme case. In fact, this process provided the best results of
the methods we attempted. The most common case for this to
occur is when an image has a single color. Using random val-
ues has proven to be effective at accelerating convergence for
images after a single-color image.

Cleanup and Return

Finally, we check through the colormap for any duplicate
colormap entries. Any duplicates which are located are marked
as “unusable” for the next iteration. Colormap entry duplica-
tion does not occur often, but it is not useful to allocate multi-
ple entries to the same color.

The Final Colormap

Figure 2 graphically depicts the ACS algorithm. Initially the
colormap is set to a 6x6x6 uniformly quantized colorcube. Fig-
ure 2 shows the resulting colormaps after each of the first four

344

iterations. A sphere denotes the position of the color represen-
tatives prior to adaptation. The line segment originating from
some spheres shows the color’s migration path.

FIGURE 2. The First Four Iterations for Lenna Image

Figure 3 shows the resulting colormap after 5 iterations of
the ACS algorithm. The resulting colormap generated by the
median cut algorithm on the same image is shown in Figure 4
for comparison.

FIGURE 3. ACS Algorithm after Five Iterations for Lenna

"ACS Vamiin aftas § Ressstinms

Applying ACS to a Sequence of
Images

In the previous section, we presented a simple and intuitive
iterative algorithm which produces a high-quality colormap
from a static image. However, the unique abilities of the ACS
algorithm are exemplified when the algorithm is applied to a
dynamic sequence of images. If any of the standard colormap
generation algorithms described in section 2.0 were simply
applied to sequential frames, colormap flashing problems
would occur because the migration of colormap entries from
one frame to the next are arbitrary.

The extended ACS algorithm is as follows. For each frame
of a sequence, the analysis phase of ACS is performed and thus
is simultaneously quantizing frame N with the current color-
map. As mentioned earlier, the analysis phase of the algorithm
performs nearly all of the operations required to quantize the
N image. Following the quantization of frame N, the statistics
gathered during the analysis phase are used to generate a color-
map for the N+ frame.

Within this framework it is possible to eliminate the color-
map flashing problems of the other colormap generation algo-
rithms by a simple reinterpretation of the migration parameter
tmar- Through visual experimentation, one can adjust ¢,,,,. to
limit the amount each colormap entry can move between any
two frames to below the just-noticeable-difference threshold.
We have found that limiting the euclidean distance a colormap
entry can travel, /,,,,,, to between 9 and 12 gives good results.

What allows the ACS algorithm to work so well for video
sequences is the inherent characteristics of traditional or “stan-
dard” video. In “standard” video, scene changes generally
occur once every few seconds and rarely more than three or
four times per second. After experimentation on a wide range
of video sequences, we determined that a 2 to 3 frame margin
of non-optimal colormaps is available before a viewer detects
the colormap error. The modification we made to the basic
LBG algorithm which provides an accelerated level of conver-
gence is the process of resetting under-utilized colormap
entries.

This modification assists the ACS algorithm in handling
drastic changes in the color scheme between scenes. If a scene

change is not very drastic, the migration step is the primary
path for generating the N+/ colormap. But, if the change is
drastic, the entry reset step provides a fast adaptation. In this
case, a few colormap entries are used on the first frame of the
new scene which provides a large number of under-utilized
entries which can be reset to match the new color scheme.

When applying the ACS algorithm to a sequence of images,
we limit the cases for which we perform the migration step. If
the distance a pixel desires to move is less than /3 , it is not
moved at all. This restriction was added because we found that
in a sequence of images, colors will tend to migrate often for
little or no gain. This motion produces the unpleasing visual
artifact of static scenes appearing to move and jitter. Limiting
the movement nearly eliminates this artifact.

The ACS algorithm has been used for off-line video quanti-
zation and compression with real-time decompression and dis-
play. The ability to implement the ACS algorithm for real-time
(30 fps) operation is limited by the nearest color search.

Results

Table 1 shows the resultant MAE calculated for several
images using the median cut, the popularity, the variance mini-
mization, and the ACS algorithms. The median cut technique
maintained all 8 bits of each primary. The popularity technique
was run maintaining both 4 and 5 significant bits. We have
found that this prequantization step is necessary to achieve rea-
sonable results from the popularity algorithm. The ACS algo-
rithm was run for 16 iterations with 7,,,, = 256.0 and an initiat
colormap of a 6x6x6 color cube. As shown, the ACS algorithm
usually achieves a lower MAE than the median cut method
after 4 to 8 passes, but, on a couple of images the variance
minimization technique produces somewhat better results.
What is important about this table is that the ACS technique
consistently produces colormaps for static images which are
nearly as good as or better than techniques designed solely for
the generation of colormaps from static images. Color Plate 1
and Color Plate 2 are example static images generated using
the ACS algorithm after O, 1, 2, and 3 passes when starting
with a grey-scale colormap. The lower left-hand corner of each
image contains the colormap which corresponds to that image.

