
A major challenge of contemporary biology is to 
understand how naturally occurring variation in DNA 
sequences causes phenotypic variation in quantitative 
traits. Efforts to chart the genotype–phenotype map for 
quantitative traits using both linkage and association 
study designs have mainly focused on estimating addi­
tive effects of single loci (that is, the main effect of the 
polymorphic locus averaged over all other genotypes). 
However, quantitative variation in phenotypes must 
result, in part, from multifactorial genetic perturbation 
of highly dynamic, interconnected and nonlinear devel­
opmental, neural, transcriptional, metabolic and bio­
chemical networks1. Thus, epistasis (that is, nonlinear 
interactions between segregating loci) is a biologically 
plausible feature of the genetic architecture of quantita­
tive traits. Deriving genetic interaction networks from 
epistatic interactions between loci will improve our 
understanding of biological systems that give rise to 
variation in quantitative traits2, as well as of mechanisms 
that underlie genetic homeostasis3,4 and speciation5,6. 
Knowledge of interacting loci will improve predictions 
of individual disease risk in humans, response to natural 
selection in the wild, and artificial selection and inbreed­
ing depression (and its converse, heterosis) in agricultural 
animal and crop species.

Mapping epistatic interactions is challenging exp­
erimentally, statistically and computationally. The experi­
mental challenge is the large sample sizes that are required 

both to detect significant interactions and to sample the 
landscape of possible genetic interactions. The statistical 
challenge is the severe penalty that is incurred for testing 
multiple hypotheses. The computational challenge is the 
large number of tests that must be evaluated. Genetically 
tractable model organisms afford the opportunity to use 
experimental designs that incorporate both new muta­
tions and segregating variants to detect epistasis, and 
many recent studies in model organisms have highlighted 
the importance of epistasis in the genetic architecture of 
quantitative traits. In this Review, I describe the quanti­
tative genetics of epistasis and the reasons that the role 
of epistasis has been controversial. I then review experi­
mental methods to detect epistasis in yeast, Drosophila 
melanogaster, mice, Arabidopsis thaliana and maize, and 
summarize empirical results showing that epistasis is 
pervasive. I discuss the implications of pervasive epista­
sis in model organisms for evolutionary models of the 
maintenance of quantitative genetic variation and specia­
tion, and for both animal and plant breeding. Given that 
epistasis is pervasive in model organisms, it is also likely 
to be a hallmark of the genetic architecture of human 
complex traits. I discuss how underlying epistasis can 
give rise to the small additive effects, missing heritability 
and the lack of replication that are typically observed in 
human genome-wide association studies. I do not dis­
cuss statistical and computational methods for assessing 
epistasis, as these have been reviewed previously7,8.
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Main effect
The effect of a variable 
averaged over all other 
variables; also known as 
marginal effect.

Heterosis
The phenomenon whereby the 
mean value of a quantitative 
trait in the F1 progeny of two 
inbred lines exceeds, in the 
direction of increased fitness, 
either the mean value of  
the parental lines (that is, 
mid-parent heterosis) or the 
mean value of the best parent 
(that is, high parent heterosis); 
also known as hybrid vigour.

Epistasis and quantitative traits: 
using model organisms to study 
gene–gene interactions
Trudy F. C. Mackay

Abstract | The role of epistasis in the genetic architecture of quantitative traits is 
controversial, despite the biological plausibility that nonlinear molecular interactions 
underpin the genotype–phenotype map. This controversy arises because most genetic 
variation for quantitative traits is additive. However, additive variance is consistent with 
pervasive epistasis. In this Review, I discuss experimental designs to detect the contribution 
of epistasis to quantitative trait phenotypes in model organisms. These studies indicate 
that epistasis is common, and that additivity can be an emergent property of underlying 
genetic interaction networks. Epistasis causes hidden quantitative genetic variation in 
natural populations and could be responsible for the small additive effects, missing 
heritability and the lack of replication that are typically observed for human complex traits.

R E V I E W S

22 | JANUARY 2014 | VOLUME 15	  www.nature.com/reviews/genetics

© 2014 Macmillan Publishers Limited. All rights reserved

mailto:trudy_mackay@ncsu.edu


Missing heritability
The phenomenon whereby the 
fraction of total phenotypic 
variance that is explained by  
all individually significant loci  
in human genome-wide 
association analyses for 
common diseases and 
quantitative traits is typically 
much less than the heritability 
that is estimated from 
relationships among relatives.

