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Abstract. Studies that map disease genes rely on accurate annotations
that indicate whether individuals in the studied cohorts are related to
each other or not. For example, in genome-wide association studies, the
cohort members are assumed to be unrelated to one another. Investi-
gators can correct for individuals in a cohort with previously-unknown
shared familial descent by detecting genomic segments that are shared
between them, which are considered to be identical by descent (IBD).
Alternatively, elevated frequencies of IBD segments near a particular lo-
cus among affected individuals can be indicative of a disease-associated
gene. As genotyping studies grow to use increasingly large sample sizes
and meta-analyses begin to include many data sets, accurate and efficient
detection of hidden relatedness becomes a challenge. To enable disease-
mapping studies of increasingly large cohorts, a fast and accurate method
to detect IBD segments is required.

We present PARENTE, a novel method for detecting related pairs
of individuals and shared haplotypic segments within these pairs. PAR-
ENTE is a computationally-efficient method based on an embedded like-
lihood ratio test. As demonstrated by the results of our simulations, our
method exhibits better accuracy than the current state of the art, and
can be used for the analysis of large genotyped cohorts. PARENTE’s
higher accuracy becomes even more significant in more challenging sce-
narios, such as detecting shorter IBD segments or when an extremely low
false-positive rate is required. PARENTE is publicly and freely available
at http://parente.stanford.edu/.
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1 Introduction

Genomic sequence variants such as single-nucleotide variants, insertions, and
deletions, are being constantly introduced to populations with each generation.
As mutation rates are considered to be relatively low, [10] and as genetic drift
drives allele frequencies to become fixed, it is reasonable to assume that two
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individuals carrying the same allele have actually inherited it from a common
ancestor; in such a case, the alleles can be said to be identical-by-descent (IBD).
This strict definition of IBD holds for the majority of evident human germline
mutations, and with high probability. Many biological applications, however, are
driven by the study of longer shared stretches that cover multiple mutations. Us-
ing knowledge of such longer shared segments, inferences can be made regarding
ancestry [27], population demographics [15, 19, 23], and perhaps more impor-
tant, the location of disease susceptibility genes [2, 22, 4]. For such applications,
the alleles of two individuals that were inherited from a recent common ancestor
are called IBD, whereas the alleles that simply have the same allelic state but did
not originate from a recent common ancestor are called identical-in-state (IIS).
Note that alleles that are IBD are also IIS, but multiple independent mutation
events can cause two alleles to be IIS but not IBD. It follows that in the case of
a recent common ancestor, IBD alleles are harbored within longer segments con-
taining additional IBD alleles; the more recent the common ancestor, the fewer
meiosis occurred, and the longer the shared segment. In this work, we describe
two individuals as being related to one another if they share an IBD segment
from a recent common ancestor.

Identity-by-descent (IBD) inference is defined as the process of detecting ge-
nomic segments that were inherited from recent common ancestors in a given
set of genotyped individuals. In the problem’s simplest form, a pedigree de-
scribing the connection between sampled individuals is provided with the geno-
types in order to identify the segments. Given the pedigree, a model can be
derived to explicitly capture these relationships when the genotypes are exam-
ined. The most common model used is based on a factorial hidden Markov model
(factorial-HMM) [26, 12] with a hidden state space defined by selector variables
that determine the inheritance pattern in the pedigree [18, 1, 13, 16, 20]. More
recently, such methods were extended to model linkage disequilibrium (LD) be-
tween neighboring markers, enabling the detection of shorter IBD segments [4].
The main use of these models is in the application of genetic linkage analysis.
When a hereditary disease is studied in a family of healthy and affected indi-
viduals, linkage analysis is applied to identify loci that are associated with the
hereditary disease; these loci may contain genes or regulatory elements that in-
crease the probability of having the disease. The premise of linkage analysis is
that affected individuals will share an IBD segment around the disease locus,
and that this segment is not shared (or less likely to be shared) by healthy
individuals [11, 18, 9, 24].

In the large majority of hereditary disease studies, however, the relationship
between sampled individuals is unknown. In genome-wide association studies
(GWAS), sampled individuals are assumed to be unrelated. However, it is com-
mon to have hidden relationships (also known as cryptic relationships) within
large sampled cohorts [5, 15, 17].

The accurate detection of IBD segments within these samples enables the
correction for the cryptic relationships, for example, by removing related indi-
viduals from analysis. Conversely, instead of discarding related individuals, IBD
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mapping [7, 22, 4] can be applied, directly associating the levels of IBD with
phenotype in the process of mapping disease susceptibility genes.

