
The emergence of next-generation  
sequencing (NGS) has revolutionized the 
study of genetics and provided valuable 
resources for other scientific disciplines. As 
NGS becomes more widely accessible, its 
use has extended beyond basic research  
and into broader clinical contexts. It is  
therefore increasingly important to account 
for the errors that arise in the sequenc-
ing process. These errors can stem from 
the bioinformatic analysis1 and from 
experimental steps2,3 (which can often 
be mitigated through the use of replicate 
experiments).

The use of replicates permeates almost 
all scientific disciplines. However, in NGS, 
many researchers use sequencing read depth 
and bioinformatic filters to address errors in 
lieu of biological replication. This practice 
is understandable, given that replicates can 
substantially increase study costs. However, 
sequencing costs have decreased markedly4, 
and now is the time to re-evaluate the value 
of replication in sequencing studies.

In this Perspective article, we discuss 
sources of errors in sequencing and the 
nascent use of replication in published 
high-throughput sequencing efforts. In 
addition, we show how biological replicates 
can be used to reduce sequencing errors. In 
particular, we demonstrate that replicates 
can be used to assess the specificity and 
the sensitivity of sequence variant-calling 
methods in a manner that is independent 
of the algorithms and the chemistry that 
are used to call variants, thereby guiding 
the appropriate selection of quality score 
thresholds.

Experimental errors in NGS
Technological advances and the digital 
nature of DNA are helping to achieve 
highly accurate genome sequences. 
However, sequencing methods are imper-
fect. NGS applications — such as whole-
genome sequencing, targeted capture, 
high-throughput RNA sequencing (RNA-
seq) and chromatin immunoprecipitation 
followed by sequencing (ChIP–seq) — are 
prone to errors that result in miscalled 
bases, thus causing misalignment of short 
reads and mistakes in genome assembly. 
Reported claims of sequencing base call 
accuracy for leading NGS technologies 
greatly vary, which range from one error 
in one thousand nucleotides (99.9%)5 
to one error in ten million nucleotides 
(99.9999%)6. Even for methods that have 
the lowest reported error rates, the absolute 
numbers of miscalled genomic variants 
remain unwieldy — there might be thou-
sands of false-positive variants in a fully 
sequenced human genome. Furthermore, 
false-positive errors are mistaken as rare 
and somatic variants, thereby obfuscating  
true variants of clinical interest. Known 
sources for experimental errors can 
be grouped by their occurrence in the 
sequencing workflow; that is, during sam-
ple preparation, library preparation, or 
sequencing and imaging (FIG. 1a; BOX 1).

Sample preparation. Sequencing errors 
and biases can arise from sample degrada-
tion and contamination during sample 
isolation and preservation. For example, 
during sample preservation, formalin 

fixation causes degradation and nucleotide 
changes7,8. Moreover, inadequate amounts of 
high-quality genomic material can increase 
amplification errors and decrease sequenc-
ing read depth9. Finally, contamination 
poses a challenge when non-tumour cells 
mask oncogenic somatic variants10 or when 
exogenous DNA interferes with calls of 
homozygosity or heterozygosity11.

Library preparation. Errors also arise dur-
ing sequencing library preparation, which 
leads to uneven coverage, sequence changes 
and interruption of sequence tags. DNA 
fragmentation can produce length biases, 
which subsequently causes preferential 
amplification12. Library amplification is  
subject to unmeasured primer biases, such 
as primer bias in multiple displacement  
amplification (MDA)13, mispriming in PCR 
target enrichment14 and incorporation of 
sequence errors during both clonal ampli-
fication and PCR cycling15. When barcodes, 
adaptors and other pre-defined sequence 
tags are added to the fragments being 
sequenced, disruption and inadequate tag 
design can result in cross-contamination of 
data sets, read loss and decreased read qual-
ity2,16. Chimeric reads can also arise in long-
insert paired-end libraries17 and potentially 
confound variant calls and assembly efforts.

Sequencing and imaging. Current NGS 
platforms3 have sequencing and imaging 
error types that are specific to the plat-
forms18. For example, substitution errors can 
arise in platforms such as Illumina and 
SOLiD when incorrect bases are intro-
duced during clonal amplification of tem-
plates. Furthermore, Illumina has shown a 
sequence-specific error profile19 that pos-
sibly arises from either single-strand DNA 
folding or sequence-specific alterations in 
enzyme preference. The single-molecule, 
real-time (SMRT) platform of Pacific 
Bioscience yields long single-molecule 
reads that are subject to false insertions and 
deletions (indels) from non-fluorescing 
nucleotides20,21. Pyrosequencing (for exam-
ple, Roche 454 platforms) and semiconduc-
tor sequencing (for example, Ion Torrent) 
have difficulty in counting homopolymer 
stretches, which results in carry-forward 
insertion and deletion errors22.