Di‑hybrid cross
A cross between parental lines 
that are fixed for alternative 
alleles at two unlinked loci (for 
example, A1A1B2B2 x A2A2B1B1, 
where A and B denote the loci 
and the subscripts represent 
the alleles) in which nine 
genotypes segregate in the  
F2 generation.

Dominance effects
Differences between  
the genotypic values of the 
heterozygous genotypes and 
the average genotypic values 
of the homozygous genotypes 
at loci that affect quantitative 
traits.

Quantitative genetics of epistasis
In classical Mendelian genetics, epistasis refers to the 
masking of genotypic effects at one locus by genotypes 
of another, as reflected by a departure from expected  
Mendelian segregation ratios in a di‑hybrid cross2. In 
quantitative genetics, epistasis refers to any statistical 
interaction between genotypes at two or more loci9–11. 
Epistasis can refer to a modification of the additive 
effects and/or dominance effects of the interacting loci 
(FIG. 1a,b); for two diploid loci, it can be easily visualized 
by plotting the phenotypes of the nine different geno­
types (FIG. 1c). Epistatic interactions for quantitative traits 
fall into two categories: a change of the magnitude of 
effects, in which the phenotype of one locus is either 
enhanced or suppressed by genotypes at the other locus; 
or a change of the direction of effects. In the absence of 
epistasis the estimates of additive and dominance effects 
at each locus are the same, regardless of the genotype of 
the other locus. With epistasis, the effect of one locus 
depends on the genotype at its interacting locus.

The role of epistasis in the genetic architecture of 
quantitative traits has been controversial since early 
formulations of quantitative genetic theory12,13, and this 
controversy continues today7,14. Different perspectives 
regarding the importance of epistasis arise, depending 

on whether one focuses on epistatic interactions at the 
level of individual genotypes or at the level of epistatic 
genetic variance in populations2,9. Epistatic interactions 
at the level of individual genotypic values (known as 
genetical, biological or physiological epistasis15) are inde­
pendent of allele frequencies at the interacting loci. In 
populations, the total genetic variance is partitioned into 
orthogonal components that are attributable to additive, 
dominance and epistatic variance, which depend on 
allele frequencies10,11.

Epistasis (FIG. 2a) can have peculiar effects in popula­
tions because the effects of one locus (that is, the tar­
get locus) vary depending on the allele frequency of an 
interacting locus (FIG. 2b). If the allele frequency of the 
interacting locus varies among populations, the effect 
of the target locus can be significant in one popula­
tion but not in another, or can even be of the opposite 
sign. Epistatically interacting loci generate substantial 
additive genetic variance over much of the allele fre­
quency spectrum because of non-zero main (that is, 
additive) effects (FIG. 2c). Epistatic variance is maximal 
when both interacting loci are at intermediate fre­
quencies and is of much smaller magnitude than the 
additive genetic variance unless the genotypic values 
at one locus are in opposite directions in the different 
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Figure 1 | Two-locus genotypic effects.  Genotypic values for loci X and Y, each with two alleles (X
1
, X

2
, Y

1
 and Y

2
), are 

shown (part a). The additive effect (a) of each locus is one half the difference in mean phenotype between the two 
homozygous genotypes. The dominance effect (d) is the difference between the mean phenotype of the heterozygous 
genotype and the average phenotype of the two homozygous genotypes10. d = 0 indicates additive gene action; d ≠ 0 
denotes departures from additivity due to dominance. Genotypic values for two-locus genotypes are shown (part b). 
The first two terms for each genotype denote the additive combination of single-locus additive and dominance effects. 
With epistasis, additional terms that reflect additive-by-additive (aa

XY
), additive-by-dominance (ad

XY
 and da

XY
) and 

dominance-by-dominance (dd
XY

) epistasis contribute to the genotypic value. Graphical representations of genotypic 
effects at two biallelic loci are shown (part c). The left panel shows additive gene action at locus X, partial dominance at 
locus Y and no epistasis between X and Y. The middle panel shows epistasis in which the additive effect of locus Y is 
much greater in the X

1
X

1
 genetic background than that in the X

2
X

2
 genetic background. The right panel shows epistasis 

in which the additive effects of locus X are opposite in the Y
1
Y

1
 and Y

2
Y

2
 genetic backgrounds.
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Standing variation
Allelic variation that is  
currently segregating within a 
population, as opposed to 
alleles that appear as the result 
of new mutation events.

