
Cancer genome analysis has spurred the identifica-
tion of genetically altered genes that drive tumorigen-
esis. Identifying these cancer genes is important for 
understanding pathways and gene functions in normal 
and cancer tissues, and such identification is a neces-
sary prerequisite in the development of biomarkers 
and targeted therapies for cancer. Approaches to find 
cancer genes have evolved from studies of candidate 
genes to genome-screening protocols. Driven by large 
consortia (such as the International Cancer Genome 
Consortium (ICGC) and The Cancer Genome Atlas 
(TCGA)) and the rapid development and imple-
mentation of next-generation sequencing platforms, 
genetic studies have recently entered a new phase of  
uncovering large catalogues of gene mutations and 
structural variations.

Alterations in the epigenetic regulation of genome 
activity are as important to tumorigenesis as alterations 
in the genomic coding information itself. Epigenetic 
modifications of DNA and histones, and/or alterations 
in chromatin-remodelling processes, determine active 
and repressive chromatin states of genes and of chro-
mosomal regions and thus operate as switches either to 
turn gene expression ‘on’ or ‘off ’ (such as by promoter 
methylation), or to modulate gene expression levels 
(such as by enhancer methylation). Each of these epi-
genetic pathways involves enzymes that transfer the 
modification (‘writers’), enzymes that modify or revert 

a modification (‘editors’) and enzymes that mediate 
the interactions of proteins or protein complexes with 
the modification (‘readers’) (FIG. 1). DNA methylation 
changes have been extensively investigated in cancer as 
a reflection of aberrant epigenetic regulation of genes in 
human disease, followed by studies of histone modifica-
tions1,2. Numerous reports showed that cancer genomes 
exhibit frequent alterations to the epigenome. These 
include epigenetic silencing of various tumour suppres-
sor genes with functions in almost all cancer-relevant 
signalling pathways, such as apoptosis, cell proliferation, 
cell migration and DNA repair3.

Currently, the integration of epigenetic profiles with 
genetic profiles of cancer genomes is underdeveloped. 
The reasons for the lack of such comprehensive studies 
were mainly due to the limited ability of methodolo-
gies to specifically and quantitatively assess epigenetic 
alterations, the complexity of epigenetic alterations in 
cancer genomes and a lack of mechanistic knowledge 
of how epigenetic deregulation of the genome occurs. 
However, this picture is becoming clearer owing to the 
recent identification of cancer-specific genetic muta-
tions in various proteins that are involved in establish-
ing epigenetic patterns, thus providing mechanistic 
insights into the interplay between genetic and epi-
genetic alterations in cancer. Furthermore, recently 
developed high-throughput and quantitative assays 
have been used to measure and integrate genome-wide 
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Abstract | Malignancies are characterized by extensive global reprogramming of 
epigenetic patterns, including gains or losses in DNA methylation and changes  
to histone marks. Furthermore, high-resolution genome-sequencing efforts have 
discovered a wealth of mutations in genes encoding epigenetic regulators that have 
roles as ‘writers’, ‘readers’ or ‘editors’ of DNA methylation and/or chromatin states. In 
this Review, we discuss how these mutations have the potential to deregulate hundreds 
of targeted genes genome wide. Elucidating these networks of epigenetic factors will 
provide mechanistic understanding of the interplay between genetic and epigenetic 
alterations, and will inform novel therapeutic strategies.
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Epigenetic modifications
Modifications of DNA and 
histones that do not change 
the genetic code but have an 
effect on gene expression or 
chromatin condensation; these 
modification patterns are 
stably transmitted to daughter 
cells after cell division.

Epigenome
The entire epigenetic 
modifications of DNA and 
histones in the genome of  
a tissue.

DNA methylation profiles, histone modification pro-
files and the resultant gene expression patterns, which 
have eased the analysis of multiple data sets across  
various cancer and normal tissue samples.

In this Review, we discuss the interconnection 
between genetic and epigenetic alterations in tumour 
genomes, highlight current high-profile analyses, and 
call for an integrative genomic and epigenomic approach 

Figure 1 | Enzymes involved in DNA and histone modification pathways. Enzymes that establish a mark on either 
DNA or the histone tail are termed ‘writers’. These modifications can be removed or modified by ‘editing’ enzymes. The 
third class of enzymes includes the ‘readers’ of an epigenetic mark, which mediate the interaction of the mark with a 
protein complex to exert effects on transcription. The top panel depicts DNA modifications, such as DNA methylation and 
demethylation, and the enzymes involved; the bottom panel shows histone modifications and the enzymes involved. 
Examples for each class of enzyme are given. 5hmC, 5-hydroxymethylcytosine; 5mC, 5-methylcytosine; BAZ1B, tyrosine 
protein kinase BAZ1B; BRCT, BRCT domain-containing protein; CHD, chromodomain helicase DNA-binding protein; 
DIDO1, death-inducer obliterator 1; DNMT, DNA methyltransferase; HAT, histone acetyltransferase; HDAC, histone 
deacetylase; HMT, histone methyltransferase; KDM, lysine-specific histone demethylase; MECP2, methyl-CpG-binding 
protein 2; PPP, serine/threonine protein phosphatase; RPS6K, ribosomal protein S6 kinase; SAM, S-adenosyl-l-methionine, 
TAF3, transcription initiation factor TFIID subunit 3; TET, TET 5mC hydroxylase. 
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CpG island methylator 
phenotypes
Enrichments for the 
methylation of GC-rich 
promoter sequences that  
were initially defined in a  
colon cancer study.

to understand the mechanisms of epigenetic deregula-
tion. We use recent discoveries of mutations in H3F3A 
(which encodes the histone H3 variant H3.3) in paedi-
atric glioblastoma, as well as isocitrate dehydrogenase 1 
(IDH1) mutations in gliomas, as examples of a successful 
integration of genetic and epigenetic data in the under-
standing of tumorigenesis (BOX 1). We aim to illuminate 
the principles and pathways that may affect epigenetic 
patterning rather than to provide complete lists of 
mutated epigenetic factors, which have recently been 
reported elsewhere in the literature4–6. We also describe 
the latest progress in targeting epigenetic enzymes as an 
anticancer therapeutic strategy.

Global epigenetic alterations in cancer
Overview of DNA methylation alterations in cancer. 
Epigenetic alterations in cancer have been investigated 
for more than 25 years, both on the single-gene level7,8 
and on the genome-wide level9. Most studies have ana-
lysed 5-methylcytosine (5mC), although it is now known 
that cytosines can be further modified to 5-hydroxy-
methylcytosine (5hmC), 5-formylcytosine (5fC) and 
5-carboxylcytosine (5caC)10,11. Hypermethylation of a 
CpG island promoter is associated with gene silencing, 
which has been demonstrated for numerous tumour 
suppressor genes1,2. However, cancer genomes are also 
characterized by the global loss of 5mC (hypomethyla-
tion), which mainly affects repetitive and gene-body 
sequences, including gene regulatory sequences12. In 
addition, hypomethylation loosens the chromatin 
structure, leading to chromosomal instability such as  
translocations or deletions13,14.