Extensive previous work has focused on developing methods for the accurate
detection of IBD segments without using pedigree information. Most commonly,
an HMM or a factorial-HMM is applied to infer the IBD segments. Purcell et
al. presented PLINK [25], which uses a simple three-state model, counting the
occurrences of IBD per position given the observed genotypes of two individuals.
In BEAGLE, by Browning and Browning [8], a factorial HMM was developed
to phase and simultaneously detect the specific haplotypes that are shared be-
tween examined individuals. To improve accuracy, the BEAGLE model captured
complex linkage-disequilibrium patterns by extending the state space to accom-
modate the haplotypic structure found in the data and measuring the patterns’
frequencies. In the work by Bercovici et al. the inheritance vector capturing the
relationship between two individuals was explicitly modeled, and LD was in-
corporated via a first-order Markov model at the level of the founders [4]. The
explicit modeling of both relationship and LD was shown to significantly im-
prove performance. Similar to others, the work further demonstrated that these
accurate inference methods could be used to detect the IBD enrichment evi-
dent around disease-gene loci, highlighting the value of IBD detection in the
mapping of disease susceptibility genes. Moltke et al. presented a Markov Chain
Monte Carlo (MCMC) approach for the detection of IBD regions where seg-
ments of chromosomes are it iteratively partitioned into sets of identical descent
[22]. In the above methods, there exists a tradeoff between accuracy and run-
ning time. Nonetheless, in most of the above methods, the complexity of the
analysis in all these methods is quadratic in the number of individuals. Sim-
ply, every pair of individuals must be examined for relatedness. GERMLINE,
by Gusev et al. aimed to reduce the time complexity of IBD inference at the
cost of lower accuracy [14]. The GERMLINE method performs the IBD anal-
ysis on phased data. By populating hash tables with segments taken from the
phased data, the method efficiently determines potential seeds of segments that
are shared between individuals. These segments are then extended to determine
if sufficient evidence exists to support IBD between specific pairs of individuals.
As GERMLINE requires phased data in order to operate, the individuals are
first phased using BEAGLE [6]. In a later work by Browning and Browning,
fastIBD [5] was developed to efficiently determine IBD segments between pairs
of individuals in large cohorts of thousands of samples in a feasible timeframe.
Similar to GERMLINE, fastIBD employed a sliding window approach to allow
efficient computation. Pairs of individuals sharing the same state in fastIBD’s
factorial HMM are considered in the evaluation of subsequent windows; shared
segments are extended for pairs of individuals with a high probability of IBD.
While GERMLINE provides a more time-efficient solution, previous work has
shown the method to have a reduced ability to detect more ancient IBD seg-
ments in comparison to more accurate methods such as fastIBD. As phasing can
be prohibitive when analyzing extremely large datasets, Henn et al. developed a
method aimed at detecting larger IBD segments based on reverse-homozygous
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positions that does not require phasing [15]. While providing an efficient ap-
proach for IBD detection, the method is tuned to detect larger IBD segments,
in order to achieve required specificity.

While advances in IBD detection have been made in recent years, accurately
detecting IBD in large cohorts remains a challenge. As the cost of genotyping
decreases, the number of genotyped individuals is increasing rapidly, and the
genotyping density is growing to include millions of markers per sample. Since
many of the accurate methods investigate all pairs of individuals for relatedness,
the analysis complexity grows quadratically with the number of individuals in a
studied sample. Such challenges require that IBD detection methods have high
computational efficiency. More importantly, since the vast majority of examined
pairs of individuals are unlikely to be related, an IBD detection method must
exhibit extremely high specificity in order to avoid reporting an overwhelming
number of false positives.

In this paper we present PARENTE, a novel method for the detection of
IBD that exhibits high accuracy, and can be efficiently used for the analysis of
large genotyped cohorts. PARENTE employs a variant of a likelihood-ratio test
along with local thresholding to achieve significantly higher accuracy than the
current state of the art. Our method can be applied directly on genotype data,
without needing to first phase the genotypes, a step that can be computationally-
intensive. The primary goal of our method is to efficiently detect which pairs of
individuals in large corhorts are related to one another, in feasible time. This is
done by finding pairs of individuals that share at least one IBD segment greater
than x cM in size. Once these related pairs are identified, one can determine
specific IBD segment boundaries as a post-processing step using a more com-
plex IBD detection method of higher computational cost. We further show that
PARENTE can also be directly used for the localization of the IBD segments
within the related pairs, providing highly accurate results. PARENTE was able
to successfully detect pairs of related individuals sharing a 6 cM IBD segment
(the expected average IBD segment size for 7th cousins) with 90% sensitivity
at a 5× 10−5 false positive rate. In the more challenging case of a 4 cM shared
segment, it detects related pairs with 86% sensitivity at a 8× 10−3 false positive
rate, which represents a 28% relative increase in sensitivity compared to fastIBD,
a state-of-the-art method. Finally, we observed that PARENTE is an order of
magnitude faster than fastIBD, as well. These results highlight the relevance of
our method for the accurate and efficient analysis of large cohorts.