Introgression
The substitution of a genomic 
region from one strain with  
that of another, typically by 
repeated backcrosses.

Diallel cross
A class of experimental designs 
that are used to estimate both 
additive and non-additive 
variance components for a 
quantitative trait from all 
possible crosses among a 
population of inbred lines.  
Full diallel designs include 
reciprocal crosses, whereas 
half-diallel designs do not; 
parental lines can be included 
or excluded in either case.

Synthetic enhancement
A type of epistatic interaction 
whereby the phenotype of a 
double mutant is more severe 
than that predicted from the 
additive effects of the single 
mutants.

genetic backgrounds (FIG. 2d). Additive genetic vari­
ance therefore accounts, in theory, for most of the total 
genetic variance for a wide range of allele frequencies  
in the presence of epistasis10,11,14 (FIG. 2e).

Most observed genetic variance for quantitative 
traits is additive. Such genetic variance could be either 
‘real’, if most loci that affect the trait have additive gene 
action, or ‘apparent’ from non-zero main effects that 
arise from epistatic gene action at many loci. This dis­
tinction is not important if the goal is to estimate herit­
ability, to predict phenotype from genetic relationships 
among individuals16,17 or to predict short-term response 
to artificial and natural selection because all of these 
depend on additive variance that is specific to the 
population of interest10,11. However, knowing whether 
additive variance is an emergent property of underlying 
epistasis becomes crucial if the goals are to function­
ally dissect the genotype–phenotype map, to determine 
genetic interaction networks, to understand the effects 
of mutational perturbations on standing variation, to pre­
dict long-term responses to artificial and natural selec­
tion, and to understand the consequences of genetic 
drift and inbreeding on quantitative traits.

To distinguish between real and apparent additive 
genetic variance, we need to obtain evidence for the 
existence of epistasis, as well as to estimate genotypic 
values at causal, potentially epistatic, pairs of loci (or 
indeed at loci that are involved in higher order inter­
actions). Genetically tractable model organisms allow 
analyses of epistatic interactions using: mutations that 
are generated in a common homozygous genetic back­
ground; quantitative genetic analyses of both inbred 
lines and outbred populations; chromosome substitu­
tion, introgression and near-isogenic lines; and induced 
mutations as foci for exploring such interactions with 
segregating variants. The ability to construct mapping 
populations from crosses of inbred lines in which all 
allele frequencies are 0.5 is particularly powerful, as this 
maximizes both epistatic variance and frequency of the 
rarer two-locus genotypes.

Epistasis between mutations
Mutations that have been induced in the same homozy­
gous genetic background are excellent resources for 
estimating the magnitude and the nature of digenic 
epistatic interactions. Epistasis occurs if the difference 
in phenotype of the double mutant cannot be predicted 
from the combined effects of the single mutants. The 
double-mutant phenotype can be either more mutant 
than expected (which is known as synergistic, enhanc­
ing, aggravating or negative epistasis) or less mutant 
than expected (which is known as antagonistic, sup­
pressing, alleviating or positive epistasis). The advan­
tage of this method is that the interacting partners are 
known, which facilitates the construction of genetic 
interaction networks. A disadvantage is that it does not 
easily scale beyond pairwise interactions and to large 
numbers of mutations, as a comprehensive evaluation 
of n pairwise interactions requires the generation of ~n2 
genotypes which, in practice, prevents exploration of the 
entire interaction space.

