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ABSTRACT: Wepresent a simple and intuitive algorithmjbr the

quantization ofjidl-color images which has been designed to apply
to static images and motion sequences equally well. Our technique
eliminates the perils of hardware colornrapjlashing which is
inherent in other well known aigorithmsjbr selecn”ng colormap
representatives. We compare our technique with existing static
image colornrap generation techniques to show the qualiiy of the
resultant quantization.

Introduction

Color frame buffer architectures which represent each dis-
played pixel as m index into a colormap are commonplace in
the computer industry. While such architectures are suitable for
many applications, they do not provide suitable fidelity for the
errorless representation of arbitrary full-color continuous tone
image-s. However, techniques have been developed which
attempt to select an optimizd colormap for a specific full-color
image. Thcae detetmine a set of colom which best represent the
color gamut of the input image.

When an input image is mappsd from ita original dacription
to a set of representatives it undergoes a quandsetion pnxcsa.
The differences between the original values and the resulting
values are known as quantization errors. It is desirable to mini-
mize qumdzation errors. h important step in the quantization
process is the selection of an appropriate act of mpresentadves,
which for the application being discussed are the various color-
map entries. ISIgeneral, this selection process fells into one of
two classes: unbiased selection where the choice of represent-
ativesis completely independent of the soume being quantized,
and biased selection whm repn%entativesm chosen to Epre-
sent a specific sowcc. A common unbiased representative
selection scheme is “unifotm” or “colorcube” qumdzation. In
this scheme, each dimension of the color space is subdivided
into a fixed number of levels. The total number of mpmaenta-
tivca is determmed“ by the product of the number of subdivi-

sions in each dimension.

Common variants include the unequal distribution of subdi-
vision levels among the dimensions and variable spacing of
these subdivisions baaed on some perceptual model. Theee
hybrid quandz.ation schemes are still in the unbiased class.
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Unbiased techniques are known to introduce visible contour-
ing when the number of repmaentatives is small. As a result,
this technique is frequently used in conjunction with dithering
lBayer-73] l?loyd-75] [Jawis-761.

The predominant computer graphics work on biased repre-
sentative selection schemes was prcaeated by [lkkbert-621.
Halcbert describes and contrasts two difkrent bti selection
techniques: a popularity algorithm and a median cut algocithm.
Hedcbert also found images quantized using his biased dec-
tion techniques were of strikingly higher subjective quality
than thoee produced by unbiased techniques. [Gervautz40]
haaalaopropoaed abiaaedaelection technique baaed onoctree
quandzation. And Mu-19911 has proposed a biased selection
technique baaed on variance minimisation.

Dleckbert-821 also made reference to a thid biased tech-
nique which he called “A Fixed Point Algorithm for Impmv-
ing a Quantizer; based on work originally done by t3Aoyd-57]
md extended by [Gray-60]. This type of quantization tech-
nique is well known in the signal procaain gdiaciplineandis

often applied to vector quantities. One particularly usefid tech-
nique was developed by Linde, Bum, and Gray *60]. It
is commonly referred to as the LBG algorithm. The algorithm
that we present is baaed on thesre earlier works and falls into
this class of tixed-point algorithms. We will elaborate on many
of the algorithmic subtleties related to the partidar applica-
tion of LBG to CO1OMISPoptimizadon, as well as present same
qumtitative analysis and comparisons as extensions to medim
an.

It should be noted that the catpling of the W repmaenta-
tive selection pmceaa to a single source image has generally
limited ita usefhbas for image sequences. The mapr difEcul-
A area mult of the hardware implementation, which typi-
cally consists of a single video lookup table, and a single
indexed frame buffer. Given such a configuration, when image
N of the sequence is updated to image N+l, a phenomenon
known as colorrrrapj?ashing occurs. This flashing is a result of
color diacontimrities when for a short period of time, frame N
is displayed with the colorrnap fmm frame N+l.