2 Methods

The PARENTE model employs a window-based approach, whereby multiple con-
secutive markers are grouped together and their joint probability is estimated
given a hypothesized IBD state. Subsequently, the probabilities of multiple non-
overlapping windows are merged via a naive Bayes model, producing the prob-
ability for the assumed IBD state in a given block of pre-defined length. The
block lengths are derived from a target timespan covering common ancestors of
interest, and the required accuracy as driven by the application.
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Given N individuals sampled over M biallelic markers, let G be defined as the
genotype matrix. We use gi,j ∈ {0, 1, 2} to denote the major allele count observed
in the jth marker of the ith individual, and gi as the vector corresponding to
all M genotyped markers sampled for individual i. The measured genotypes G
are assumed to have originated from a set of 2N underlying hidden haplotypes,
denoted by the matrix H . The maternal and paternal alleles of the jth marker
in the ith individual are marked as hm

i,j ∈ {0, 1} and hp
i,j ∈ {0, 1}, respectively,

corresponding to the major allele count in each. More broadly, however, we use
h∗
j as a symbol to signify one of the alleles at the jth marker, corresponding

to one of the population haplotypes comprising an individual’s genotype. We
use fj to denote the major allele frequency of the jth marker in the sampled
population. The M markers covering the genome are partitioned into a set of
consecutive windows W = {w1, ..., wM

k
}, each of size k. We use m(w) to denote

the indices of the k consecutive markers within the wth window, and gi,m(w) as
the partial genotyping vector for individual i corresponding to these k markers.
Finally, we define a block B = {wt, ..., wt+k−1} as a set of consecutive windows.

For a target IBD block length l (in cM), the PARENTE method is defined as
follows. All

(
N
2

)
pairs of individuals are enumerated. For each pair of individuals,

the genome is scanned by sliding a block B across each chromosome, where each
block B starts from one of the M

k possible window positions. The examined block
B includes all successive windows that contain markers that are at most l cM
away from the first marker of the first window in that block. For each such block
B and pair of individuals i, i′, an aggregated block score ΛB(gi, gi′) is defined as
follows:

ΛB(gi, gi′) =
∑

w∈B

log sw(gi,m(w), gi′,m(w)) (1)

where sw(gi,m(w), gi′,m(w)) is a window-specific score, computed using the geno-
types of the two examined individuals i, i′ within an examined window w. We
call a pair of individuals i and i′ to be IBD in block B whenever ΛB(gi, gi′) > TB,
where TB is a pre-defined threshold associated with block B. We compute this
score for each block in the genome and call a pair of individuals to be related
if any block in the genome is called to be IBD. The threshold TB is defined
such that the false-positive rate is controlled to a desired level. The block score
ΛB(gi, gi′) can be efficiently computed along the genome of two individuals. As
blocks are scanned, window-scores corresponding to windows that are no longer
part of the newly examined block B′ are subtracted from the current block score
ΛB′(gi, gi′), and the window-scores corresponding to newly joining windows are
simply added.

In the remainder of this section we derive two instantiations for the score func-
tion sw(gi,m(w), gi′,m(w)). We first derive a score function sw using a likelihood-
ratio approach. We continue by deriving an embedded likelihood-ratio score
which corrects for the reduced performance stemming from windows exhibit-
ing high variance in the likelihood-ratio score. Finally, we will describe how the
block-specific score threshold TB is defined. In the Results section, we show
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that higher variance is associated with windows that have reduced ability to
distinguish between genotypes originating from related individuals from those
originating from unrelated individuals.

2.1 Likelihood Ratio Test

To efficiently detect IBD, we first develop a likelihood ratio-test (LRT) variant
of our method. Within a sliding block comparing two individuals’ genotypes, we
contrast the probability that the they are IBD in the block against the prob-
ability that they are are not IBD. The LRT score is computed by estimating
the likelihood of the individuals’ genotypes within each block under two models,
namely a model MIBD corresponding to the hypothesis the two examined indi-
viduals are related, and a model MIBD corresponding to the hypothesis the two
individuals are unrelated.

As suggested by Equation 1, for both MIBD and MIBD, we model the geno-
types within a block B using a naive Bayes approach whereby all windows are
independent given the IBD status of the two examined individuals within B.
The probabilities of the genotypes within each window w ∈ B comprising an ex-
amined block B are considered separately, and the product of these probabilities
defines the probability of the observed genotypes within the examined block (or
as a sum, under our log formulation). Namely, given a block of interest B, and
the genotype of two examined individuals gi and gi′ , the window-specific score
in Equation 1 is defined as:

sLR
w (gi,m(w), gi′,m(w)) =

pMIBD(gi,m(w), gi′,m(w))

pMIBD
(gi,m(w), gi′,m(w))

(2)

Under the assumption that the sampled markers are in linkage equilibrium,
meaning that the alleles within a window are not associated, the genotype prob-
abilities under the two models are given by:

pMIBD(gi,m(w), gi′,m(w)) =
∏

j∈m(w)

pMIBD(gi,j , gi′,j) (3)

pMIBD
(gi,m(w), gi′,m(w)) =

∏

j∈m(w)

pMIBD
(gi,j , gi′,j).