Epistasis between small numbers of mutations. Studies  
using limited numbers of random mutations, or muta­
tions that affect the same trait, show that epistasis is 
common. In Escherichia coli, 14 of 27 (52%) pairs of 
random mutations that were tested showed epistasis 
for fitness18. In D. melanogaster, 35 of 128 (27%) tests 
for epistasis among pairs of random mutations had sig­
nificant effects on quantitative traits that are involved in 
intermediary metabolism. These epistatic effects were 
large and occurred between mutations without signifi­
cant main effects19. Diallel cross designs among small 
numbers of P‑element mutations that affected olfac­
tory, locomotor, aggressive behaviour and lifespan in  
D. melanogaster revealed extensive epistasis and defined 
new genetic interaction networks20–23. These interaction 
networks were influenced by environmental condi­
tions, sex and the presence or absence of an additional  
interacting mutation21,22.

Genome-wide interaction screens. A few model systems 
are amenable to experimental analyses of genome-wide 
genetic interaction networks. An analysis of deletions 
for all 6,000 genes in Saccharomyces cerevisiae revealed 
that only 20% of the genome is essential for survival, at 
least under optimal growth conditions24. This observa­
tion attests to the robustness of biological networks to 
mutational perturbation and sets the stage for synthetic 
enhancement genetics in this species25. The collection 
of deletion mutants, together with high-throughput 
methods for generating and selecting double mutants, 
measuring growth rate and quantifying fitness25, has 
facilitated large-scale genetic interaction screens 
in yeast26–30. Carrying out tests for all ~18 million  
possible pairwise interactions remains a practical 
impossibility even in this genetically tractable model 
system. Therefore, the yeast global genetic network 
architecture was investigated using a set of query muta­
tions that were chosen to represent biological pathways 
of interest. Interactions were examined either between 
each of the query mutations and a larger number of 
target mutations26,29,30 or for all possible pairwise com­
binations of the query mutations27,28. Similar strategies 
have been adopted for systematic mapping of genetic 
interactions in Caenorhabditis elegans31,32 and in D. mel‑
anogaster cell lines33 using RNA interference (RNAi). 

Figure 2 | Quantitative genetics of additive-by- 
additive interactions.  The four double homozygote 
genotypes at two hypothetical bi‑allelic loci (X and Y) are 
depicted. Model 1 is an epistatic model in which the 
effect of locus X is greater in the Y

1
Y

1
 genetic background 

than that in the Y
2
Y

2
 genetic background; Model 2 is an 

epistatic model in which the effect of locus X is of  
similar magnitude but in the opposite direction in the 
Y

1
Y

1
 genetic background, compared with that in the Y

2
Y

2
 

genetic background (part a). The additive effect of locus X 
depends on the frequency at locus Y (part b). Additive 
genetic variance (V

A
; part c), additive-by-additive genetic 

variance (V
AA

; part d) and the ratio of additive  
genetic variance to the total genetic variance  
(V

A
/(V
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 + V
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); part e) for Models 1 and 2 are shown.
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Model 1 Model 2 Larger-scale studies26,27,29–31,33 that use qualitative assays 
typically find that ~1–3% of interactions have signifi­
cant effects, whereas smaller-scale studies28,32 that use 
quantitative assays identify a larger number of interac­
tions (~13–35%). These studies have been instrumental 
in determining the general properties of genetic inter­
action networks (BOX 1). The scale-free and small-world 
properties of these networks imply that the major fea­
tures of network topology can be inferred by focusing 
on major hub genes and on interactions among the 
genes with which they interact.

Gene expression-based screens. Mutations typically 
have pleiotropic effects on many phenotypes; there­
fore, focusing on only one phenotype will not uncover 
the full spectrum of possible interactions. Genome-
wide analyses of differences in gene expression in the 
presence of single and double mutations relative to the 
control can be used to place genes in an interaction 
network in the absence of organismal-level pheno­
types23,34–36. This approach is particularly powerful for 
higher eukaryotes that have long generation intervals 
and that lack high-throughput methods for generating 
double mutants and for accurately measuring com­
plex organismal quantitative traits, but for which large 
collections of mutations are available37–41. In D. mela‑
nogaster, single mutations have pleiotropic effects on 
hundreds of gene expression traits22,23,42. The genes 
for which expression is altered in the mutant genetic 
background are thus candidate genes for inclusion in a 
genetic interaction network that affects the organismal 
phenotype associated with the focal mutation. A large 
proportion of such candidate genes indeed show epista­
sis with the focal mutation42. Thus, combining muta­
tional perturbations with gene expression is a powerful 
approach to iteratively reverse-engineer networks. The 
large numbers of candidate genes that are implicated by 
gene expression profiling indicates that the interaction 
space is large.