Global profiling: detailed insights into DNA methylation 
and histone modifications. Novel profiling technologies 
for epigenetic alterations have revolutionized the pre-
cision and comprehensiveness of mapping epigenetic 
alterations (FIG. 2). Profiling studies found 2,000–3,000 
aberrantly methylated gene promoters per cancer 
genome, most of which are hypermethylated and asso-
ciated with gene silencing15,16. By contrast, the number of 
protein-coding genes that are affected by genetic muta-
tions per cancer genome is one to three orders of magni-
tude smaller. Thus, although some genes are inactivated 
by genetic mutations in cancer, most inactivated genes 
are silenced by epigenetic alterations or a combination 
of epigenetic and genetic events. A challenge in the can-
cer epigenetics field is to identify the epigenetic events 
that drive tumorigenesis (that is, driver events) and to 
distinguish them from passenger events, which are not 
causally linked to tumorigenesis.

An early study reported recurrent patterns of aber-
rant CpG island methylation across tumours of similar 
tissue types. Such nonrandom patterns indicate the pres-
ence of specific molecular mechanisms that lead to these 
patterns16. Additionally, differences in DNA methylome 
patterns are found among tumour types16, which sug-
gests that tumour-specific methylome patterns are partly 
representative of the cell of origin of a given tumour 
type. The different methylome profiles can be used 
to further stratify tumours into subtypes of different 

histopathological groups or clinical outcomes17–19. This 
has been exemplified by cancer-specific methylation pat-
terns in selected gene promoter sequences, which are 
known as CpG island methylator phenotypes18,20.

Altered DNA methylation patterns in cancer 
genomes correlate with altered patterns of histone mod-
ifications. DNA and histone modifications collectively 
determine the overall chromatin state, which maintains 
whether genes are transcriptionally active or inactive. 
An interesting observation was that many hypermeth-
ylated promoters in cancer are in lineage-commitment 
genes that display bivalent chromatin states in normal 
multipotent cells21,22. Bivalent chromatin is characterized 
by both active (such as H3K4me3) and repressive (such 
as H3K27me3) chromatin marks and seems to ‘poise’ 
genes for either transcriptional activation or inactiva-
tion upon differentiation23. Hypermethylation of the 
promoter DNA of these genes in cancer cells may sug-
gest that stem cells and progenitor cells, in particular, are 
prone to cancer initiation22,24,25.

Global profiling techniques have provided further 
insights into the overall DNA hypomethylation state 
in cancer cells. Partially methylated domains (PMDs) 
are large stretches of partially methylated DNA (that is, 
<70% of cytosines are methylated). Despite this hypo-
methylation, PMDs of up to 10 Mb in size are associ-
ated with repressive histone marks (including H3K9me3 
and H3K27me3) and gene silencing. PMDs were first 
detected in somatic tissues by applying whole-genome 
bisulphite sequencing (WGBS)26; interestingly, these 
loci are nearly completely methylated in pluripotent 
stem cells27. WGBS analyses in breast, colon, lung and 
thyroid cancer cells identified PMDs with tissue-specific 
patterns12. The functional consequences of PMDs are 
unknown but it is possible that gene regulatory elements 
such as enhancers are affected. PMDs are associated with  
regions of low gene content or silenced genes, and  
with repressive histone marks, sometimes in an allele-
specific manner12,27,28. PMDs were recently shown to 
occur at the same locations as nuclear lamina-associated 
DNA domains29. These domains are transcriptionally 
silent regions that are attached to the nuclear membrane, 
and thus PMDs may reflect cell type-specific features of 
three-dimensional genome architecture. The frequency 
and occurrence of PMDs in cancer need to be deter-
mined but PMDs could have an even more important 
effect on global gene expression than gene silencing by 
promoter methylation.

Mutations in regulators of the epigenome
Novel sequencing technologies are now enabling the 
resequencing of thousands of cancer genomes. Large 
consortia (for example, the ICGC, TCGA or the 
International Human Epigenome Consortium (IHEC)) 
have used this opportunity to sequence cancer genomes 
and methylomes, to unravel coding-gene mutations 
using whole-exome sequencing30, to discover large 
genetic rearrangements using paired-end mapping31–33, 
to identify both gene mutations and DNA copy-number  
alterations using whole-genome sequencing, and to 
characterize alterations in either regulatory sequences34 
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Box 1 | The epigenetic effects of H3.3‑K27M, H3.3‑G34R/V and IDH1‑R132H mutations in glioblastoma

H3.3‑K27M mutation H3.3‑G34R mutation IDH1‑R132H mutation

Targeted enzyme EZH2 in PRC2 SETD2? KDMs and TETs

5mC Hypomethylation Hypomethylation Hypermethylation

Histone modifications H3K27me3 decreased and 
redistributed

H3K36me3 redistributed H3K9me3 increased, H3K27me3 
increased, H3K4me3 increased 
and H3K36me3 increased

Developmental gene‑
expression pattern

Neurogenic and mid-to-late  
cortical development

Neurogenic and early-to-late 
neocortical development

Neurogenic and neural 
progenitor cell bias

Gene expression owing  
to 5mC changes

PRC2-target genes upregulated, 
FOXG1 downregulated and  
OLIG2 upregulated

MYCN upregulated,  
FOXG1 upregulated and  
OLIG2 downregulated

Genes involved in  
differentiation downregulated

ALT Yes Yes Not known

Prevalence in childhood 
glioblastoma

19% 15% <10%

Prevalence in adult 
glioblastoma

0% 0% 77%

Glioblastoma is a common and heterogeneous brain tumour with defined 
characteristics. Although the initiating event remains unresolved, a 
combination of mutated genes seems to drive extensive angiogenesis (such 
as vascular endothelial growth factor (VEGF)), trigger proliferation (such as 
genes encoding receptor tyrosine kinases (RTKs)), disrupt metabolism (such 
as isocitrate dehydrogenase 1 (IDH1)), and promote migration (such as 
neurotrophic tyrosine kinase receptor type 1 (TRKA)) and invasion (such  
as hepatocyte growth factor (HGF) or its receptor (MET))134. It has recently 
been discovered that mutations in histone variants have an important role 
in global defects in chromatin architecture, leading to aberrant gene 
expression42. Mutations in H3F3A, one of three genes encoding histone 
variant H3.3, have been recognized as being especially important  
in chromatin remodelling18 (see the figure). The H3.3 mutations result in 
Lys27Met (K27M) and Gly34Arg or Gly34Val (G34R/V) substitutions, which 
promote global histone modification changes, most notably H3K27me3 and 
H3K36me3, respectively (see the table). Both K27M and G34R/V tumours 
have a general DNA hypomethylation phenotype, which indicates a dynamic 
relationship between histone modifications and DNA methylation 
(5‑methylcytosine (5mC)). The aberrant gene expression in these tumours is 
presumably the result of a multitude of epigenetic changes that drive 
tumorigenesis together. K27M inhibits the enhancer of zeste homologue 2 
(EZH2) subunit of Polycomb repressive complex 2 (PRC2), leading to 
extensive global loss of H3K27me3. Previously repressed genes become 
upregulated followed by a substantial redistribution of H3K27me3, creating 
a bivalent state with previously placed H3K4me3 (REFS 94,95). The bivalent 
state could potentially mimic the poised condition that is reminiscent of 
embryonic stem cells and provide the origin of tumorigenesis. G34R/V 
mainly leads to the redistribution of H3K36me3, possibly by redirecting its 
enzyme SET domain-containing 2 (SETD2; also known as KMT3A), leading to 
enhanced expression of genes such as MYCN135. Interestingly, a potential 
overlap of the effects of G34R/V and K27M may occur, as it has been shown 