The probability of the genotype pair gi,j , gi′,j under our two models is then
defined as:

pMIBD(gi,j , gi′,j) =
∑

h1
j ,h

2
j ,h

3
j

p(gi,j|h1
j , h

2
j ) · p(gi′,j |h1

j , h
3
j ) · p(h1

j) · p(h2
j) · p(h3

j) (4)

pMIBD
(gi,j , gi′,j) =

∑

h1
j ,h

2
j ,h

3
j ,h

4
j

p(gi,j |h1
j , h

2
j ) · p(gi′,j |h3

j , h
4
j ) · p(h1

j) · p(h2
j) · p(h3

j) · p(h4
j)
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where p(h∗
j ) = f

h∗
j

j ·(1−fj)
(1−h∗

j ) as determined by the allele frequency at marker
fj. The probability p(gi,j |h1

j , h
2
j) that the genotype gi,j was sampled given the

underlying haplotypes h1
j and h2

j , must accommodate for genotyping errors. We
define p(gi,j|h1

j , h
2
j) as follows:

p(gi,j |h1
j , h

2
j) =

{
1− ε gi,j = h1

j + h2
j

ε
2 otherwise

(5)

where the parameter ε is tuned to capture the amount of expected genotyping
error. Finally, to accommodate for missing data, we set the likelihood ratio at a
marker to 0.5 if either genotype is missing.

We note that in the above model, the individuals can share at most a single
haplotype. We further note that under the assumption of linkage equilibrium,
the equivalent of a block LRT score ΛB(gi, gi′) can be directly computed with-
out windows by using the sums of log of the genotype probabilities, as defined
by Equation 4. We utilize the window-based sw formulation described in Equa-
tion 2 to facilitate our description of an extension that accounts for local score
variability, which we now derive.

2.2 Embedded Likelihood Ratio Test

The model described thus far provides an efficient approach to identifying pairs
of individuals that share a common ancestor, and in particular to detecting spe-
cific regions that are IBD. While alleviating some of the performance-related
challenges that are evident when examining large cohorts by providing a compu-
tationally feasible approach, the model is sensitive to windows exhibiting highly
variable scores. Namely, for each block, the window-score of a small sub-set of
windows plays a critical role in the determination of the final block score. It is the
high variability of such windows that limits the performance of the likelihood-
ratio based test.

One approach that corrects for the detrimental impact of high-variance win-
dows is based on the direct examination of window-level performance. The dis-
tribution of window-score can be examined given the genotypes from unrelated
individuals, and contrasted against the distribution of the window-score given
genotypes from related individuals. By contrasting these distributions, it is pos-
sible to detect and control for the impact of highly-variable windows. Specifically,
to apply such a correction, we treat the LR described by Equation 2 as a random
variable SLR

w = sLR
w (gi,m(w), gi′,m(w)). We then define two Gaussian models for

the distribution of SLR
w , one corresponding to the distribution of the score under

related individuals, and a second corresponding to the distribution of the score
given unrelated individuals:

SLR
w |IBD ∼ N(μw,IBD, σw,IBD), SLR

w |IBD ∼ N(μw,IBD, σw,IBD). (6)
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Our modified score, which we term embedded likelihood-ratio (ELR), is finally
defined as:

sELR
w (gi,m(w), gi′,m(w)) =

P (SLR
w = sLR

w (gi,m(w), gi′,m(w))|IBD)

P (SLR
w = sLR

w (gi,m(w), gi′,m(w))|IBD)
. (7)

In total, 4 additional parameters define our new model. Namely, the mean μ
and standard deviation σ of the normal distributions used to approximate the
behavior of our initial score sLR

B under observations originating from related
and unrelated individuals. In order to estimate these parameters, phased data
is used to simulate related and unrelated individuals, yielding the means to
compute empirical estimates for the score distributions. The phased haplotypes
can be either generated from datasets containing trios, or via computationally-
phased individuals. It is important to note that current phasing methods offer
a sufficiently low switch-error rate such that their performance should have a
negligible effect when considering haplotypes within a window of moderate size.

2.3 Genotyping-Error Function

In Equation 5 we describe the probability of genotypes given the hidden under-
lying haplotype. The conditional probability p(gi,j |h1

j , h
2
j) derived accounts for

genotyping error. While providing a more realistic model, it can in fact reduce the
statistical power when failing to reject unrelated individuals. The lower power
stems from the fact the impact of reverse-homozygous genotypes is reduced; such
observations can be attributed to sampling errors rather than indication of un-
relatedness under the realistic model. One can increase the penalty under such
scenarios by controlling the genotyping error parameter ε. Our method strives to
reduce the amount of false-positive pairs detected. Thus, we extend our method
by introducing a genotyping-error function that increases the contrast between
IBD and non-IBD segments. Specifically, when estimating the model parame-
ters, we use ε as the genotyping error rate, whereas during inference, we replace
ε in Equation 5 with a function φ(ε) = v · ε, where v is a scaling factor. In the
Result section, we used v = 1

100 .