Epistasis between QTLs
To what extent does the extensive epistasis that is 
implicated by analyses of induced mutations translate 
to epistatic interactions in natural populations? The 
ability to construct inbred lines, artificial selection 
lines and chromosome substitution lines, as well as to 
map quantitative trait loci (QTLs) that affect complex 
traits by linkage and association, facilitates analyses of 
epistasis between naturally occurring variants in model 
organisms.

Comparing broad- and narrow-sense heritability. Nar­
row-sense heritability (h2) refers to the fraction of the 
phenotypic variance of a quantitative trait that is due to 
additive genetic variance, whereas broad-sense herit­
ability (H2) refers to the fraction of the phenotypic vari­
ance that is due to all components of genetic variance. 
In model organisms that can be crossed and inbred, one 
can obtain unbiased estimates of h2 either from half-
sib family designs or from the response to directional 
artificial selection. The genetic component of H2 that 
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Multiple testing penalty
The downward adjustment of 
the significance threshold for 
individual statistical tests that 
is required when multiple 
hypothesis tests are carried 
out on a single data set; for n 
independent tests, the Bonfer-
roni-adjusted 5% significance 
threshold is 0.05/n.

is estimated from fully inbred lines is due to additive 
variance and additive-by‑additive epistatic variance10 
(BOX 2). Thus, epistatic variance can be inferred to con­
tribute to the genetic architecture of traits for which H2 
is much greater than is expected from strictly additive 
variance (BOX 2). However, further gene mapping studies 
are necessary to identify the individual loci that affect 
the traits.

QTL–QTL interactions. QTLs are mapped either by 
linkage to, or by association with, molecular markers. 
In model organisms, linkage mapping is typically car­
ried out using line cross analyses. Linkage-mapping 
populations are established by crossing two lines that 
differ genetically for the trait of interest and by generat­
ing backcrosses, F2 or advanced intercross individuals, 
or recombinant inbred lines (RILs)10,11 (FIG. 3a). Asso­
ciation mapping uses samples of individuals or inbred 
lines from a natural population. In both cases molecu­
lar marker genotypes and quantitative trait phenotypes 
are obtained for members of the mapping population. 
Standard statistical methods are used to determine 
whether there is a significant difference in phenotype 
between marker genotypes, in which case the QTL that 
affects the trait is either linked to, or in linkage dis­
equilibrium (LD) with, the marker locus21. These tests 
are carried out for each marker in turn, and genomic 
regions for which the p‑value of the test passes an 
appropriate threshold that accounts for multiple tests 
correspond to the position of the QTL. Association 
mapping can be carried out either for candidate genes 
or genome wide. Compared with linkage mapping that 
uses a population of the same size, association mapping 

captures more genetic diversity and has increased 
mapping precision; however, it is prone to artefactual 
LD that is induced by population structure and has 
reduced power to detect QTLs that have minor allele 
frequencies <0.5 (REF. 21).

Epistasis between QTLs is estimated by fitting a 
statistical model that includes both the main effects of 
each QTL and the effects of the QTL–QTL interaction 
term (FIG. 4). The use of multifactorial perturbations 
in epistasis screens has the advantage that many inter­
actions can be tested using genotypes and phenotypes 
that are determined for a reasonably small number of 
individuals. As a result, it is more efficient for explor­
ing interaction space than laboriously constructing all 
possible pairwise combinations of mutant alleles. The 
power to detect epistasis between QTLs in mapping 
populations that are derived from inbred lines is maxi­
mal because all polymorphic alleles have frequencies of 
0.5. However, in small mapping populations the num­
ber of lines that carry the rarer double-homozygous 
genotype classes is small, which increases the variance 
in the mean value of the trait within each class. In addi­
tion, other segregating QTLs can confound the estimate 
of epistasis for the tested pair of loci. These factors, 
together with the severe multiple testing penalty for pair­
wise epistasis screens, make it difficult to detect all but 
extremely strong interactions, particularly in associa­
tion mapping populations in which allele frequencies 
are not balanced. Given these inherent biases against 
detecting epistasis, most studies only evaluate additive 
QTL effects. However, epistasis is often found when it 
is evaluated in linkage-mapping populations. Epistatic 
effects can be as large as main effects and can occur 
between QTLs that are not individually significant.