Experimental errors pose challenges in 
applications for which accuracy is crucial, 
such as in detection of somatic mosaicism23,24 
and in other clinical applications. Errors 
are often addressed by increasing sequenc-
ing read depth but can also be mitigated by 
careful barcoding strategies25, replicates, 
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Abstract | Advances in next-generation sequencing (NGS) technologies have 
rapidly improved sequencing fidelity and substantially decreased sequencing 
error rates. However, given that there are billions of nucleotides in a human 
genome, even low experimental error rates yield many errors in variant calls. 
Erroneous variants can mimic true somatic and rare variants, thus requiring 
costly confirmatory experiments to minimize the number of false positives. 
Here, we discuss sources of experimental errors in NGS and how replicates can 
be used to abate such errors.
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orthogonal sequencing technologies26 and 
prior knowledge of variants27. Together, 
these approaches can help to overcome vari-
ations in experimental conditions, stochastic 
fluctuations and systematic biases.

Replicates and experimental errors
Many applications of NGS — for example, 
the detection of rare causal variants and 
somatic variants, and clinical applications 
— require high fidelity in sequencing, which 

necessitates confirmatory experiments, such 
as Sanger sequencing. The standard valida-
tion methods that are used for confirmation 
tend to be costly and labour intensive, and 
lower-cost alternatives are therefore needed. 
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Figure 1 | Sources of and tools to cope with unexpected or errone-
ous variants.  Sequencing experiments involve many steps from  
sample acquisition to final data analysis, and a major challenge in the 
process stems from the emergence of unexpected or erroneous vari-
ants. Sequencing pipeline and sources of errors are shown; R represents 
a replicate. a | These variants can include legitimate somatic mosaicism 
and rare oncogenic variants. Additionally, many erroneous sequence 
variants arise during experimental steps, for example, through sample 
degradation, PCR amplification errors and base-calling errors.  
b | Several analytical tools and post-processing mechanisms are often 
used for separating true variation from false sequence variants. These 

include indicators of data quality (for example, base call and mapping 
quality scores) and the choice of filters that is informed by these indica-
tors. Additional tertiary analyses can also highlight systematic biases 
through clustering methods and possible false-positive variants by 
accounting for Mendelian inheritance patterns57. Throughout  
the sequencing and post-processing pipeline, the use of replicated 
sequencing experiments can help to mitigate the effect of erroneous 
variants from the experimental steps and to inform the choice of post-
processing filters. Thus, greater accuracy of germline variant detection 
can be attained, and improved sensitivity can be achieved for true 
somatic variation.
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An approach that holds promise uses the 
tried-and-true scientific method of replica-
tion to mitigate user errors, stochastic dif-
ferences and other sources of experimental 
errors. Different types of replication are 
described below, including sequencing  
read depth, and technical, biological and 
cross-platform replication.

Sequencing read depth. The most straight-
forward approach to improve sensitivity 
and accuracy in sequence variant calls is 
to increase sequencing read depth28,29. By 
increasing the number of short reads, one can 
improve variant calling on easily sequenced 
regions. Consequently, one can reduce the 
number of missed true variants (that is, false 
negatives) and sometimes the number of true 
non-variants that are incorrectly detected as 
variants (that is, false positives). However, 

merely increasing sequencing read depth 
cannot ameliorate issues that arise from the 
widespread batch effect phenomenon30 and 
many other error types that are introduced 
in the experimental process. Thus, increased 
sequencing read depth is not necessarily an 
adequate proxy for biological replication and 
is limited in its ability to mitigate errors.

Technical replicates. The frequency of  
certain error types can be reduced through 
technical replication. We define technical 
replication as the repeat analysis of the exact 
same sample. For example, technical rep-
licates were used with monozygotic twins, 
and the data showed higher intra-individual 
correlations than inter-individual correla-
tions31. In another example6, many technical 
replicate pools were sequenced and each 
contained dilute DNA. Pools containing 

haplotypes with incongruent base calls that 
were suspected as amplification errors were 
discarded, and the sequence quality was  
significantly improved.

Biological replicates. We define biological  
replication as the preparation and the 
analysis of multiple biological samples under 
the same conditions from the same host. 
Biological replicates in genome sequencing 
can be used to assess the efficacy of various 
bioinformatic filters32. Additional benefits 
over technical replicates include the iden-
tification of rare somatic mosaicism and of 
differences in transcript abundance. Somatic 
mosaicism can arise from mutations that 
occur from mutagens and other causes24. 
Biological replicates can indirectly help to 
uncover somatic mutations in complex and 
heterogeneous tumours when they are used 
to achieve the ‘normal’ baseline sequence in 
tumour–normal pairs.