2.4 Likelihood-Ratio Test Threshold

When applying likelihood-ratio tests, thresholds are selected so as to control the
false-positive rate. Specifically, the distribution of the test is examined under
examples originating from the null distribution, and a threshold is selected to
guarantee an expected performance in terms of false-positives. It is common to
select a single, global threshold to control for the global proportion of type I
errors. However, as each block in our method contains windows of different score
distribution, a local, block-specific threshold TB can be applied to improve the
performance. In our method, we explore the distribution of ΛB(gi, gi′) given the
genotypes of unrelated individuals for each block, thus accommodating to the
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local behavior of our score. Given a training set of unrelated pairs and their
corresponding block scores Db,IBD, we define the block threshold as:

TB = max(Db,IBD) + cσDb,IBD
(8)

where σDb,IBD
is the standard deviation observed in the block-scores, and c scales

the margin defined by the standard deviation. In our experiments, we use values
between -1.5 and 2.5 for the scaling-factor c.

In the Results section, we demonstrate that the combination of ELR and
a block-specific threshold TB provides superior performance in comparison to
current state-of-the-art methods.

3 Results

The performance of PARENTE was evaluated using simulated data. We show
that PARENTE has a superior accuracy performance when compared against
fastIBD, which is considered state-of-the-art method for the accurate and
efficient detection of IBD. We further explore the relative contribution to perfor-
mance stemming from the use of the likelihood-ratio approach (LRT), the embed-
ded LRT (ELRT) approach, and finally the use of a local threshold versus a global
threshold. As a note on notation, for the remainder of this paper, we present the
window score as log sw(gi,m(w), gi′,m(w)) instead of sw(gi,m(w), gi′,m(w)).

Constructing Training and Testing Datasets. To train and evaluate the
performance of PARENTE, we used the phased data from three Asian popu-
lations of the the HapMap Phase III panel [3]: Han Chinese in Beijing, China
(CHB); Japanese in Tokyo, Japan (JPT); and Chinese in Metropolitan Denver,
Colorado (CHB). Our experiments used polymorphic SNPs from the long arm of
human chromosome 1. We randomly partitioned the unrelated individuals from
these populations into a set of 154 training haplotypes and a set of 366 testing
haplotypes. To create a larger dataset of unrelated individuals, we used the orig-
inal haplotypes to generate composite haplotypes by simulating mosaics of the
original haplotypes using an approach similar to [8]. Briefly, to generate a com-
posite haplotype, we considered every 0.2 cM segment across the chromosome;
for each segment, we copied the corresponding segment from one of the origi-
nal haplotypes chosen uniformly at random. Due to the random process, some
longer segments of two composite haplotypes were copied from the same origi-
nal haplotype. Therefore, we removed 36 composite haplotypes that had more
than 0.8 cM of contiguous sequence that was generated from the same original
haplotype as another composite haplotype. A total of 500 composite training
haplotypes and 1, 000 composite testing haplotypes were generated. In all of our
experiments we use these composite haplotypes for training and testing. Thus,
henceforth, we will refer to these composite haplotypes as simply training and
testing haplotypes.
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Fig. 1. (a) Performance of PARENTE for detecting related pairs of individuals shar-
ing 4 cM IBD segments in comparison to fastIBD. PARENTE was applied using three
different strategies: LRT, LRT with local thresholding, and ELRT. The magnified in-
set highlights PARENTE’s superior performance when considering the high-specificity
range. (b) Performance of PARENTE for detecting IBD segments compared to fastIBD.
The same experiments from (a) were used, but the sensitivity and false positive rate
were calculated based on the number of SNPs in IBD and non-IBD segments. Similarly,
the magnified inset highlights PARENTE’s superior performance in the high-specificity
range.

Simulations to Evaluate Performance. To evaluate and characterize the
performance of PARENTE, we created simulated pairs of related individuals
that shared a single IBD segment of a specific size, ranging between 3 and 8 cM.
We used a bootstrap approach to measure accuracy, using 100 trials per exper-
iment, averaging the results of all trials within an experiment. For each trial,
we simulated 80 pairs of related individuals by generating 80 pairs of composite
individuals and inserting one shared IBD segment of a given size at a random
position along the chromosome. After genotypes were copied and IBD was in-
jected, a genotypic error rate of ε = 0.005 was applied, changing the genotype
call to one of the other two genotypes with equal probability. We designated
the first simulated individual of each pair to be a query individual and the sec-
ond individual as the database individual. Then we used PARENTE to predict
whether IBD existed between each query individual and all database individuals
by labeling a pair as IBD if at least one block had a score passing the block-
specific threshold. We calculated sensitivity as the number of IBD pairs correctly
predicted out of 8,000 true IBD pairs per experiment, and false positive rates
as the number of non-IBD pairs incorrectly predicted as IBD out of the 632,000
non-IBD pairs per experiment.