Traits for which epistatic interactions have been 
detected in QTL-mapping experiments include sporu­
lation efficiency43,44 and gene expression traits45 in yeast; 
thermal preference in C. elegans46; bristle number, 
wing shape, longevity, enzyme activity, metabolic rate  
and flight velocity in D. melanogaster20,21; body weight and  
adiposity traits47–50, litter size51 and serum insulin-like 
growth factor 1 (REF. 52) in mice; growth rate53,54 in chick­
ens; growth rate55 and metabolites56,57 in A. thaliana; and 
differences in whole-plant and inflorescence architecture 
between maize and teosinte58. Although these studies 
show that epistasis cannot be ignored when describing 
the genetic architecture of complex traits, QTL map­
ping alone does not identify the causal interacting genes 
because the QTL intervals contain many loci.

Model organisms allow further dissection of QTLs. 
First, one can construct near-isogenic lines, in which a 
region that contains the QTL is introgressed into the  
isogenic background of one of the parental lines, and 
successive generations of recombination are used to nar­
row the QTL down to a small genomic interval (FIG. 3d). 
This approach was used to confirm the epistatic effects of  
two QTLs that do not have individual main effects for 
C. elegans thermal preference, but for which the inter­
action accounted for 50% of the total variance in this 
behaviour46. Similarly, genetic dissection of A. thaliana 
near-isogenic lines for a region that has no overall effect 

Box 1 | Properties of genetic interaction networks

Genetic interaction networks in Saccharomyces cerevisiae25–30, Caenorhabditis 
elegans31,32 and Drosophila melanogaster33 share common properties that are likely to be 
generalizable to genetic interaction networks in other species.
•	The fitness of the double mutant tends to be lower than expected if the genes act in 

separate but compensatory pathways, and higher than expected if the genes act  
in the same pathway.

•	The distribution of the number of interactions per gene (that is, connectivity) follows a 
power law distribution, such that many genes have no or few interactions, and a few 
genes have many interactions. Genes that have many interacting partners are hubs in 
the interaction network.

•	Genetic interaction networks are small-world networks, such that the shortest path 
between a pair of genes is small, which results in dense local neighbourhoods of 
genes that interact with each other.

•	Genetic interactions occur among functionally related genes that belong to the same 
pathway or biological process. The ‘guilt-by-association’ principle can thus be used to 
infer the function of a computationally predicted gene from the function of the genes 
with which it genetically interacts.

•	Network hub genes have the following characteristics compared with genes that have 
fewer interactions: they are more important for fitness; they are more pleiotropic; 
their mRNAs are expressed at higher levels; they are more sensitive to environmental 
perturbations; and they are more evolutionarily conserved.

•	Genetic interaction networks are mostly decoupled from protein–protein interaction 
networks.

•	Although properties of genetic network architecture are conserved across species, 
the network connectivities are not conserved.
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on growth rate revealed two epistatically interacting 
QTLs that affect growth rate, for one of which the effect 
on growth rate was in opposite directions in the differ­
ent genetic backgrounds55. Second, one can carry out 
transformation and allelic replacement to prove that 
variants are causal, as well as to engineer all possible 
combinations of causal variants to investigate epistasis 
at nucleotide resolution. These approaches were used  
in D. melanogaster to show that each of three domains in  
the Alcohol dehydrogenase (Adh) gene, as well as an 
intragenic epistatic interaction, contributed to the  
difference in Adh protein levels between the Fast and 
Slow electrophoretic alleles59. Similarly, in S. cerevisiae, 
strong epistasis for causal variants that affect sporulation  
efficiency43,44 was revealed.