There am tWO brute force SOIUtiOIIS to this problem. The tit
iatoconatrain boththecolorrnap update andtheimageupdate
to occur before the tit pixel of image N+l is acaoned out of
the framebuffer. This has the drawback of limiting the speed at
which vidm can be displayed on a simple fmmebuffer and it
requires special code in a playback application for every
fhunebuffer on which the video sequence will be displayed.
The second approach mquirea the double-buffering of the
scan-out memory. This might be accomplished by allocating
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half the available colonnap for the display of even fmmea and
the other half for cold,thereby reducing the number of mpm-
seatatives by a factor of two.

In this paper, we will introduce a simple and intuitive tech-
nique for the genemtion of optimized colormaps from full-
color images, based on the works of Lloyd-571 and
[1.h&-80]. We will also pmaent a new aakzptive class for re-
presentativeselection, where the selection process is guided by
a predictive model. And finally, we will present extensions of
the algorithm which allow image sequences to be displayed on
common fmmebuffer amhitecmres without flashing.

Prior Work

Both ~eckbefl-82] and [Gervautz-90] USl?dsub~ve

evaluations in the analysis of their aeleclion tedmiquea. While
such qualitative techniques - baaed on subjective pemepdon -
have their use, we have chosen to use quantitative measurm to
facilitate comparative analysis. ~edbert-&2] ddned “opti-
mal” quantization as a process which minimim some error
metric for a given image aud a given number of mp~ta-
tivea. In an effort to - this definition, we have chosen to
describe the aforementioned case as “optimal with m3pect to
an error metric.” There are many possible caddate enor met-
rics which have been suggested for use in computer graphics,
including mean square error (IvfSE),which is detined by Equa-
tion 1, and mean absolute error (MAE), which is ddned by
Equation 2.

Equation k

1
M- IN-1

MSE = ~N ~ ~ (pixel’ [m, n] -pixel [m, n] )2
m* On-O

Equation 2X

MAE = &“~’N~’~(pixel’ [m,n] -pixe/[rn, n]) 2
m- on-o

I.nthecase oftbemediancatmethod, abiaaedscheme, ithas
been suggested by [Lippman-89] that when the “largestcell is
selected for subdivision... this inmms thatthepcakemoris

. . .
mmmuzed.” Heckbert also suggests that other critaia might
be used to select the appropriate box for furtkr subdivision.
He describes one obr criterion which he suggests would tend
tominirnkthe meansquareermrbetter thanthemcdianaite
rim. At beat these biased selection mchniquea only idrectly
addmsa the issue of ~ a apwi!lc error metric.

In contraag rhe fixed point class of selection schem~
Sttempta to directly minimim the c- error miterion. While
m opdmal solution is not guamnt.ee4 &inde40] has proven
that the algorithm con- in a finite number of iterations to
Stleaataome local minimum.

It should be noted that qumtization error is not neceaaady a
good measure of pemeptual quality. Ao good example of this is
demomtmted by the dithering process where the addition of
low-level noise enhanca the perceived image quality yet
kreasea the quanthation error. As better perceptual emor
models amdevelopsd, theycaneaaily beadaptedforuaeaa
D(3 decision criteria.

The LBG algorithm *SO] is au iterative algorithm,
which stmta tlom some initial guess and eventually convsrges
toalocal minimum. The algorithm can be divided into two dis-
tinct parla, an antdyais phase followed by m adaptation phase.
III the analysis phase, statiadca are gathered about the distribu-
tion of the input tmining sequence. An error metric is chosen
which &sign@ how well the quantization matchea the input
training sequence. In the adaptation phase, these metrics are
used to migrate the current quantization values toward another
quantization of the input training sequence. If the resultant
quantization error is within a distortion threshold, e, the quanti-
zstion is considered final.

We apply the LBG algorithm to b selection of color-map
entries for the display of both static and dynamic computer
images. The first application is the generation of high-quality
colonnaps from still images. In ita application to still images,
we augmentthe basic migration aspects of ths LBG al@hm
with the outrightsetting of colormap values to facilitate a more
rapid convergent. In addition, we show how the iterative
natureof the algorithm mturally extends to a dynamic input
stream of video images,

Throughout the mmaindw of the paper, we will refer to the
algorithm we am describing as the Adiptive Colormap S&e
tion (ACS) algorithm.