Cross-platform replicates. Each sequencing 
platform introduces unique biases and error 
types. Thus, integrating sequencing data 
from different technologies can further miti-
gate errors. For example, sequencing DNA 
samples that were taken from both the blood 
and saliva on two different platforms — 
Illumina and Complete Genomics — resulted 
in 88.1% concordance of single-nucleotide 
variants (SNVs) across replicates33. Validation 
rates for variants that were called on both 
platforms were higher than variants that  
were not. In another study, sequencing on 
three platforms — Illumina, Roche 454 and 
SOLiD — showed 64.7% concordance5. This 
disparity could result from multiple experi-
mental error sources and from differences 
in downstream bioinformatic processing. 
Cross-platform replicates greatly reduce the  
number of false-positive variants, but  
the different biases from each sequencing 
platform may cause many true variants to be 
overlooked when cross-platform replicates 
are compared.

Reducing errors and replicates
As sequencing further permeates science 
and medicine, replicates will be invaluable 
to researchers and clinicians alike. Current 
efforts in sequencing error mitigation mainly 
rely on filtering strategies, including filtering 
for sequencing read depth, base call quality, 
short-read alignment quality, variant call 
quality, known variants, strand bias, allelic 
imbalance and sequence context10,21,25,27,34–36. 
All of these post-processing techniques help 
to reduce uncertainty in the final genotyping 
variant call (FIG. 1b).

Box 1 | Experimental sources of errors in sequencing

The importance and the relative effect of each error source on downstream applications depend 
on many factors, such as sample acquisition, reagents, tissue type, protocol, instrumentation, 
experimental conditions, analytical application and the ultimate goal of the study. Sequencing 
errors can stem from any time point throughout the experimental workflow, including initial 
sequence preparation, library preparation and sequencing. Some examples are listed below.

Sample preparation
•	User errors; for example, mislabelling

•	Degradation of DNA and/or RNA from preservation methods; for example, tissue autolysis, 
nucleic acid degradation and crosslinking during the preparation of formalin-fixed, 
paraffin-embedded (FFPE) tissues8,87,88

•	Alien sequence contamination; for example, those of mycoplasma and xenograft hosts89

•	Low DNA input9

Library preparation
•	User errors; for example, carry-over of DNA from one sample to the next and contamination  

from previous reactions90

•	PCR amplification errors9

•	Primer biases; for example, binding bias, methylation bias, biases that result from mispriming, 
nonspecific binding and the formation of primer dimers, hairpins and interfering pairs, and  
biases that are introduced by having a melting temperature that is too high or too low91,92

•	3ʹ‑end capture bias that is introduced during poly(A) enrichment in high-throughput RNA 
sequencing93

•	Private mutations; for example, those introduced by repeat regions and mispriming over  
private variation94

•	Machine failure; for example, incorrect PCR cycling temperatures15

•	Chimeric reads2,17

•	Barcode and/or adaptor errors; for example, adaptor contamination, lack of barcode diversity 
and incompatible barcodes16,95

Sequencing and imaging
•	User errors; for example, cluster crosstalk caused by overloading the flow cell96

•	Dephasing; for example, incomplete extension and addition of multiple nucleotides instead of a 
single nucleotide3

•	‘Dead’ fluorophores, damaged nucleotides and overlapping signals20

•	Sequence context; for example, GC richness, homologous and low-complexity regions, and 
homopolymers19,97,98

•	Machine failure; for example, failure of laser, hard drive, software and fluidics

•	Strand biases97
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Bioinformatic filtering techniques can 
be optimized using technical, biological and 
cross-platform replicates to improve their 
specificity and sensitivity32. For example, 
optimal quality score thresholds for each 
filter may be selected using replicate genome 
sequences. An individual human genotype 
has ~3 million variants36; however, variant 
callers can predict >20 million variants of 
differing quality per genome, which mainly 
result from mismapped short reads37, mosai-
cism and sequencing errors. Consequently, 
thresholds are chosen to limit the variants 
called in the individual’s genotype. Ideally, 
these thresholds are chosen with experimen-
tal confirmation38, but this can be costly. We 
assert that replicates can abet bioinformatic 
filtering and reduce the number of variants 
that require validation, thereby improving  
the quality of the sequence that is being 
mapped or assembled.