A powerful QTL mapping design is to introgress 
genomic regions from one strain into the genetic back­
ground of another. This can be done either at the level 
of entire chromosomes to create a panel of chromo­
some substitution strains60 (FIG. 3b) or for introgressions 
that tile across the genome of the donor line (FIG. 3c), 
as for genome-tagged mice61. A fairly small number of 
introgression lines can be used to map QTLs with high 
precision. Epistasis occurs if the sum of the effects of 
the introgressed fragments is significantly greater than, 
or significantly less than, the mean difference in phe­
notype between the two parental strains. In rodents,  
introgression designs detect more QTLs, as well as QTLs 

that have larger effects than classical mapping popula­
tions for a wide variety of blood chemistry, bone and 
behavioural traits. In addition, the sum of the effects of 
individual QTLs is several orders of magnitude greater 
than the difference in phenotype between the paren­
tal strains60–62. Similar results are found for aggressive 
behaviour in D. melanogaster63. These results indicate 
that the combined effects of individual introgressed 
regions in the genome of the donor line are less than 
additive. Less-than-additive effects of introgressed 
QTLs have also been demonstrated for several fruit 
quality traits in tomato64,65.

For different allele frequencies of interacting loci, epi­
static interactions lead to different main effects of each 
of the interacting loci (FIG. 2b). Thus, they also lead to a 
lack of replication of estimated QTL effects in popula­
tions in which allele frequencies of causal interacting loci 
differ66. In model organisms one can construct mapping 
populations that have different QTL allele frequencies to 
determine how often allelic effects vary; in this case, the 
lack of replication of QTL effects can identify potentially 
interacting loci. The D. melanogaster Genetic Reference 
Panel (DGRP) is a collection of ~200 sequenced inbred 
lines that are derived from a single population, which 
allows genome-wide association mapping for quantita­
tive traits using all polymorphic molecular variants67. 
Flyland is a large outbred advanced intercross popula­
tion that is derived from 40 DGRP lines68. In this popu­
lation, QTLs can be rapidly mapped by phenotyping 
large numbers of individual flies and by sequencing 
pools of individual flies from the phenotypic extremes 
of the distribution; QTLs have significant differences in 
allele frequencies between the two pools of sequenced 
flies68,69. None of the QTLs that were detected in the 
DGRP for each of three quantitative traits were repli­
cated in extreme QTL mapping in the Flyland popula­
tion. However, 50–60% of the QTLs that were detected 
for the three traits in either population were involved 
in at least one epistatic interaction, and these interac­
tions perturbed common, biologically plausible and 
highly connected genetic networks68. Although these 
analyses indicate pervasive epistasis, the challenge 
remains to determine which of the statistically predicted  
interactions are biologically important.

Epistasis between mutations and QTLs
Analyses of epistasis between induced mutations do not 
scale well to large numbers of mutations but have the 
advantage that the interacting partners are specified. 
Analyses of epistasis between QTLs have the advantage 
that interactions among large numbers of polymor­
phisms and genes can be evaluated; however, owing to 
the severe multiple testing penalty, there will be large 
numbers of false-positive associations among the top 
interactions for which there is the highest level of statis­
tical support. An alternative strategy is to carry out one-
dimensional screens that evaluate the phenotypic effects 
of a known mutation in different genetic backgrounds. 
Although these designs have not yet been implemented 
on a large scale, many studies indicate that this will be 
a powerful approach.

Trait Observed Expected

h2 H2 H2 = 2h2/(1+h2)

Copulation latency 0.07 0.25 0.13

Startle response 0.16 0.58 0.28

Aggressive behaviour 0.09 0.78 0.17

Ethanol knock-down time 0.08 0.24 0.15

Box 2 | Evidence for epistasis from narrow- and broad-sense heritability

The response to a single generation of artificial selection for a quantitative trait is 
given by the breeder’s equation: R = h2S. R is the difference between the mean of the 
parental generation and the mean of the offspring generation. h2 is the narrow-sense 
heritability: h2 = (V

A
 + ½V

AA
)/V

P
, where V

A
 is the additive genetic variance, and V

AA
 is the 

additive-by-additive genetic variance, ignoring higher order epistatic interactions for 
simplicity. V

P
 is the phenotypic variance: V

P
 = V

A
 + V

AA
 + V

E
, where V

E
 is the 

environmental variance. The selection differential (S) is the difference between the 
mean of the parental population and the mean of the selected group10. 