ApplyingACS for Static Image
ColormapGeneration -

In this section, we describe how the aIgorithm woks for
generating a colormap fmn a static image. In the next aecdon,
we extend this static image algorithm and use it for a sequena
of imagca. I.& the UG algorithm, we breakdown the ACS
@Orithm into tWO distinct fNUtS, ~ analysis P- fo~owed by
au adaptation phase.

The analysis phase is a stmightforwtmi nearest color compu-
tin fmm-h~el ktiti~tio= oftitititie
Colomlap.

foreach pixel in the input image {

determine the colormap entry, Ei, nearest
to the pixel

Add pixel’ s contribution to the following
statistics kept for Ei~

Ni: number of pixels represented by Ei

A4i:mean value of pixels represented by Ei

Si: variance of pixels represented by Ei

Di~ mean error of pixels represented by Ei

)

The adaptationphase is a bit more complex and is different
fmm the adaptation in a stmight translation of the LBG algo-
rithm.

foreach colormap entry Ei{

if (Ni > Minusage) (

migrate the enny toward Mi;

} else {

if (Ni == O) assign entry more useful color

else label entry as under-utilized

)

}
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The LEG algorithm does notapecificslly handle the case
when a given mpmsentative is underutilized. lLinde-80] sug-
gests that in such cases an arbitrary vector [color] be assigned
to the underutilized en~. Eefore assi@ng m arbitrwy color
tom under-utilized entry, we use the image statistics to assign
a color which attemptsto hnpmvetheperceivedqualityof the
quantizedimage.W accelcmtedconvergmce andhelpsto
reducecontouring andotherartif- by breakingup entrk
which have a large error or large usage by using more entries
in that Sma.

The following sections describe in mom detail each step in
the algorithm

Analysis Phase
The analysis phase gathers statistics about the image md

performs a nearest color cmn~tadon of each pixel in the
image to an entry in the cument colormap. In fact, some color-
map entries may be marked as “unusabk and thus not avail-
able to the nearest color calculation. What ddnes au
‘Inusable” entry is discussed in detail in Section 3.2.1. After a
pixel has been mapped to its nearest colonnap entry, some sta-
tistics am gathered for the entry in the colormap. TIE statiadca.1
elements gathered am:
.
.

.

●

The total numhr of pixels mapped to the entry.

The total of each color component which is used far

computing the ●verage color mapped to the entry.
The total of the square of euh color component which is used
for computing the standard deviation of the colors mapped to
the entry,
The total error caused by the nearest color msoring of the
pixel to the colormap s&y. The errcr is deflnti ss-the
euclidean distance between the pixel value snd the colormsp
entry value.

AdaptationPhase
Oncethe statistics am gathered for the entire image, the

adaptation phase of the algorithm begins for generating the
next ihxntion’s colormap.

Entry Classification

Each of the entries in the colormap is placed into one of
three chases based on the gathered SMi.$tiCS.

The fimt class of entries is made of those which are consid-
ered to have not been used enough during this step for continu-
ing their use in the next step. Dctamh@ whether m entry
sb~~u~ti tinetimp h=upanmkdfae
tom.

A usa~ threshold is used for demmhing whether an entry
was used “enough” dmea. This threshold is Stochasticauy
determined betwem hi@ and 10Wtbmsholds Which am based
on the number of pixels each colormap entry would mpreaent
given a uniform distribution of pixels to coloxmap entica. We
found that tying the value threshold to the opdmsl distribution
enaumd it was indqendent of the size of the input image. We
did not find m optimal single level for this threshold. Some

input sequences produced better maults with a lower threshold

md others with a higher threshold. Determining the threshold

wochtid y pmduccd better images than selecting a single
threshold for the iteration. If m enby’s count is below the
threshold, it is claaai!icdas “under-utilized.”