When aiming to detect IBD segments of a particular length L (in cM), we
defined the blocks to have the largest size possible l such that L − 0.5 ≤ l ≤
L − 0.1. We used block sizes slightly smaller than the target IBD segment size
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to account issues related to block-boundary, stemming from the varying density
of the SNP array and the fact that blocks start at window boundaries (and not
at arbitrary SNPs). This was done to increase the likelihood that at least one
block fit completely within the any arbitrary IBD segment of length L.

In all our experiments, we used a window size of k = 20 SNPs per window,
and simulated a single 4 cM segment for each related pair of individuals, except
where stated otherwise.

PARENTE’s Accuracy and Comparison to Fastibd. Our goal was to
produce a fast, accurate method to predict IBD. We thus compared the perfor-
mance of PARENTE to fastIBD [5], an efficient IBD detection method. fastIBD
was previously shown to have higher accuracy than GERMLINE [14], a scalable
IBD detection platform, and comparable accuracy to BEAGLE’s slower, high-
accuracy IBD inference method [8]. We evaluated the performance of fastIBD on
our simulated dataset using the default parameters and IBD detection thresholds
ranging from 1 × 10−6 to 1 × 10−30. Following fastIBD’s authors recommenda-
tions, we ran fastIBD ten times with ten different seeds and aggregated the
results by taking the minimum score observed at each position in any of the
runs. We applied a size filter to the fastIBD predictions, only considering called
segments longer than 1 cM, a value selected for yielding the best performance
for fastIBD. fastIBD further recommends providing additional genotypes to aid
in training fastIBD’s internal haplotype model. Our experiments indicate that
the use of additional haplotypes did not increase the performance (results not
shown). As fastIBD infers IBD segments from all pairs in a given cohort, all the
query and database individuals was provided simultaneously, while only consid-
ering calls that were made between query and database individuals, following
PARENTE’s mode of operation.

To compare the accuracy of PARENTE and fastIBD, we performed the sim-
ulations described above, measuring accuracy on detecting which pairs of indi-
viduals shared a simulated 4 cM IBD segment. The results shown in Figure 1a
demonstrate that PARENTE has a significantly higher accuracy in comparison
to fastIBD when detecting pairs of related individuals. This difference in sensi-
tivity further grows at high-specificity levels, which is a crucial parameter when
analyzing large cohorts. Note that the use of a local threshold for the ELRT
provides superior high-specificity performance over a global threshold strategy.
In the case of the LRT, the local threshold provides a large increase in sensitivity
at all specificity levels. We further compared the performance of PARENTE and
fastIBD in the task of accurately determining the location and boundaries of
IBD segments (see Figure 1b). Our experiments demonstrate that PARENTE
achieves higher per-SNP, per-pair accuracy when compared to fastIBD. We note
that when running fastIBD for this analysis we did not enforce the called seg-
ment size filter, as fastIBD performed better when the filter was not applied.
The sensitivity for each related pair of individuals was measured as the fraction
SNPs in the simulated IBD segment successfully detected to be IBD. For all
pairs in the experiment, we measured the false positive rate as the fraction of
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SNPs not in IBD segments that were incorrectly called as IBD. Since blocks can
overlap in PARENTE, we labeled a SNP as IBD if it belonged to any block that
had a score above the threshold.

We characterized PARENTE performance on a range of simulated IBD seg-
ment sizes from 3 cM to 8 cM, as depicted in Figure 2. These results show that
PARENTE excels at high-specificity detection of IBD segments. For instance,
PARENTE was able to successfully detect 8 cM IBD segments with 94% sen-
sitivity and nearly zero false positive rate, and 6 cM IBD segments with 90%
sensitivity and a 5× 10−5 false positive rate.

As efficiency is key in the analysis of large cohorts, we measure execution
time. In our experiments, the running time for PARENTE was approximately
10 times less than that of fastIBD. Specifically, PARENTE was able to process
∼15 individual pairs per second on our trials of 6,400 pairs. Note that we mea-
sured running time in pairs per second as fastIBD analyzes all pairs within a
cohort, whereas PARENTE was run on all pairings between query and database
individuals.

Fig. 2. Performance of PARENTE for detecting related pairs of individuals sharing
IBD segments of various sizes. The magnified inset shows PARENTE’s high sensitivity
achieved at near-zero false positive rates for larger IBD segments.