TABLE 1. MAE and Maximum Pixel Error for Various Images and Methods

Results

lenna mandrill lake fl6 tiffany peppers

MAE|(MaxE| MAE| MaxE| MAE| MaxE{ MAE| MaxE{ MAE| MaxE| MAE| MaxE

Median Cut 57! 1087 101 592 71| 109.8 36f 750 54| 885 76| 746

Popularity 5 81| 1072] 222| 1268 155(1303 49| 780 76| 1796 119 946

Popularity 4 7.8 996 11.6 75.3 87| 1128 117 701 132 634 9.0 78.5

Variance Min 55| 1080 99| 490 71 86.8 35| 318 51 61.1 73] 683

ACS 1 pass 79| 529 125] 433 95| 378 85 279 109 319 97| 422

ACS 2 passes 66| 313 1171 491 84| 850 58] 795 78| 644 87 624
ACS 4 passes 57| 454 103] 530 73] 955 36 451 63| 637 79| 130]
ACS 8 passes 55| 1086 99| 639 70[942 33| 802 570 555 26| 130

ACS 16 passes 54] 1086 97| 584 69| 942 33] 665 53] 652 15| 724

345

In an effort to understand the ACS algorithm’s sensitivity to
the choice of an initial colormap, we studied four different
starting conditions. We were particularly interested in the num-
ber of passes required for suitable convergence. The first color-
map was the colormap generated by the median-cut algorithm.
The second colormap was the 6x6x6 uniformly quantized col-
orcube. The third colormap was randomly generated. The
fourth was a grey-scale colormap. Notice in Figure 5 and Fig-
ure 6, while the first few passes have different MAE, all four
initial colormaps stabilized within 4 or S iterations.

FIGURE 5. Lenna Image: Sensitivity to Initial Colormap
70 ,

o—eo (rey scale
~—e median cut
+»—o random

s&—a 6x6x6 color cube

(o}
teration 10

FIGURE 6. Mandrill Image: Sensitivity to Initial Colormap

o—e grey scale
«—e median cut
o—e random

&—a 6x6x6 color cube

0
lteration 0

The ACS algorithm was also used to generate colormaps for
two Sun Microsystems commercials, “Target” and “Mifkin.”

“Target” is a sequence of video with only moderate color
scheme changes for much of the video. It exhibits how the
ACS algorithm’s migration step will keep the colormap for
every frame at a near-optimal level even though the color
scheme is changing slightly. For example, if the variance mini-
mization technique is used to generate a colormap on the static
image at frame 100 of the “Target” video, the resuitant MAE is
7.32. The ACS algorithm generated a colormap with an MAR
of 7.37 for the same frame.

“Mifkin” is a sequence of video with more dramatic color
scheme changes between scenes. It shows how rapidly the
ACS algorithm adapts to a new color scheme after a drastic
scene change. Like the “Target” video, the ACS algorithm
keeps the colormap at near-optimal levels for most scenes. For
example, if the variance minimization technique is used to
generate a colormap on the static image at frame 500 of the
“Mifkin” video, the resultant MAE is 6.04. The ACS algorithm

generated a colormap with an MAE of 5.73 for the same
frame.

Figures 7 and Figure 8 show a plot of the MAE for each
frame for the entire “Target” and “Mifkin” video sequences
respectively. It is easy to detect a scene change in the “Mifkin”
video and note how rapidly the colormap error is reduced.

FIGURE 7. MAE for Bach Frame of “Target” Video
307

MAE

0
0 Frame Number 831

FIGURE 8. MAE for Bach Frame of “Mifkin” Video
30'1

MAE

Il

Frame Number

(=)

1800

Color Plate 3 shows 20 sequential frames from the “Target”
video sequence. Note the colormap in the lower left-hand cor-
ner of each frame. This sequence shows how the colormap
changes through wildly varying color schemes. Color Plate 4 is
4 frames from the “Mifkin” video sequence which bridge a
scene change with dramatically different color schemes.
Although the static image quality of the frame immediately
following the scene change is very poor, it contains enough
color for the 1/30th of a second it is present on the screen to
ensure the viewer’s eyes do not notice the transition to the
nearly-optimal frame two frames later.

Conclusions

‘We have presented a simple new two-phase algorithm for
determining optimal colormaps for full-color images. For static
images, the algorithm generates locally optimal colormaps in a
small number of iterations. Since the migration behavior of
individual colormap entries does not matter for static images,
these maps can be generated using a maximal f,,,,. This allows
the colormap to converge quickly. The first phase of the ACS

346

algorithm is simply a search for the colormap entry that mini-
mizes some error metric and the collection of relevant statis-
tics. These statistics are used during the adaption phase to
migrate colormap entries in order to reduce the error metric.
The first phase reduces to a set of nearest neighbor searches
that benefit from any nearest neighbor search optimization.
Therefore, this method is a simple, intuitive and cost effective
alternative to the median cut algorithm.