that H3K36me3 binds the SUZ12 subunit of PRC2, reducing its activity and 
leading to loss of H3K27me3 (REFS 136,137). Furthermore, both mutations 
exhibit the tumour‑specific alternative lengthening of telomeres (ALT) 
phenotype that may contribute to gliomagenesis. However, other lines of 
evidence suggest separate disease aetiologies for H3.3-K27M- versus 
H3.3-G34R/V-mutant tumours. These include the finding of H3.3-K27M and 
H3.3-G34R/V mutations in distinct positions of the brain, and different DNA 
methylation and overall gene expression patterns. For example, the gene 
expression pattern in H3.3-K27M tumours is biased towards mid-to-late 
cortical development and includes a characteristic upregulation of 
oligodendrocyte lineage transcription factor 2 (OLIG2), whereas in G34R/V 
tumours the gene expression pattern is biased towards early neocortical 
development and includes a characteristic upregulation of forkhead box G1 
(FOXG1)18,135. Important roles for these epigenetic processes in human 
development and maturation are suggested by the enrichment for H3.3 
mutations in younger patients with glioblastoma.

Another known gain‑of‑function mutation with a strong influence on 
chromatin remodelling in glioblastoma is the IDH1 R132H mutation (and 
equivalent mutations in IDH2), producing the oncometabolite 
2-hydroxyglutarate (2-HG)138. A series of studies have shown that 2-HG 
inhibits the activity of deaminases — for example, the TET 5mC hydroxylases 
(TETs) and the lysine‑specific histone demethylases (KDMs)19,60. The inhibition 
of these enzymes collectively affects chromatin remodelling, leading to  
DNA hypermethylation, increased histone lysine methylation and aberrant 
gene expression. However, the IDH1 R132 mutations are associated with a 
better prognosis than non‑mutated IDH1 in glioblastoma, presumably 
through increased repressive modifications that slow cellular proliferation 
and invasion.

Together, these gain‑of‑function mutations are the archetypes of proteins 
or compounds that interfere with other master regulatory chromatin 
proteins, such as PRC2 or the TET proteins.
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Figure 2 | Evolution of global epigenetic data in cancer. a | Examples of 
techniques that were developed for the profiling of DNA modifications, 
histone modifications and chromatin remodelling are shown. The timeline 
indicates the year in which a technique was used for the first time in a 
cancer study. First-generation profiling technologies allowed the 
screening of thousands of CpG island sequences using rare-cutting,  
methylation-sensitive restriction sites for either restriction landmark 
genomic scanning (RLGS)139 or differential methylation hybridization 
(DMH)140. Second-generation profiling technologies allowed the 
interrogation of substantial subsets of CpG sites in the genome, which 
include GoldenGate141, methyl-CpG immunoprecipitation (MCIP)142, 
methylated DNA immunoprecipitation (MeDIP)143, reduced representation 
bisulfite sequencing (RRBS)144 and Infinium arrays145. Third-generation 
profiling technologies using whole-genome bisulphite sequencing 
(WGBS)26 or tagmentation-based WGBS (TWGBS)146 allow the quantitative 
analysis of almost every CpG in the genome. Glucosylation, periodate 
oxidation and biotinylation (GLIB), and TET-assisted bisulphite sequencing 
(TAB–seq) were developed to map 5-hydroxymethylcytosine (indicated by 
the asterisks)147,148. Chromatin immunoprecipitation (ChIP)-based assays 
are followed by either microarrays (for ChIP–chip) or sequencing (for ChIP–
seq). Nano-ChIP–seq is a second-generation ChIP–seq method that 
requires as few as 10,000 cells. Formaldehyde-assisted isolation of 
regulatory elements (FAIRE)–seq, Sono–seq149, micrococcal nuclease 

(MNase)–seq and DNase I-hypersensitive site mapping (DNase–seq) are 
used to identify regulatory sequences in the genome. Chromosome 
conformation capture (3C), circular chromosome conformation capture 
(4C), chromosome conformation capture carbon copy (5C) and combined 
chromosome conformation capture ChIP cloning (6C) are used to map 
global chromatin interactions. Chromatin interaction analysis by 
paired-end tag sequencing (ChIA–PET) is used to map long-range 
chromatin interactions150.  Genome-wide mapping of histone 
modifications (GMAT) was developed to map protein targets and  
histone modification patterns150–156. b  | DNA methylation profiling 
technologies ordered based on the ‘processivity’ of a technique (x axis), 
as measured by an estimate of the total number of samples analysed, and 
the number of CpGs that can be analysed per sample (y axis). Processivity 
was measured based on published data, but it also reflects the cost per 
assay, the time for post-processing of data and the ease of handling.  
c | The distribution of CpGs covered in various sequence compartments 
(promoter, 3′ untranslated region (UTR), gene body and intergenic region) 
by selected assays as calculated from published data sets is shown26,142,145. 
Although the older assays such as GoldenGate or Infinium 27K had a strong 
bias towards the analysis of promoter CpGs, this is shifting towards a more 
comprehensive analysis of the genome including intragenic and intergenic 
regions. AIMS, amplification of intermethylated sites; NGS, 
next-generation sequencing.
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or epigenetic patterns35. Besides known cancer genes, 
these studies identified defects in epigenetic enzymes 
and pathways, including components that are respon-
sible for chromatin packaging, DNA methylation or 
demethylation, histone modification and chromatin 
remodelling (FIG. 3a). Surprising findings and novel 
insights into tumour genomes have been provided by 
uncovering recurrent gene mutations that were previ-
ously unknown, such as IDH1 or DNA methyltrans-
ferase 3A (DNMT3A) in acute myeloid leukaemia 
(AML)36,37; mitochondrial succinate dehydrogenase  
genes in paragangliomas38 or gastrointestinal stromal 
tumours39; AT-rich interactive domain 1A (ARID1A) 
in non-small-cell lung cancer40; CREB-binding pro-
tein (CREBBP), E1A-binding protein p300 (EP300) 
and mixed-lineage leukaemia (MLL) in small-cell 
lung cancer41; H3F3A in paediatric glioblastoma42; 
and MLL2 and SWI/SNF-related, matrix-associated, 
actin-dependent regulator of chromatin (SMARCA4) 
in medulloblastoma43–45. There are current efforts and 
criteria that will help to decide whether these muta-
tions are drivers in tumorigenesis46,47. The discovery of 
novel mutations has uncovered previously unknown 
molecular pathways of mutated genes leading to altered 
epigenetic patterns in cancer genomes, some of which 
are highlighted below.