The number of pixels which use a particular colormap entry
may not suflkiently describe the importance of the pixels
which utilize the colormap entry. Often. an image wiU have a
small region which contains a unique color, These colors are
not used by many pixels, but if the color were to be dismissed
from the image the image detail and quality would greatly suf-
fer. To avoid removing these important colors from h! color-
map, before an entry is actually turned off t&re must be
anotkr colormap enby which has a similar color. We divide
the colompace into 64 uniform subregions. If a color entry is
the only cntg in its subregion, then it will not be ‘“turned off.”
ha~wtiAWk’’tioff~tbu~byti
neamat color computation in the next iteration,

'fhesccond class ofentricais msdcofthcwe which arecon-
sideredtohavs bccnuacdenough during thiastcpfortheir
Umtimled use in the next step. The Colormap value associated
withthese emieawillmigmtetow erdtheav~col orofthe
pixelawhich wezcmappcd tothisermy during theneareat
color cxnnputation. The color value migration process is
described in the Entty Migration section.

The third class of entrica is made of those which were not
utitiddtigtis~md~m~p~m~bti
the cobmpace These am the edcs which were “turned off”
duMg the pwious iteration due to their undezutilizuion.
Stiti~wem Ntti@d_tiitiM, wemfi
to move them anywhere in the cdorapacc.

Entry Migration

Colormap entries which were clasMed as being “used
enough” in the claaaMcationstep am now migrated to the aver-
age of the colors which were mapped to the retry. The total of
each color component is dividad by the total number of times
theentrywss used bytheimage. Thiampreacnts adcsimd
color which the colormap entry should more closely match.

We introduce two parameters, t- and a, which arc used to
control the migration of colom, The migration parameter, r-,
limits the euclidean distance a colormap entry can migrate in a
single iteration. The error reduction parameter, a, contmla the
mtc at which the total MSE for a colormap entry is adjusted
after a migration. The total MSE for m entry is modified by a
when its color is migrated.

FIGURE 1. HOWt- affects the convergence rate.

~ 2.0
*-~1 8.0
~ 16.0

32.0
- 2s6.0

oh
iteration

lb

343



When one is computing the colormap for a singls image,
t-k USUdlySetto a value which permits unlimited move
mcnt of entries throughout the colorspace. For still image col-
ormap generation, colormap flashing is not an issue.

Resetting Entries

Colomnapcntriea which were not used in the cunent paas
=bwtmmyvdue titiemlo~-. ~~~~km
reduce the total MSE generated by mapping the image to the
colmmap. In addition, an unacceptable artifact ffom using col-
ormaps is contouring or banding because a single color is in the
colormap for a region which contains many slightly different
CO1OISin the original image. To help alleviate this, we set the
new t,mlormap enties baaed on algorithms for reducing the
MSE md the total number of pixels a single entry mpmscnta.

.

.

.

●

For each unused entg, we &fonn thefollow&g &pa:
Locate n targetcolonnap enhy with either the highest MSE or
the highest usage count.
Compute the standmi deviation of ths pixels mappedto the
targetColoemapentry.
Place the new entry within a radius equal to the standard
deviation away from the targetcolormap entry.
Reduce the MSE or the usage count of the target colormsp
entry by a.

The above steps have ths effect of providing more colors in
areas of the color spmx which am lacking colom as exunpli-
fied by a high MSE value. In addition, CO1OISwith too many
pixels using them will have more colormap cnrrica altocated to
their area in hopes of bringing &wn the total number of pixels

using a single color and thus reducing contouring.

If a target colormap entry has a high MSE or a high usage

count we only place a few new colonnap entries using the

aforementioned steps around it. Once we’ve placed six new

colormap entries (one fore.ach side of the cube surrounding the
target colonnap entIY),we set ita total error and usage count to
zero. This Cnaumathe colormap eahy will not be chosen again
for the assignment of other available cdormap cntriea. If all of
the used colonnap entics have met these criteria, we assign
the remaining unused colonnap ties to random valuca. We
have found through cxpaimentation that placing colors ran-
domly through the colorspace providea good mdta in this
extreme case. In f= this process provided the beat results of
the methods we attempted. The most common d.aacfor this to
oczur is when m image has a single color. Using random val-
ues has proven to be effective at accelerating convergence for
images after a single-color image.