Training PARENTE’s Model and Thresholds. In order to compute our
embedded LRT score, PIBD and PIBD first need to be evaluated for every window
w. Simulated pairs of related and unrelated individuals was used for this pro-
cess (see Equations 6,7). Simulated pairs of related individuals’ genotypes were
simulated so that each pair shared one entire haplotype along the chromosome.
Specificially, each pair of related genotypes was generated by randomly selecting
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one haplotype from the training data to be shared by both genotypes as well
as a unique haplotype for each genotype so that three distinct haplotypes were
sampled. Pair of unrelated genotypes were simulated by randomly choosing four
distinct training haplotypes, using two of the haplotypes for one genotype and
the remaining two haplotypes for the second genotype. A total of 2, 000 pairs
of related genotypes and 2, 000 pairs of unrelated genotypes were generated.
For each window w and each pair of related and unrelated genotypes, we com-
puted the LRT score assuming a genotyping error rate of ε = 0.005; we then fit
window-specific normal distributions to the scores of related and unrelated pairs
resulting in (μw,IBD, σw,IBD) and (μw,IBD, σw,IBD), respectively.

Fig. 3. (a) For each window, the mean window score of the IBD and non-IBD training
data was computed; the histogram of these means is shown for the LRT and ELRT
scores. When compared to the LRT score, the ELRT score has more separation between
the IBD and non-IBD distributions, the boundary between them becomes centered
at zero, and the IBD score variance is reduced. (b) Mean and standard deviation of
window LRT scores and ELRT scores for IBD training data was computed. Each point
represents a specific window, with the same color used to denote the same window
in both plots. This illustrates the extent to which the ELRT reduces the variance of
windows with high-variance, low-negative-mean LRT scores. (c) For a particular block,
a histogram of the scores observed in the training data are shown. As with windows, the
ELRT block scores feature better separation between IBD and non-IBD individuals,
with a boundary close to zero. (d) Scores and thresholds across a chromosomal segment
based on training data. The red line represents the mean score for non-IBD training
data and the dark blue line represents the mean score for IBD training data. The
yellow dashed line is the score for a single unrelated pair at each block. The dotted
black line shows a local, block-specific threshold. This figure illustrates the consistent
and improved separation between IBD and non-IBD score distributions at blocks across
the chromosome for the ELRT over the LRT.

Embedded LRT and Local Thresholds. We computed the LRT and ELRT
scores for windows and blocks for the unrelated and related training data and
examined their properties in order to explore the differences between the ELRT
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and LRT strategies. Figure 3a shows the distribution of the average window-
score for IBD and non-IBD segments. The figure demonstrates three notable
properties of the ELRT, when compared to the LRT. First and foremost, there
is greater separation between the scores of IBD and non-IBD segments; second,
the boundary between the scores of IBD and non-IBD segments is very close to
zero, suggesting well calibrated scores; third, the variance of the scores of IBD
segments is controlled. To understand the role of the ELRT’s reduction variance
of the IBD window scores, we plotted the mean and standard deviation of the
window scores for ELRT versus LRT (see Figure 3b). Note that the ideal score
distribution for IBD segments would have a high mean and low variance in order
to serve as a reliable predictor for the IBD state. Therefore, these plots clearly
demonstrate that ELRT controls for windows that are unreliable predictors of
IBD. Specifically, the windows with high variance and low negative mean LRT
scores (the blue and violet points in the figure) are mapped to lower variance
ELRT scores. We note that even though there is a negative trend between the
average LRT scores and average ELRT scores, the ELRT scores stay above zero,
the apparent boundary between IBD and non-IBD scores. The ELRT advantages
at the window level translate to the block level, as seen in Figure 3c. This
greater block score separation consequently allows PARENTE to achieve higher
accuracy when using the embedded LRT score. In Figure 3d, the mean of these
distributions can be seen for many blocks along chromosome, demonstrating
the stability of the increased separation of the ELRT across the chromosome.
This figure also shows the high variation in the block thresholds in for the LRT,
which explains why the LRT’s performance increases significantly when using
block-specific thresholds compared to a global threshold.

Accuracy Performance Characteristics. Finally, we conducted additional
experiments aimed at characterizing the performance of PARENTE. Specifically,
we examined the effect of genotyping errors, the use of the genotyping-error
function φ(ε), and the effect of varying the window size k. First, we explored
PARENTE’s performance with and without φ(ε), assessing differences in accu-
racy. When using φ(ε) with the scaling factor v = 1

100 , PARENTE’s sensitivity
increased from 75% to 86% at the 1% FPR level. The improvement in sensitivity
further increased at the 0.1% FPR level, from 45% when using ε to 73%, when
φ(ε) was applied. Next, we demonstrated that PARENTE is robust to changes in
the window size parameter. IBD pairs were inferred on simulations with 4 cM in-
jected IBD segments for a window size of 10, 20, and 30 SNPs per window. When
using the LRT score, PARENTE’s sensitivity changed less than 0.5% at the 0.1%
FPR level. The differences were due to the fact that block boundaries were gen-
erated to begin and end at window boundaries, resulting in block definitions
that were slightly different given the window size. As noted earlier, the varying
windows size does not effect the LRT score, as the window-based model is equiv-
alent to the direct computation of the score at the block level. Simply, the LRT
score of a block can be equivalently computed by summing the individual SNP
LRT scores or the window LRT scores. When using the embedded LRT score,
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PARENTE’s sensitivity varied by less than 2% at the 0.01% FPR level across
the different window sizes. These differences can be attributed to differences in
the window models as well as block boundary differences. Finally, we explored
the extent to which genotyping errors affected PARENTE’s performance. To this
end, we repeated the simulations but introduced genotyping errors at different
rates: 1%, 0.5%, and 0%. The model parameters ε and φ(ε) were unchanged from
previously described experiments, being set to ε = 0.005 and ε