DNA methylation pathways. The addition of a methyl 
group to cytosine is mediated by DNMT1, DNMT3A 
and DNMT3B using the methyl donor S-adenosyl-l-
methionine (SAM). DNMT1 preferentially methylates 
the unmethylated strand of hemimethylated DNA dur-
ing DNA replication, whereas DNMT3A and DNMT3B 
catalyse de novo methylation of both strands. The 
importance of these enzymes in normal developmen-
tal processes has been demonstrated in mouse models 
lacking DNMT function48,49. Passive loss of DNA meth-
ylation occurs as a result of the absence of maintenance  
methylation by DNMT1. Pathways for active DNA 
demethylation have been described, including the oxida-
tion of 5mC by TET 5mC hydroxylases; these enzymes 
catalyse the sequential conversion of 5mC to 5hmC50,51, 
to 5fC and then to 5caC10,11, which is then excised by thy-
midine-DNA glycosylase10. Alternative mechanisms to 
oxidative demethylation of cytosines include processes 
based on deamination and subsequent base-excision 
repair (BER)52 or nucleotide-excision repair53. These 
demethylation pathways are replication-independent 
processes and allow rapid conversions from methylated 
to unmethylated states, as seen in early embryonic devel-
opment when waves of genome-wide losses and gains of 
5mC occur54.

Genetic defects were identified in enzymes that are 
involved in the establishment and removal of DNA 
methylation patterns (FIG. 3b). So far, mutations in 
human DNMTs have been predominantly reported 
in leukaemias. Whole-exome sequencing identified 
DNMT3A mutations in the M5 subgroup of AML and, 
less frequently, in the AML-M4 subgroup (that is, acute 
myelomonocytic leukaemia)55, in addition to DNMT3A 
mutations in some solid tumours, according to the 

Catalogue of Somatic Mutations in Cancer (COSMIC) 
database. Reported mutations in DNMT3A either 
showed reduced catalytic activity — thus leading to the 
global activation of more than 800 genes, including HOX 
family genes and IDH1 — or they had an effect on the 
binding affinity of DNMT3A to histone H3. Tumours 
harbouring mutated DNMT3A have an intermediate-risk 
cytogenetic profile that is independently associated with 
poor outcome37,56. A pilot study showed global differences 
in DNA methylation patterns between tumours with 
or without the DNMT3A R882H mutation55; however,  
this could not be confirmed in a larger cohort56.

As the loss of 5mC is a hallmark of almost all can-
cers, pathways of active DNA demethylation, such as 
those involving the TET enzymes (TET1, TET2 and 
TET3), have key roles in the establishment of DNA 
methylation patterns and, possibly, of other epigenetic 
marks. Mutations in the TET gene family have been 
discovered in myeloproliferative neoplasms and in 
myelodysplastic syndromes (MDSs). TET1 is a known 
fusion partner of MLL in rare t(10;11) translocations 
found in AML57. Missense, frameshift and nonsense 
mutations in TET2 occur in 7.6% of AML samples58 
but are rarely found in solid tumours, according to the 
COSMIC database. Mutation rates in myeloprolifera-
tive neoplasms are higher (>20%), but the number of 
tested samples is smaller and thus these rates may be 
biased59. Interestingly, mutations in TET2 and those 
in IDH1 or IDH2 are mutually exclusive19. Dominant-
negative IDH1 or IDH2 mutations are frequently found 
in both AML and glioblastoma; these mutations pro-
duce the metabolite 2-hydroxyglutarate (2-HG), which 
is structurally similar to the α-ketoglutarate substrate 
for both TET enzymes and Jumonji-C domain-contain-
ing lysine-specific histone demethylase (KDM) proteins 
(BOX 1). Consequently, 2-HG acts as an inhibitor of TET 
or KDM protein activity19,60. This apparent ability of 
IDH1 and IDH2 mutations to partially phenocopy the 
loss of TET function may explain the mutual exclusiv-
ity of these mutations in cancer. Non-invasive magnetic 
resonance imaging detection of 2-HG may become a 
valuable diagnostic tool for detecting and monitor-
ing disease progression and treatments61,62. Cases with 
mutations in these enzymes are characterized by dis-
tinct DNA methylation patterns, as seen in both AML19 
and glioblastoma18,35,63. Experiments using immor-
talized primary human astrocytes and isogenic cells 
expressing either wild-type IDH1 or the IDH1 R132H 
mutant have provided strong evidence that this single 
mutation leads to the accumulation of changes to global 
DNA methylation, as well as to H3K9me2, H3K27me3 
and H3K36me3 patterns, over time63. Epigenetic alter-
ations primarily occur in genes targeted by Polycomb 
repressive complex 2 (PRC2) (BOX 1); however, the 
detailed molecular mechanisms that lead to epigenetic  
repatterning remain unknown.

Histone-modifying enzymes. Histone tails are marked by 
multiple modifications, which are recognized by reader 
proteins that subsequently translate the information 
into distinct transcriptional profiles through alterations 
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Figure 3 | Mutations in regulators of the epigenome 
identified in cancer. a | Using several data browsers, 
∼709 epigenetic enzymes that were identified can  
be grouped into three major categories: histone 
modification, chromatin remodelling and  
DNA modification. Each group is divided into 
subgroups based on their functions. The total number 
of genes in each subgroup is given in brackets. Each pie 
chart lists the number of genes that were found to be 
mutated in at least two tumour samples (indicated in 
blue, green or orange) and the number of unmutated 
genes (black) for each group of epigenetic enzymes.  
b | Examples of mutated genes in the groups of DNA 
modification, histone modification and chromatin 
remodelling enzymes, based on data as of January 2013 
in the International Cancer Genome Consortium (ICGC) 
data set; see the ICGC Data Portal for the latest report. 
The number of analysed tumour tissues is given. Several 
tumour entities have high frequencies of mutations in 
epigenetic enzymes. Note that these data are not 
adjusted for chromosomal instability or mutator 
phenotypes, hence the frequencies reflect a 
combination of probable driver mutations in epigenetic 
regulators, in addition to the background mutation rate 
for the tumour type. 5caC, 5-carboxylcytosine; 5fC, 
5-formylcytosine; 5hmC, 5-hydroxymethylcytosine; 
5mC, 5-methylcytosine.
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of chromatin states. Both histone modifications and 
their readers determine whether a chromosomal region 
is accessible for the binding of transcription factors or 
other regulatory molecules; that is, whether a gene locus 
is active or silent. The modification patterns are estab-
lished by histone acetyltransferases (HATs) or histone 
methyltransferases (HMTs) and can be removed by 
histone deacetylases (HDACs) or histone demethylases 
(HDMs). These enzymes are usually specific to particu-
lar amino acid motifs and target both core histones (such 
as H3) and histone variants (such as H3.3)64. The modi-
fication and exchange of core histone proteins allow the 
generation of rapid, replication-independent changes to 
the chromatin state.

Disturbances to histone modification patterns have 
a global effect on transcriptional deregulation in mul-
tiple regions of the genome (FIG. 3b). One of the first 
mutations was described in MLL, which encodes an 
H3K4me3 HMT65. More than 50 different transloca-
tions or partial tandem duplications involving MLL on 
chromosome 11q23 have been described and are found 
to be associated with poor prognosis in acute lym-
phoblastic leukaemia or normal-karyotype AML66–68. 
Although the partial tandem duplication in MLL leads 
to increased H3K4me3 levels at its target genes, MLL–
AF4 or MLL–AF10 fusion oncoproteins are associated 
with increased H3K79 methylation through their inter-
action with DOT1-like histone H3 methyltransferase 
(DOT1L)69,70. Another example of altered HMT activ-
ity is represented by mutations in enhancer of zeste 
homologue 2 (EZH2), a core component of PRC2 that 
is required for H3K27 trimethylation. EZH2 muta-
tions are mainly found in myeloid leukaemias and 
lymphomas but are rarely found in solid tumours. In 
myeloid leukaemias, both inactivating mutations and 
deletions of EZH2 are associated with poor progno-
sis71. Additionally, multiple reports have demonstrated 
the overexpression of EZH2 and its effects on the tri-
methylation of H3K27 in several human malignancies, 
including prostate cancer, breast cancer and medul-
loblastoma72–75. In contrast to these loss-of-function 
mutations, mutations in the SET domain of EZH2 in 
diffuse large B cell lymphoma lead to increased cata-
lytic activity of the protein76. The consequences of the 
mutations in EZH2 are most probably determined by 
the target genes in the respective tissues.