Cleanup and Return

Fiiy, we check through the colonnap for any duplicate
COlonnap entries. AIly dUplic4tt13which arc located am marked
as “unusable” for the next iteration. Colormap entry duplica-
tion does not occur often, but it is not uaefid to allocate multi-
ple entries to ths same color.

The Final Colormap
F@e 2 graphically depicts the ACS algorithm. Initially the

colonnap is set to a 6x6x6 uniformly quantkd colorcube. Fig.
m2abwstiAtigmb_-*oftitifoW

itcmtiona. A sphere denotes the position of the color mpmacn-
tativcs prior to adaptation. The lins segment originating from
some ~hcrea shows the color’s migration path-

FIGURE 2. ‘Ihe First Four Iterations for Lenns Imag
1-
1I ---**! 1

i—

:

Figwe 3 shows the resulting colonnap after 5 iterations of
the ACS algorirhm.The resulting colormap ge~mted by the
median cut algorithm on the same image is shown in F@ure4
for comparison.

FIGURE3. ACSAlgorithm aftsr Ilve Iterations for Lcnns

W
.,.$- -

FIGURE 4. Final Median Cut ColinmaP for Lana Image
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Applying ACS to a Sequence of

Images

In ths previous section, we presented a simple and intuitive
itcmtive algorithm which produces a high-quality colormsp
from a static image. However, the unique abilitiea of the ACS
algorithm am exemplitled when the algorithm is applied to a
dynamic sequence of images. If any of the standard colormap
gcnemtion al~rithms described in section 2.0 wem simply
applied to sequential flames, colonmtp fkshing problems
would occur because the migration of colormap entries from
one frame to the next am arbitrary.

The extended ACS algorithm is as follows. For each frame
of a sequence, the mrdysis phase of ACS is performed and thus
is simultaneously qumtizing frame N with the current color-
map. Aa mentioned earlier, the analysis phase of the algorithm
performs nearly all of the opemtions required to quantize the
f@ image. Following the quantization of frame N, the statistics
gathered during the analysis phase amused to genemte a color-
map for the N+l frame.

Whhin this framewoti it is possible to eliminate the color-

map flashing pmblcsns of the other colonnap gcnemtion algo-
rithms by a simple reinterpretation of the migration parameter

tw Throughvisualexperimentation, one can adjust r-to
limit the amount each colormsp entry can move between any
two framea to below the just-noticeable-difference tlueshold.
We have found that limiting the euclidean distance a colormap
entry can travel, tm, tobetween9 and 12 gives good results.

What allows the ACS algorithm to wodt so well for video
sequenm is the inherent characteristics of tmditional or “stan-
dad” video. In “standad” video, scene changes generally
occur once every few seconds and rarely more than three or
four times per second. Mtcr experimentation on a wide range
of video sequences, we determined that a 2 to 3 frame margin
of non-optimal ccdormaps is avsikble before a viewer detects
the cdonnap error. The modification we made to the basic
LBG algorithm which provides m accelemtad level of conver-
gence is the process of msetdng under-utilized colormap
elltria.

This modification assists the ACS algorithm in handling
drastic changes in the color scheme between scenes. If a scene

change is not ve~ drastic, the migration step is the p-
path for generating the N+ I colormap. But, if the change is

drastic, the entry reset step provides a fast adaptation. In this
case, a few cdormsp entries arc used on the first frame of the

new scene which provides a large number of unc&udlized
entries which can be met to match the new color scheme.