100 , respectively.
We found that at the 0.1% FPR level, the sensitivity increased from 66% to
74% to 76% for the 1%, 0.5%, and 0% error rates, respectively. These results
illustrate that PARENTE is robust to a realistic range of error rates of less
than 0.5%.

4 Discussion

To improve computational efficiency when applying the described scoring func-
tions, the log window score log sw(gi,m(w), gi′,m(w)) can be pre-computed for all
possible pairs of genotypes for every window. For instance, with a window size
of 5 SNPs, each window requires only (35)(35+1)

2 = 29, 646 values per window.
The block score Λb(gi, gi′) can then be computed efficiently by retrieving and
summing these values.

The model presented here assumes markers within each window are in linkage
equilibrium. One approach to satisfy this assumption is via marker pruning using
tools such as PLINK [25]. Alternatively, our model can be extended so as to
incorporate the LD evident between neighboring markers. Previous work has
shown that modeling LD can improve the performance of IBD methods [4].

In our work, the applied block-specific threshold strategy was based on the
observed scores of unrelated pairs in the training data. The rationale behind this
approach was to extremely control for false positions, since we aim to identify
IBD in extremely large cohorts. Therefore, we calculated the threshold based on
the maximum and variance of the observed training scores and a provided con-
stant, c (see Equation 8). The default value c = 0 yielded a threshold with good
performance (82% sensitivity at a 3×10−3 FPR for the embedded LRT); c can be
adjusted to achieve the preferred tradeoff between specificity and sensitivity. We
have observed that the margin between the related and unrelated distributions
varies between blocks (see Figure 3). One may be able to increase sensitivity
without loss of specificity by increasing the thresholds at blocks where the mar-
gin is large. In future work, we aim to explore additional stronger thresholding
schemes in order to increase PARENTE’s accuracy.

PARENTE makes the assumption that IBD segments along the genome are in-
dependent of one another, which holds true for distant relatives with relatively
small IBD segments (eg 5 cM) that are expected to have at most one shared
IBD segment. The assumption may not hold true for closely-related individuals,
which are expected to share several IBD segments. However, due to the close
relationships in these scenarios, these IBD segments also tend to be very large.
Because PARENTE can accurately detect individual small IBD segments, it can
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Table 1. As window size increases, a Gaussian distribution fits window LRT scores
better. Given a window size (SNPs per window), the Kolmogorov−Smirnov test was
performed on the scores of the training data for each window along the chromosomal
segment. The mean p-value of all the windows is reported here.

SNPs per window
3 5 10 15 20

Mean non-IBD KS p-value 7e-12 4e-11 8e-7 5e-6 2e-5
Mean IBD KS p-value 1e-9 4e-5 0.003 0.008 0.017

also detect each individual larger IBD segment, without needing to take into
account that several large IBD segments may appear across the genome.

Our model uses a normal approximation of the LRT score distribution in or-
der to compute the ELRT scores. With a window size of 20 SNPs per window,
as used in our experiments, the LRT score distributions of most windows rea-
sonably follow a Gaussian distribution. Naturally, however, for smaller window
sizes (such as 3 SNPs window), most windows had score distributions that does
not fit a Gaussian distribution. The poor approximation of the LRT score via
a Gaussian distribution resulted in reduced performance (results not shown).
We quantified window LRT score normality across various window sizes by us-
ing a Kolmogorov−Smirnov (KS) test on the related and unrelated training
LRT scores for each window. The mean p-value of all the windows along the
chromosome was computed. Table 1 shows these results, illustrating that the
approximation using a Gaussian distribution provides a better fit as the window
size increases. These observations indicate that it may be worthwhile to explore
alternative parametric and empirical distributions for LRT, evaluating their im-
pact on PARENTE’s accuracy, especially when using small window sizes.

In this paper we presented PARENTE, a novel method for the accurate and ef-
ficient detection of IBD. Our results demonstrate that PARENTE has a superior
accuracy in comparison to previous state-of-the-art methods, especially when set
to control for extremely low false-positive rates. Furthermore, the methods ef-
ficiency enables the analysis of large-cohorts sampled over dense marker sets.
As larger dataset are collected and sampled at an increasingly higher resolution
via next-generation sequencing [21, 28], efficient methods such as PARENTE
that can operate on non-phased genotype data become vital for their analysis.
PARENTE is publicly and freely available at http://parente.stanford.edu/.
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