Histone methylation patterns can also be altered by 
HDMs, two types of which have been reported: lysine-
specific histone demethylase 1A (KDM1A; also known 
as LSD1), which demethylates monomethylated or 
dimethylated lysines through an amine oxidation reac-
tion using FAD as a cofactor; and Jumonji domain pro-
teins, which are able to demethylate monomethylated, 
dimethylated or trimethylated lysines. In this group, 
genetic mutations have been reported in the genes 
encoding KDM5A (also known as JARID1A); KDM5C 
(also known as JARID1C), which affects H3K4 methyla-
tion; and KDM6A (also known as UTX), which affects 
H3K27 methylation40,44,45,77.

HDACs are important proteins that influence 
the activity state of chromatin. Mutations have been 

described in tumour genomes for all members of this 
protein family (except HDAC9) but these seem to be 
rare events with no dramatic epigenetic alterations 
described. However, changes in the expression level 
of HDACs might have a more important effect than 
mutations of HDAC-encoding genes, at least when 
considering the phenotypic effects of HDAC inhibi-
tion that result from treatment with clinically tested 
HDAC inhibitors (see below). However, when HDAC 
mutations occur in cancer, they might have other 
important functional consequences. For example, it 
was recently reported that specific HDAC1 mutations 
are associated with high HDAC5 expression and with 
a sensitization of cells to the drug panobinostat, which 
inhibits multiple HDACs78. Thus, the potential of using 
HDAC mutations as predictive biomarkers should be 
further investigated.

Chromatin remodelling factors. Chromatin remodelling 
complexes are multisubunit components that use ATP 
hydrolysis to disrupt the contact between nucleosomes 
and the DNA, to shuffle nucleosomes around and to 
replace or remove them from chromatin79. There are 
four classes of chromatin remodellers: SWI/SNF, chro-
modomain helicase DNA-binding proteins (CHDs), 
ISWI and INO80, all of which carry the typical two-
part ATPase domains DExx and HELICc80. The other 
domains of these proteins are essential for selective 
targeting to the genome and consequently give them 
functional locus-specific properties. Recent genome-
wide sequencing projects in tumours have identified 
recurrent mutations in chromatin remodelling com-
ponents81. Immuno-histolocalization and chromatin 
immunoprecipitation (ChIP) experiments have shown 
that most of these components act on large portions of 
the genome; hence, we suspect that mutations in these 
components cause serious chromatin aberrations and 
strongly influence tumour progression. Most chroma-
tin remodellers are classified as tumour suppressors but 
their mutations might also result in a change of function 
rather than in a loss of function82. One of the most com-
monly mutated chromatin remodellers is the ARID1A 
subunit of the SWI/SNF chromatin remodelling com-
plex, which has been implicated in the control of pro-
liferation and differentiation in epithelial cells. ARID1A 
has been found to be frequently mutated in multiple 
human malignancies40,81,83–88. Biallelic inactivation of 
SMARCB1 is the only recurrent mutation in rhabdoid 
tumours, which are otherwise characterized by low 
frequencies of gene mutations89. Conceptually, this 
highlights the importance of proper chromatin remod-
elling in the coordination of gene expression, particu-
larly to regulate retinoblastoma (RB), p53, Polycomb, 
Sonic hedgehog, MYC and nuclear hormone receptor 
signalling, as well as stem cell programmes81, higher-
order chromatin structure and proper packaging of the 
genome before mitosis90. We anticipate that the recent 
identification and subsequent characterization of the 
function of chromatin remodellers will further illumi-
nate the interactive network of the respective proteins 
and its importance in tumorigenesis.
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Structural chromosomal proteins and associated com-
ponents. A recent study found recurrent mutations in 
H3F3A, HIST1H3B (which encodes the canonical his-
tone H3.1) or their associated protein complexes in pae-
diatric glioblastoma, thus highlighting the importance 
of nucleosomal integrity in coordinated gene expres-
sion in brain tumours42,91,92 (BOX 1). Histone H3.3 is fre-
quently affected by a Lys27Met (H3.3-K27M) mutation  
that inhibits PRC2 by dominant-negative interac-
tions, leading to a substantial global loss of H3K27me3 
(REFS 93–95). An almost equally frequent mutation pro-
duces a Gly34Arg or Gly34Val (H3.3-G34R/V) substi-
tution42. Furthermore, tumours with H3.3-K27M and 
H3.3-G34R/V mutations lack the previously charac-
terized genetic alterations, such as mutated IDH1 or 
IDH2, have minimal epithelial growth factor recep-
tor (EGFR) and platelet-derived growth factor recep-
tor, α-polypeptide (PDGFRA) amplification, and have 
minimal chromosome 7 gain and chromosome 10 loss, 
although such tumours frequently harbour mutated 
TP53 (which encodes p53)18. Mutations of H3.3 in the 
mutated TP53 background are consequently sufficient 
to reprogramme cells into a state of high proliferation, 
which obstructs neuronal network formation in the 
developing brains of younger patients. Although these 
studies have provided valuable mechanistic insights 
into the effects of H3F3A mutations in glioblastoma, it 
is currently unknown whether they are driver mutations. 
Various lines of evidence support a gain-of-function 
effect of these mutations: their heterozygous occur-
rence in tumours, the specific amino acids that are 
recurrently affected (H3.3-K27M, H3.3-G34R/V and 
H3.1-K27M) and the observed PRC2-inhibitory effects 
of H3.3-K27M when expressed in the presence of 
wild-type H3.3 (BOX 1). Interestingly, cancer-associated 
mutations have not been found in the other H3.3 family 
member H3F3B, although it encodes an identical protein 
to H3F3A. Although the global epigenetic changes that 
result from H3.3 mutations remain to be fully character-
ized, it is easy to conceive that extensive loss and gain 
of H3K27me3 have dramatic effects on gene expres-
sion and genome integrity, leading to aberrant gene  
expression and epigenomic abnormalities.

Deep-sequencing projects have also identified 
mutations in the H3.3 chaperone complex members 
α-thalassaemia/mental retardation syndrome X-linked 
(ATRX) and death domain-associated protein (DAXX) in  
multiple human tumours42,96,97. ATRX and DAXX are 
part of a complex that is responsible for the deposi-
tion of histone H3.3 to subtelomeric regions and to 
other chromosomal locations98,99. The interaction of 
ATRX with H3.3 is mediated by the ATRX–DNMT3–
DNMT3L (ADD) domain100–102. The loss of ATRX in 
pancreatic neuroendocrine tumours and glioblastoma 
is associated with alternative lengthening of telomeres, 
possibly through the lack of normal H3.3 deposition in  
subtelomeric regions42,103.