When applying the ACS algorithm to a sequence of images,
we limit the cssea for which we perform the migration step. If
tidtimapke lkhtimovekl=tim J3, itisnot
moved at all. This restriction was added because we found that
ina sequence of images, colors will tend to migrate often for
little or no gain. This motion produces the unpleasing visual
artifact of static scenes appeming to move and jitter. Limiting
the movement nearly eliminates this artifact.

The ACS algorithm has been used for off-line video qusnti-
zation and tmnpmssion with real-time dccomprmion and dis-
play. The ability to implement the ACS algorithm for red-time
(30 @s) operation is limited by the nearest color search.

Results

Table 1 shows the rmuhant MAE calculated for several

images using the median cut, the popularity, the variance mini-

mization, and the ACS sJgorithrna. The median cut technique

maintained * 8 bits of each primRry. The pof)uhtrity technique

was nm maintaining both 4 and 5 significant bits. We have
found that this prequantization step is ncaasmy to achieve rea-
somble results fmm the popukrity algorithm. The ACS algo-
rithm was mn for 16 iterations with t-= 256.0 and an initial
colonnsp of a 6x6x6 color cube. As shown, the ACS algorithm
usually achieves a lower MAE than the median cut method
after 4 to 8 passes, but, on a coupk of images the variance

. . .
mmumzadon technique produces somewhat better results.
What is important about this tabk is that the ACS technique
consistently pmducea colormaps for static images which am
nearly as good as or better than techniques designed solely for
the generation of colormaps from static images. Color Plate 1
md Color Plste 2 am example static images genemted using
the ACS algorithm after O, 1,2, and 3 passes when starting
with a gmy-scak cxdormap. The knvcr left-hand corner of each
image contains the colormap which cmeaponds to that image.

TABLE 1. MAEsndMaximumPti ErrorforVsriousImagessrsdMahods

Rautb

lasru nundriu lsks f16 tiffslly w-

MAE MSXE MAE MSXE w MSXE MAE MsxE MAE MsxE MAE MSXE

McdisoCut 5.7 108.7 10,1 59.2 7.1 109.8 3.6 75.0 5.4 88.5 7.6 74.6

Pqndsdty5 8.1 107.2 22.2 126.8 15.5 130.3 4.9 78.0 7.6 179.6 11.9 94.6

PO@arity4 7.8 99.6 11,6 75.3 8.7 112.8 7.7 70.1 13,2 63.4 9.0 78.5

WrisncsMin 5.5 108.0 9.9 49.0 7.1 86.8 3.5 31.8 5.1 61.1 7.3 68.3

ACSlpsss 7.9 52.9 12.5 43,3 9.5 37.8 8.5 27.9 10.9 31.9 9.7 42.2

ACS2psssrs 6.6 31.3 11.7 49,1 8.4 85.0 5.8 79.5 7.8 644 8.7 62.4

ACS4F9SSSS 5.7 45.4 10.3 53.0 7.3 95.5 3.6 45,1 6.3 63.7 7.9 73.0

Acs8~ 5.5 108.6 9.9 63.9 7.0 94.2 3,3 80.2 5.7 55.5 7.6 73.0

ACE16psssc4 5,4 108.6 9,7 58.4 6,9 94.2 3.3 66.5 5.3 652 7.5 72.4
.
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In an effort tounderstand the ACS algorithm’s sensitivity to
the choice of an initial cOlormap, we studied four different
stwting umditiona. We were particularly interested in the num-
ber of passes mquimd for suitable convezgencc. The ti color-
map was the colormap generated by the medim-cut algorithm.
The second colonnap was the 6x6x6 uniformly quantized cOl-
orcube. The third cOlonnap was randomly generated. The
fourth was a grey-scale colormap. Notice in Figwe 5 and Fig-
ure 6, while the fimt few passes have different MAE, all four
initial colormapa stabilized within 4 or 5 iterations.