We generalized the iterative approach to be an adaptive
approach for use with motion sequences. Instead of iteration
on a single image, the algorithm uses the results for frame N as
the seed for frame N+ /. This algorithm is well suited for
motion sequences for two main reasons. Since the algorithm is
run for only one pass on any given frame and the vast majority
of work is in the nearest neighbor search which is required of
all biased algorithms, we have found that this algorithm runs
significantly faster than alternative methods. The algorithm
also allows one to trade off colormap flashing effects with con-
vergence time by modifying 7,,,,,. We also showed that the
ACS algorithm consistently produces colormaps for nearly
every frame in a sequence of images as good as other colormap
generation algorithms would on each static image. Finally, we
discussed how proper selection of the ¢,,,,, migration parameter
eliminated the colormap flashing problems found when other
colormap generation algorithms are used on motion sequences.

Author Information

John L. Furlani

John L. Furlani is currently a senior software engineer at
SunSoft, Inc. as a member of the XIL Imaging and Video
Library development team. In addition, he is currently a part-
time Ph.D. student in the Computer Science Department at
Duke University. His research interests include software
design, video compression technologies, and nomadic
computing. He received his B.S. of Electrical and Computer
Engineering from the University of South Carolina at Colum-
bia in 1990,

John can be reached via e-mail at j.furlani@ieee.org.

Leonard McMillan

Leonard McMillan is currently a Ph.D. student in the Com-
puter Science Department of the University of North Carolina
at Chapel Hill, on leave of absence from Sun Microsystems.
His research interests include computer graphics, computer
vision and image processing and compression. He received
bachelor's and master's degrees in Electrical Engineering from
Georgia Institute of Technology in 1983 and 1984,

Leonard can be reached at the Department of Computer Sci-
ence, CB #3175 Sitterson Hall, Chapel Hill, NC 27599-3175,
or via e-mail at mcmillan@cs.unc.edu.

Lee Westover

Lee Westover is currently a software architect for Division
Inc., a virtual reality hardware and software company located
in Chapel Hill, North Carolina. He received his B.S. of Com-

347

puter Science from Michigan State University in 1983 and his
M.S. and Ph.D. of Computer Science from the University of
North Carolina at Chapel Hill in 1986 and 1991, respectively.
His research interests include video and audio compression
technologies and volume rendering techniques. In his spare
time, he is trying to break the 3 digit barrier in his golf game.

Readers may contact Westover at Division Inc., The Court-
yard, Number 10, 431 West Franklin Street, Chapel Hill, NC,
27516 or via e-mail at lee@divnc.com.

References

Bayer, B. E., [1973] “ An Optimum Method for Two-Level
Rendition of Continuous-Tone Pictures,” Conference Record

of the International Conference on Communications, pages
26.11-26.15, 1973.

Equitz, W. H., [1989] ““A New Vector Quantization Clustering
Algorithm,” /EEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 37, no. 10, pages 1568-1575, October
1989.

Floyd, R. and L. Steinberg, [1975] “ An Adaptive Algorithm
for Spatial Gray Scale,” Society for Information Display
1975 Symposium of Technical Papers, page 36, 1975.

Gervautz, M, and W. Purgathofer, [1990] *‘ A Simple Method
for Color Quantization: Octree Quantization,” Graphics
Gems, Edited by A. S. Glassner, Academic Press, Inc., San
Diego, CA, pages 287-293, 1990.

Gray, R. M., J. C. Kieffer, and Y. Linde, [1980] *‘Locally
Optimal Block Quantizer Design,” Information and Control,
vol. 45, pages 178-198, 1980.

Heckbert, P., [1982] “Color Image Quantization for Frame
Buffer Display,” Computer Graphics, vol. 16, no. 3, pages
297-307, July 1982.

Jarvis, J. E, C. N. Judice, and W. H. Ninke, [1976] “A Survey
of Techniques for the Display of Continuous Tone Pictures on
Bilevel Displays,”’ Computer Graphics and Image
Processing, vol. 5, no. 1, pages 13-40, March 1976.

Linde, Y., A. Buzo and R. M. Gray, [1980] “ An Algorithm for
Vector Quantizer Design,” /EEE Transactions on
Communications, vol. 28, no. 1, pages 84-95, January 1980.

Lippman, A. and W. Butera, [1989] *Coding Image Sequences
for Interactive Retrieval,”” Communications of the ACM, vol.
32, no. 7, pages 852-860, July 1989.

Lloyd, S. P., [1957] “‘Least squares quantization in PCM’s”’,
Bell Telephone Labs Memo, Murray Hill, New Jersey, 1957.

Wau, Xiaolin, {1991] “Efficient Statistical Computations for
Optimal Color Quantization,” Graphics Gems 11, Edited by
James Arvo, Academic Press, Inc., San Diego, CA, pages
126-132, 1991.