From epigenetic patterns to molecular mechanisms
Despite the observation of multiple genetic mutations 
in epigenetic regulators, the underlying mechanisms 

leading to global changes in epigenetic patterns are 
mostly unknown. The nonrandom patterns of DNA 
methylation seen in tumour tissues could be the result 
of a targeted mechanism that leads to the epigenetic 
silencing of certain groups of genes while leaving other 
sequences unmethylated. Different targeted mecha-
nisms could operate in different tissues, thus gener-
ating tissue type-specific aberrant DNA methylation 
patterns. Alternatively, control of defined epigenetic 
patterns may break down and genes would be globally 
affected through epigenetic activation or silencing as a 
result of stochastic-, ageing- or differentiation-related 
phenomena. In the case of global epigenetic altera-
tions, cells with an epigenetic pattern that favours 
cell growth would then obtain a selective advantage 
within a tumour cell population, potentially acquir-
ing a less differentiated and more motile phenotype 
that facilitates dissemination and metastasis. Thus, 
such selection for particular tumour-associated phe-
notypes could also result in the observed nonrandom 
epigenetic profiles.

Possible mechanisms. The idea of a targeted mecha-
nism stems from work in leukaemias, in which there 
is some evidence to suggest that oncogenic fusion 
proteins or activated oncogenes may have the ability  
to recruit DNMT activity (DNMT1 and DNMT3A) to 
previously unmethylated loci. This was shown in vitro 
for the oncogenic fusion protein PML–RAR (pro-
myelocytic leukaemia–retinoic acid receptor), which 
is generated by a t(15;17) translocation in acute pro-
myelocytic leukaemia104 and interacts with DNMT3A 
through PML. Additionally, the translocation t(8;21) in 
AML results in the expression of the oncogenic fusion 
protein runt-related transcription factor 1 (RUNX)–
MTG8, which recruits DNMT1 and leads to aberrant 
silencing of RUNX1-target genes105.

Alternatively, mutations in genes encoding epige-
netic factors that are involved in the establishment or 
maintenance of global epigenetic patterns could lead 
to epigenetic alterations either genome wide or within 
distinct subchromosomal regions. A good example is 
the H3F3A G34 mutation in paediatric glioblastomas, 
which is associated with hypomethylation at telomere 
ends18. This multiplicity of a single genetic event affect-
ing multiple loci could have important consequences 
for tumorigenesis, as discussed below.

An integrated view into cancer genomes is needed. In 
the past, tumour genome studies mainly focused on 
either genetic or epigenetic events, and only a few 
groups attempted an integrated analysis of genetic and 
epigenetic alterations based on available data106–109. This 
is now shifting to a more comprehensive analysis of 
single cancer genomes that includes information on 
mutations, copy-number aberrations, structural vari-
ations, epigenetic patterns and expression changes in 
both mRNAs and non-coding RNAs. These data are 
now available for an integrated genome, epigenome 
and transcriptome analysis (FIG. 4). The importance 
of a cancer gene should not be solely evaluated by the 
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genetic mutation range, but such assessment should 
also consider epigenetic gene silencing that is measured 
by promoter methylation, genetic and epigenetic altera-
tions in regulatory sequences such as enhancers and 
suppressors, or deregulation of microRNAs (miRNAs) 
that may target the candidate gene. In this context, 
pathway information is important because the deregu-
lation of a signalling pathway may occur at different 
levels within that pathway. Integrative analyses still face 
major challenges, as novel algorithms and strategies are 
required. Bioinformatic tools are available to support 
visualization and pathway analysis of preselected can-
cer genes; however, a tool that encompasses all analy-
ses is still needed. TABLE 1 provides a list of selected 
bioinformatic tools which allows the integration of 
at least two types of data sets. New data of genome 
structure recently published by the Encyclopedia of 
DNA Elements (ENCODE) consortium will provide a 
reference that is required for many of these studies110. 

As primary tumour tissue resources are often limited, 
studies on gene mutations will have to be carried out in 
model systems. This is particularly important for stud-
ies of mutations in epigenetic enzymes in which profil-
ing techniques are required to evaluate the functional 
effects of these mutations. Using cell culture assays will 
allow the dissection of the resultant mechanisms, such 
as effects on protein interactions, the identification of 
affected target genes and the modulation of expres-
sion levels. A combination of biochemical assays and 
recently developed profiling technologies to measure 
effects on epigenetic patterns could be used to decipher 
the molecular mechanisms.

The gain of information from such analyses will 
be considerable and will allow genes to be designated 
as drivers on the basis of not only recurrent genetic 
mutations but also epigenetic information. Knudson’s 
two-hit hypothesis in tumour initiation postulates the 
inactivation of both alleles of a tumour suppressor by 
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Figure 4 | Workflow of integrative analysis for molecular profiling of cancer. The workflow of an integrative 
analysis includes three main steps outlined on the left; a more detailed description of these steps is given on the right. 
a | The proposed workflow starts with the identification of all enzymes (writers, editors and readers) involved in the 
establishment of epigenetic patterns (for example, DNA methylation and demethylation, histone modifications  
and chromatin remodelling). For each patient, the genetic alterations (mutations, deletions, translocations and 
amplifications), epigenetic alterations (hypermethylation or hypomethylation in regulatory sequences), as well as the 
deregulation of associated non-coding RNAs, are tabulated. These alterations are subsequently cross-referenced with 
the expression levels of these genes. b | Ultimately, this strategy will identify the most frequent alterations in genes 
encoding epigenetic regulators and determine whether these genes are preferential targets for genetic or epigenetic 
alterations. Shown on the right are general examples of genes (rather than specific genes encoding epigenetic 
regulators) that are known to be disrupted by genetic, epigenetic or combined mechanisms. In validation experiments 
(either resequencing of mutations or quantitative DNA methylation analysis (using MassARRAY or pyrosequencing)), 
the nature and frequency of the alterations can be confirmed. c | Subsequent cluster analyses of epigenetic data would 
help to identify tumour subgroups that are associated with defects in particular genes. Additionally, molecular and 
functional analyses in model systems will help to characterize the mechanisms by which the mutation of an epigenetic 
regulator results in the observed alterations to the epigenome and the contribution of these alterations to 
tumorigenesis. Such studies will facilitate the development of novel biomarkers or investigations of novel therapeutic 
targets. ATM, ataxia telangiectasia mutated; CDKN2A, cyclin-dependent kinase inhibitor 2A; DAPK1, death- 
associated protein kinase 1; GSTP1, glutathione S-transferase pi 1; MLH1, mutL homologue 1; SFRP1, secreted 
frizzled-related protein 1; TCF21, transcription factor 21; TP53 encodes p53.
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two independent genetic events; hence, in the past, 
tumour suppressor genes were identified on the basis 
of the genetic loss of function of both alleles. By con-
trast, mutations in single epigenetic modifiers can 
affect epigenetic states and, in a chain-like reaction of 
secondary events, might trigger `pigenetic deregula-
tion biallelically in one or more target genes that pro-
mote tumour growth. Furthermore, alleles of tumour 
suppressor genes can be inactivated by a combination 
of genetic and epigenetic events, including alterations 
in DNA methylation, histone modifications and non-
coding RNAs. An early example was the identifica-
tion of transcription factor 21 (TCF21) as a tumour 
suppressor gene located on chromosome 6q23–q24 
— a frequently deleted region in many tumour types. 
Despite the lack of mutations in the remaining allele, 
TCF21 was identified as a candidate tumour suppres-
sor in head and neck cancer and lung cancer owing 
to frequent epigenetic silencing108. Similarly, the fre-
quency of phosphatase and tensin homologue (PTEN) 
silencing in prostate cancer was underestimated owing 
to an assessment of genetic events only. A recent report 
demonstrates that the PTEN transcript is targeted by 
multiple miRNAs that are normally silenced by epi-
genetic mechanisms but become activated owing 
to hypomethylation of their promoter regions111. 
Furthermore, PTEN expression can be modulated 
by the expression of competitive endogenous RNAs 
that sequester these miRNAs owing to the presence of  
common miRNA binding sites112.