FIGURE 5. Lema Image Sensitivity to Initial Colormap

70

\

~ grey scale
O—III median cut
~ random
~ 6x6x6 Ooior cube

MAE

L\

FIGURE 6. Mandrill Imagt% Sensitivity to Initial Colormap

50

A ~grey scale
.——. median cut
~ random
~ 6x6x6 odor cube

MAE
4

0$
Iteration

m

The ACS algorithm was also used to genemte colormaps for
two sun Microsystems commercials, ‘Target” and “Mifkin.”

‘Target” is a aequeme of video with only moderate color
scheme changes for much of the video. It exhibits how the
ACS algorithm’s migration step will keep the colonnap for
every fmme at a near-optimal level even though the color
scheme is changing slightly. For example, if the V* mini-
mization tedmique is used to generate a colormap on the static
ti&titie lmofti’T~r *,tidmtwk
7,32. The ACS algorithm gawated a colormap with au MAE
of 7.37 for the same frame.

“Mi&in” is a sequence of vi&o with more dramatic color
scheme changes btmv- acemes. It shows how rapidly the
ACSalgorithm adaptatoanew color achemeaftera drastic
scene change. Like the “’Ihrg# video, the ACS algtithm
keeps the colonnap at nemw@mal levels for most acene3. For
example, if the variance minidzation techaique is used to
~ummawl-mti titi~titie~oftie
“Mifkin” video, tlw resultant MAE is 6.04. The ACS algorithm

genemted a colormap with an MAE of 5.73 for the same
frame.

Figuma 7 and Figure 8 show a plot of the MAE for each
fmme for the entire ‘Target” and “M@in” video sequences
mapectively. It is easy to detect a scene chan~ in the ‘MifIci&
video and note how rapidly the colormap error is reduced.

FIGURE7. h4AE for Each Frsme of ‘Target”VMeo
30-

MAE

4
e&4w

Frame Number
WI

FIGURE 8. MAE for Each Frame of “Mifkin” Vdeo

o
Frame Numbair

“l&X)

Color Plate 3 shows 20 sequential frames from the “Tar@”
viti sequence. Note the colormap in the lower left-hand cor-
ner of each frame. This sequence shows how the colormap
chan~ though wildly varying color aclwanea. Color Plate 4 is
4 frames from the “Mifki& video sequence which bridge a
scene change with dramatically ditYerent color schemes.
Although the static image quality of ti frame immediately
following the m change is very poor, it contains enough
mbrforti lp~ofa~ti itkxonti~~m
enam the viewer’s eyes do not notice the transition to the
nearly-optimal frame two fkamea later.

Conclusions

We have presented a simple Mw twephaae algorithm for
detehdng optimal colormaps for full-color images. For static
e. the algorithm gwwmtea locally optimal colormaps in a
small number of iterations. Since the migration behavior of
irbdividud cdormap entries does not matter for static images,
tbeaemapscan be~mteduaingamaximal t-l%iaallows
the colommp to con- quickly. The first phase of the ACS
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algorithm is simply a search for the colormap entry that mini-
mizes some error metric and the collection of relevant statia-
ticsc These statistics are used duMg the adaption phase to
migrate colormap entries in order to mducc the error metric.
The first phase reduces to a set of nearest neighbor searches
that benefit from any nearest neighbor search optimization.
‘rhemfore, this method is a simple, intuitive and cost effective
alternative to the median cut algorithm.

We generalized the iterative approach to be an adaptive
approach for use with motion sequences Instead of iteration
on a single image, the algorithm uses the results for frame N as
che seed for frame N+l. This algorithm is well suited for
motion sequences for two main masons. Since the algorithm is
run for only one pass on any given frame and the vast majority

of work is in the neareat neighbor search which is required of
all bkaed algorithms, we have found that this algorithm runs
significantly faster than alternative methods. The algorithm
also rdlows one to trade off colonnap flashing effects with con-
vergence time by modifying Im We also showed that the
ACS algorithm consistently produces colormaps for nearly
every frame in a sequence of images as good as other colonnap
generation algorithms would on each static image. Fiiy, we
discussed how proper selection of the r- migration parameter
eliminated the colonnap flashing problems found when other
colonnap generation algorithms are used on motion sequences.
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