To illustrate this, we use biological  
replicates to carry out a simple analysis for 
assessing the reliability of single-nucleotide 
substitution calls (FIG. 2). For genotyping, the 
number of replicates should be chosen to 
attain adequate statistical power at the loci 
in question. However, in this case, we seek a 
set of probable false positives that stem from 
experimental errors, which requires only 
three replicates for a voting majority. For the 
replicates, we obtained sequence data from 
three distinct tissue samples of participant 
PGP1 in the Personal Genome Project39 (see 
Supplementary information S1 (box)).

Loci in which one or more replicates con-
tained a SNV were identified. Briefly, SNV 
loci are known as concordant when all repli-
cate variant calls agree40 and discordant when 
other replicates differ from the target repli-
cate. Thus, concordant loci represent true-
positive variants, and discordant loci signal 
false-positive variants. See Supplementary 
information S1 (box) for precise definitions 
of concordance and discordance, for details 
on choosing a target replicate and for  
implementation details.

Once discordant variants (potential false 
positives) and concordant variants (potential 
true positives) have been separated from each 
other, metrics of variant call confidence (for 
example, quality scores and read depth) are 
used to rank-order the target variants. Using 
the ranked sets, one can plot the accumula-
tion rate for both concordant and discordant 
variants with decreasing score stringency in 
a representation that is similar to a receiver–
operator characteristic (ROC) curve (see 
Supplementary information S2 (box) for 
methods and source code). Thus, thresholds 
for variant call quality scores can be chosen to 

maximize the proportion of all concordant  
variants that are seen either at or below a 
particular threshold relative to the proportion 
of all discordant variants. This analysis (FIG. 3) 
suggests that, although adequate sequencing 
read depth across the genome is essential28,29, 
it is not the best measure of reliability of a spe-
cific variant call at a particular locus. Indeed, 
sequencing read depth at a particular locus 
is an inferior filter when it is compared with 
error-model-based quality scores. We found 
that this holds true for quality scores that are 
computed by software packages which pro-
cess genomic35 and expression27 data. Even 
after removing regions that have abnormally 
high read depths (that is, regions that are 
enriched for misalignment errors in low-
complexity sequences37), the quality scores 
that are considered here still outperform read 
depth as a filter for sequencing errors.

In addition to comparing disparate error-
model-based quality scores, this approach can 

be used to evaluate the effect of varying qual-
ity score thresholds for a specific data set of 
interest. For example, sensitivity of a particu-
lar threshold can be evaluated by considering 
the false-negative rate, as estimated by the 
number of concordant variants that are lost as 
a result of applying the threshold.

Post-processing errors in NGS
Even with the use of replicates, some types 
of errors cannot be addressed without  
further technological advances and 
improvements in bioinformatic processing. 
For example, indels41, paralogues and other 
repetitive sequences42 often confound NGS 
short-read alignment43,44, which results in 
mismapped reads and, ultimately, variant 
call errors. Other sources of errors can arise 
from limitations in software and configu-
ration during secondary analysis, includ-
ing read clipping and filtering45, allelic bias 
measurement46 and variant call confidence 

Figure 2 | Platform-independent method for choosing quality score thresholds.  Single-
nucleotide variants (SNVs) are called for all replicates and then classified either as concordant if 
the variant calls agree among the replicates or as discordant if they differ. Variants are then ranked 
in order by the desired metric (for example, quality scores) and plotted in a graph that is similar  
to a receiver–operator characteristic curve; that is, the cumulative distributions of concordant  
and discordant variants are plotted from left to right as the stringency of the confidence score of 
interest decreases. Ref, reference sequence.
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calculation47. These cannot be addressed 
with replicates alone.

Erroneous variant calls also arise from 
incomplete reference data. This error type 
arises when reads are mapped to unfinished 
reference genomes and transcriptomes, and 
to drafts that contain misassembled regions48. 
These errors will steadily decrease in fre-
quency as reference genome assemblies and 
annotations such as GRChr37 (REF. 49) and 
RefSeq50 are completed and corrected with 
each new build release.

Finally, advances in haplotype phasing 
hold promise not only for reducing ampli-
fication errors6 but also for reducing the 
causal variation search space. For example, 
only through accurate haplotype phasing can 
we begin to discern the difference between 
two dysfunctional gene copies (that is, a dou-
ble mutant) and a single normal copy51. This 

difference can have important implications 
with regard to phenotype and to clinical 
applications of sequencing. Unfortunately, 
current mainstream NGS methods do not 
consistently discern between these two cases. 
Thus, ad hoc experimental6,52,53 and compu-
tational procedures54,55 are required to  
distinguish the haplotypes of diploid cells.