Novel epigenetic therapies
In the past few years, the deciphering of individual 
components that make up the epigenetic machinery 
and their alterations in cancer has occurred simulta-
neously with the development and testing of a mul-
titude of small-molecule inhibitors directed against 
either distinct compartments or single regulators. It 
is expected that these novel drug targets will allow 
the development of more rational epigenetic cancer 
therapies with increased efficiency, increased specific-
ity and fewer risks associated with the reactivation of 
bystanders (such as developmental genes). The respec-
tive substances are at various stages of development. In 
general, one can distinguish between drugs that target 
regulators of epigenetic patterns (for example, DNMTs 
and HDACs) and drugs that target specific muta-
tions in these genes (for example, IDH1 R132H). The 
drugs targeting specific mutations may be less toxic, 
but they will only work in certain patient subgroups. 
Currently, preclinical data clearly indicate that these 
drugs induce distinct epigenetic changes that result in 
gene expression changes; however, the specific in vivo 
mechanisms that mediate therapeutic effectiveness 
in patients remain mostly enigmatic, as information 
on molecular mechanisms and target genes is miss-
ing. TABLE 2 lists some emerging novel drugs that are 
already in clinical trials.

Four epigenetically active substances have received 
approval by the US Food and Drug Administration 
(FDA) after demonstrating considerable clinical  
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cBioPortal for Cancer Genomics TCGA Webservice – • – • • • – – • •

PARADIGM, Broad GDAC Firehose TCGA Webservice • • – • • • • – – •

WashU Epigenome Browser ENCODE Webservice • • • • • • • – – •

UCSC Cancer Genomics Browser UCSC Webservice • • • • • • • • – –

The Cancer Genome Workbench TCGA Webservice – • • • • • • – – –

EpiExplorer ENCODE and 
ROADMAP

Webservice • • • • • • • – – –

EpiGRAPH ENCODE Webservice • • • • • • • – – –

Catalogue of Somatic Mutations  
in Cancer (COSMIC)

TCGA and 
ICGC

Webservice – • – – • • – – – –

PCmtI, MAGIA, miRvar, CoMeTa etc* GEO and TCGA Webservice • • – • – – – • – •

ICGC ICGC Webservice – • – • • • – – – –

Genomatix User defined Tool – • – • • • • – – •

Caleydo TCGA Tool – • • • • • • • – •

Integrative Genomics Viewer (IGV) ENCODE Tool – • • • • • • – – –

iCluster and iClusterPlus User defined Tool – • – • • – – – –

CNV, copy-number variation; ENCODE, Encyclopedia of DNA Elements; ICGC, the International Cancer Genome Consortium; GDAC, Genomic Data Analysis 
Center; GEO, Gene Expression Omnibus; miRNA, microRNA; SNV, single-nucleotide variation; TCGA, The Cancer Genome Atlas; UCSC, University of California 
Santa Cruz.*Website with links for integrated analysis of microRNA and mRNA expression.
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benefit. These are DNMT inhibitors (azacyti-
dine (Vidaza; Celgene) and 5-aza-2′ deoxycytidine 
(Dacogen; Eisai)) and HDAC inhibitors (suberoy-
lanilide hydroxamic acid (SAHA; also known as vori-
nostat and Zolinza; Merck) and romidepsin (Istodax; 
Celgene)). Both classes of drugs aim to reverse gene 
silencing that is mediated by DNMTs or HDACs. In 
preclinical models, a wealth of studies demonstrated 
transcriptional derepression accompanied by epige-
netic remodelling and antitumour activity both in vitro 
and in vivo. Anticancer effects might be generally 
explained by the induction of cell cycle arrest, differ-
entiation or apoptosis, or by the sensitization of tumour 
cells for chemotherapy or radiotherapy.

The inhibitors of DNA methylation that are in cur-
rent clinical application are cytosine analogues that 
become incorporated into DNA during replication 
and subsequently trap DNMT by covalent binding. 
So far, both of the FDA-approved DNMT inhibitors 
have demonstrated significant response rates and 
survival benefits when used as low-dose therapies for 
patients with MDS113,114 or AML115. DNA methylation 
changes were detected after one round of treatment; 
however, clinical responses required multiple cycles 
of therapy116.

An interesting novel approach is the development 
of the inhibitor for mutant IDH1, AGI-5198, which 
selectively blocks the activity of mutant IDH1 and 
leads to growth suppression of cultured cells in soft 
agar and of mouse xenografts117. AGI-5198 treatment 
had no effect on DNA methylation patterns; however, 

Table 2 | Selected novel drugs in preclinical or clinical development targeting components of the epigenetic machinery

Substance Target structure Clinical trial Disease

SGI110 DNMT Phase I/II MDS, AML, ovarian and hepatocellular cancer

AGI-5198 Mutant IDH Preclinical Glioma

Pivanex (also known  
as AN-9)

HDAC Phase I/II CLL, small lymphocytic lymphoma, malignant melanoma 
and NSCLC

ACY-1215 HDAC6 Phase I/II Multiple myeloma

Resveratrol (SRT501) SIRT1 and SIRT5 activation Phase I/II Colorectal cancer, melanoma, multiple myeloma

SIRT3 inhibition Phases I–III Metabolic and cardiovascular diseases

Curcumin HAT Phase I/II Breast cancer, colorectal cancer and multiple myeloma

Tranylcypromine KDM1A Phase II AML

EPZ-5676 DOT1L Phase I Advanced haematological malignancies and acute 
leukaemia with 11q23 or MLL abnormalities

EPZ-6438 EZH2 Phase I NHL and breast cancer

GSK126 EZH2 Preclinical Haematological malignancies, including NHL

GSK525762 BET bromodomain Phase I NMC

RVX-208 BET bromodomain Phase II Atherosclerosis

Preclinical Haematological malignancies

JQ1 BET bromodomain Preclinical NMC, AML and multiple myeloma

PFI-1 BET bromodomain Preclinical B cell acute lymphoblastic leukaemia

AML, acute myeloid leukaemia; BET, bromodomain and extraterminal family of proteins; CLL, chronic lymphocytic leukaemia; DNMT, DNA methyltransferase; 
DOT1L, DOT1-like histone H3 methyltransferase; EZH2, enhancer of zeste homologue 2; HAT, histone acetyltransferase; HDAC, histone deacetylase; IDH, isocitrate 
dehydrogenase; KDM1A, lysine-specific histone demethylase 1A; MDS, myelodysplastic syndrome; MLL, mixed-lineage leukaemia; NHL, Non-Hodgkin’s lymphoma; 
NMC, NUT midline carcinoma; NSCLC, non-small-cell lung cancer; SIRT, sirtuin (a family of histone deactylases).

dimethylation and trimethylation marks of H3K9  
were more sensitive to such treatment, leading to 
changes in the expression of genes involved in astro-
glial differentiation.

HDAC inhibitors work by preventing histone dea-
cetylation, thereby facilitating an open chromatin 
structure and resulting in gene activation. Vorinostat 
was the first HDAC inhibitor that was approved by 
the FDA (in 2006) for the treatment of cutaneous 
T cell lymphoma (CTCL), a fairly rare malignancy. 
Since then, many more HDAC inhibitors have been 
developed and have entered clinical trials for the treat-
ment of various of human malignancies. The second 
FDA-licensed HDAC inhibitor, again for CTCL, was 
romidepsin. Although no other HDAC inhibitors are 
currently approved by the FDA, many are being evalu-
ated in preclinical studies using animal tumour mod-
els and in clinical Phase I–III trials as monotherapies  
or in combination with other drugs including non-
HDAC inhibitors. Panobinostat is one of the most 
potent HDAC inhibitors in vitro, and preliminary 
studies have demonstrated its efficacy in CTCL118. 
More recently, promising Phase I results were dem-
onstrated in refractory Hodgkin’s lymphoma and in 
prostate cancer119,120.

The addition of acetyl groups by HATs has been 
difficult to target and such clinical studies are missing. 
HATs are composed of two major classes — nuclear 
(type A) and non-nuclear (type B) HATs — with 
family members of distinct structural diversity that 
mainly target histone but also non-histone proteins121. 
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Altered expression levels of HATs have been found 
in various types of cancer122, and association with 
viral oncoproteins or involvement in chromosomal 
translocations and mutations are two major ways to 
modulate HAT activity. Various molecules have been 
discovered to inhibit HATs, such as natural prod-
ucts (for example, anacardic acid, curcumin, gar-
cinol, epigallocatechin-3-gallate and gambogic acid),  
synthetic derivatives of natural products, acetyl-
CoA-derived bisubstrate inhibitors and synthetic  
small molecules123,124.

For the inhibition of HMTs, EPZ-5676 is an inhibi-
tor of DOT1L that acts as a competitive analogue of 
the SAM substrate. A first-in-human Phase I study has 
recently started to investigate the safety and tolerability 
of EPZ-5676 in patients with acute leukaemia bearing 
oncogenic MLL fusion proteins that bind to DOT1L. 
Furthermore, the EZH2 inhibitor GSK126 (also a 
SAM analogue) was recently shown, both in vitro and 
in vivo, to decrease global H3K27me3 levels and to 
reactivate silenced PRC2-target genes in lymphomas 
with EZH2-activating mutations125.

Similarly, KDMs are frequently overexpressed in 
cancer and have become promising pharmacological 
targets. Two families of KDMs use different demeth-
ylating mechanisms: one by amine oxidation (for 
example, KDM1A) and the other by hydroxylation 
(for example, the Jumonji-C domain KDMs). Small-
molecule inhibitors of both KDM1A and Jumonji-C 
domain KDMs are under preclinical development, 
and recent studies of KDM1A inhibition in AML (for 
example, by tranylcypromine) show that the inhibi-
tion does not lead to a global increase in H3K4me2, 
but increases local H3K4me2 levels and induces tran-
scriptional reactivation at genes that are involved in 
differentiation pathways126.

Although pharmacological approaches target-
ing enzymatic activity that catalyses the transfer 
of chemical groups are prevalent, a novel concept 
focuses on epigenetically active drugs that disturb 
protein–protein interactions in chromatin readers. 
The bromodomain and extraterminal (BET) family 
of bromodomain-containing proteins127, comprising 
BRD2, BRD3, BRD4 and BRDt, can recognize acety-
lated lysine residues and is substantially involved in 
transcriptional elongation and cell cycle progression. 
Inhibition of the recruitment of BET family proteins 
to chromatin by specific small-molecule inhibitors 
(such as JQ1 and PFI-1) has recently been shown to 
be preclinically effective both in vitro and in vivo (in 
models of solid tumours128 and haematological malig-
nancies). Inhibition of BET suppresses MYC transcrip-
tion, which is essential for the progression of AML, 
MLL and Burkitt’s lymphoma129–131. In three murine 
models of multiple myeloma, JQ1 downregulated MYC 
transcription and caused genome-wide downregula-
tion of MYC-dependent target genes. Similarly, in 
three in vivo models of neuroblastoma, a childhood 
cancer with frequent amplification of MYCN, inter-
ference with BET proteins inhibited MYCN transcrip-
tion, suppressed the MYCN-regulated transcriptional 

programme, induced apoptosis and conferred a sig-
nificant survival advantage. Thus, the inhibition of 
BET recruitment provides a novel therapeutic concept 
that is in transition from preclinical in vitro and in vivo 
models to clinical trials.

The complexity and distribution of the establish-
ment and maintenance of epigenetic patterns on a 
global scale suggest that the administration of drugs 
needs to be provided in a timely manner and as close to 
the target tissue as possible to maximize the intended 
effect and to prevent off-target effects. A careful assess-
ment of normal epigenetic patterns in various tissues 
becomes a necessity to predict potential outcomes that 
a defined drug may have on a particular tissue.

Conclusions and future perspectives
Cancer genetics is now entering an exciting time in 
which novel concepts of how genetic and epigenetic 
alterations cooperate in tumorigenesis can be studied. 
This is exemplified by the recent discovery of the TET-
mediated oxidation of 5mC to 5hmC, 5fC and 5caC, 
a step in the active demethylation pathway. Recent 
profiling data for 5fC in mouse embryonic stem cells 
locate this modification in enhancers and other regu-
latory elements, highlighting its role in gene regula-
tion132. Thus, it is intriguing to speculate about the 
crucial functions of cytosine modifications beyond 
5mC in reprogramming cancer genomes.

The large number of mutations found in epigenetic 
pathways points to a mechanistic link that leads from 
a gene defect to alterations in epigenetic patterns. 
The integrated view into cancer genomes will have a 
substantial impact on our understanding of how epi-
genetic patterns are generated and maintained. The 
disruption of any factor involved in chromatin biol-
ogy is likely to have important effects on global gene 
expression patterns, and we are currently still far away 
from deciphering the many downstream effects that 
will occur when any of these factors is mutated or 
therapeutically targeted in cancer. Pleiotropic effects 
are of major concern when using epigenetically active 
drugs, as general targeting of epigenetic mechanisms 
such as DNMT inhibition may lead to broad global 
effects on gene expression. Perturbation of the net-
works of interacting chromatin-modifying enzymes 
will help to elucidate these complex relationships and 
facilitate the development of specific intervention 
strategies with limited off-target effects on specific 
sets of genes. It might even become feasible to target 
epigenetic events at specific loci rather than to restore 
global epigenetic patterns. Such targeting approaches 
might include the use of fused gene constructs, an 
example of which could be the fusion of transcription 
activator-like effector nuclease (TALEN) motifs133 to 
chromatin-modifying enzymes to exert site-specific 
modifications. Thus, in the long run, the concept of 
targeted molecular therapies, which is a successful 
approach for targeting altered signalling pathways in 
disease, might also become applicable to the highly 
complex processes involved in the epigenetic regulation  
of gene expression.
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