Concluding remarks
In the past decades, scientific and technologi-
cal advances have provided molecular-level 
resolution for the inner workings of life. 
NGS technologies are providing insights into 
genetic disease associations56–62, differences in 
human gut microbiota63, amino acid essenti-
ality in proteins64, experimental evolution65–67, 
biotherapeutic development68–72, protein–
DNA interactions73, epigenetics74, cancer 
genomics38,75 and clinical diagnosis76. Efforts 

to find biologically and clinically relevant 
variants are steadily improving, as algorithmic 
advances more intelligently filter the large 
amount of sequence data. For example, prior-
ity can be assigned to variants by considering 
either heritability or variant association in 
populations60,77, correcting for gene-specific 
mutation rates10, accounting for evolutionary 
conservation78–80 and providing network con-
text through systems biology approaches81–83. 
Beyond strictly biological applications, 
sequencing is also becoming an analytical tool 
for more esoteric questions, such as record-
ing fluctuations in ion concentrations84 and 
even potentially detecting dark matter in 
astrophysics85. However, all these sequencing 
studies rely on the accuracy of the underlying 
sequencing experiments.

Here, we have identified sources of 
sequencing errors and presented a method 
for addressing the stochastic effects. 
Additional approaches to address other 
sources of errors, such as experimental bias 
and software limitations, are also essential. 
These approaches include identifying erro-
neous single-nucleotide polymorphisms that 
show Hardy–Weinberg disequilibrium11, 
masking poor-quality bases86, phasing and 
imputing variants in regions that are dif-
ficult to sequence or in uncalled regions54, 
as well as improved methods for calling of 
structural variants, copy number variations 
and indels. Together with these computa-
tional approaches, the wise use of replicate 
genome sequencing will have an increasingly 
important role in reducing the noise in data 
processing and in downstream analyses.

Kimberly Robasky was previously at the Program in 
Bioinformatics, Boston University, Massachusetts 
02115, USA; the Department of Genetics, Harvard 

Medical School, and the Wyss Institute for Biologically 
Inspired Engineering at Harvard University, Boston, 

Massachusetts 02115, USA. Present address: 
Expression Analysis, a Quintiles Company, Durham, 

North Carolina 27713, USA.

Nathan E. Lewis was previously at the Department of 
Genetics, Harvard Medical School, and the Wyss 
Institute for Biologically Inspired Engineering at 

Harvard University, Boston, Massachusetts 02115, 
USA; and the Department of Biology, Brigham Young 

University, Provo, Utah 84602, USA. Present address: 
Division of Pediatric Pharmacology and Drug 

Discovery, University of California, San Diego School of 
Medicine, La Jolla, California 92093, USA.

George M. Church is at the Department of Genetics, 
Harvard Medical School, and the Wyss Institute for 

Biologically Inspired Engineering at Harvard 
University, Boston, Massachusetts 02115, USA.

K.R. and N.E.L. contributed equally to this work.

Correspondence to N.E.L.  
e‑mail: natelewis3@gmail.com

doi:10.1038/nrg3655 
Published online 10 December 2013

Figure 3 | An example application of plotting replicate scores to assess filter efficiency.  The 
efficiency of different variant call filter metrics can be evaluated by plotting replicate-based single-
nucleotide variant (SNV) concordance and discordance in a manner that is similar to a receiver–
operator characteristic curve. As one goes from left to right on the plot, the quality score that has 
been ranked in order is reduced in stringency, and the fractions of retained concordant and discord-
ant variants increase. Thus, this curve quantifies the proportion of reliable data (that is, concordant 
SNVs) that are retained and the proportion of low-confidence data (that is, discordant SNVs) that are 
discarded as a consequence of variable quality score cutoffs. For the genomes used in our analysis, 
this graph indicates that filtering variants solely on the basis of locus read depth is inferior to filtering 
by genomic35 and expression27 quality scores35. Furthermore, filtering by expression data quality 
scores is also inferior to filtering by genomic quality scores (which are obtained from Complete 
Genomics); nevertheless, both of these filters are better than filtering loci by read depth. The read 
depth curve that excludes outliers (that is, read depth that is higher than the 99.5th-percentile) out-
performs the all-inclusive read depth curve. As an example of how to understand the value of a 
threshold, note that choosing a threshold score of 120 as a measure for the highest quality for the 
genomic data will include the same fraction of total predicted errors as choosing a threshold quality 
score of 23,800 for the expression data. Meanwhile, when a similar threshold is chosen for read depth, 
the efficiency at retaining true variants is worse than that at random. See Supplementary information 
S2 (box) for a full description of the method.
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