The narrow-sense heritability is thus h2 = R/S. If selection is carried out over several 
generations, the narrow-sense heritability can be estimated from the regression of the 
cumulated response (ΣR) on the cumulated selection differential (ΣS); that is, h2 = ΣR/ΣS.  
By contrast, broad-sense heritabilities that are determined from variation among 
completely homozygous inbred lines, ignoring higher order additive-by-additive 
epistatic interactions, are H2 = (2V

A
 + 4V

AA
)/V

P
, where V

P
 = 2V

A
 + 4V

AA
 + V

E
 (REF. 100). 

Note that in this scenario there is no dominance variance and no epistatic interaction 
variance terms that involve dominance, as there are no heterozygotes. If all variation 
is additive (that is, V

AA
 = 0), then H2 among inbred lines is related to h2 from artificial 

selection from the outbred populations from which the inbred lines were derived: 
H2 = 2h2/(1 + h2)101. h2and H2 values for Drosophila melanogaster behavioural traits are 
given in the table102–106. In all cases H2 values are greater than those expected from 
strictly additive variance, which implies that epistatic variance contributes to the 
genetic architecture of these traits.
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Waddington3 noted the contrast between the large 
effects of mutations and their phenotypic variability, as 
well as the apparent stability of wild-type strains, despite 
exposure to naturally occurring genetic and environ­
mental perturbations. He coined the term ‘canalization’ 
to refer to the buffering of natural variation against such 
perturbations. In modern parlance, genetic canalization 
refers to suppressing (that is, less-than-additive) epistatic 
interactions between naturally segregating variants. To 
the extent that these interactions occur between differ­
ent genetic loci, one can probe both the nature and the 
magnitude of the naturally occurring epistatic modifier 
loci by asking to what extent they modify the effects of 
a mutant allele.

One of the first experiments to show the occurrence 
of naturally segregating epistatic modifiers of a muta­
tion was Rendel’s introgression of a scute (sc) mutation 
into a wild-derived background70. D. melanogaster has 
four large scutellar bristles on the dorsal thorax, and this 
number is invariant in nature. Mutations at sc reduce 
this number to an average of one or less. In a wild-type 
genetic background that is segregating for sc and sc+ 
alleles, the number of scutellar bristles changed to ~3 
in sc mutants and to 5–6 in sc+ individuals following 
artificial selection for increased bristle number. These 
results are consistent with the selection of epistatic 
modifiers of sc that were segregating in the initial pop­
ulation and that suppressed the mutant sc phenotype. 
However, the genetic backgrounds for this experiment 
were not well defined. More recently, introgressions of 
mutant Ultrabithorax, Antennapedia, sevenless and scal‑
loped alleles into different wild-derived D. melanogaster 
backgrounds have demonstrated variation outside the 
invariant wild-type phenotype for, respectively, haltere 
size, shape and bristle number71,72; the antenna-to-leg 
transformation homeotic phenotype72; eye roughness 
and size73; and wing morphology74. The epistatic effects 
ranged from complete suppression to enhancement of 
the mutant phenotype.

A variant of the mutant introgression design is to 
cross the mutant allele to a sample of wild-derived lines 
and to evaluate phenotypes of F1 genotypes. The advan­
tage of this method is that it is easier to implement than 
constructing introgression lines; the disadvantage is that 
any phenotypic variation cannot be attributed to allelic 
complementation (that is, dominance effects) or to non-
allelic complementation (that is, epistasis) unless the 
experiment is carried out in a QTL-mapping popula­
tion. In D. melanogaster, crosses of a dominant Epidermal 
growth factor receptor mutation to wild-derived lines give 
a range of eye roughness phenotypes73,75. Approximately 
1–2% of F1 progeny from crosses of D. melanogaster 
strains that carry mutant alleles of the heat shock protein 
gene Hsp90 (also known as Hsp83) to outbred strains had 
a wide variety of morphological abnormalities, which 
suggests that Hsp90 normally suppresses alleles that affect 
multiple phenotypes76. These results indicate that popula­
tions harbour a hidden reservoir of genetic variation for 
invariant traits that is only revealed in the ‘decanalizing’ 
background of the mutation. Such variation has been 
called potential variance or cryptic genetic variation77.

Figure 3 | Genotypes for mapping QTLs between two genetically divergent 
lines.  Parental lines (P

1
 and P

2
) are crossed to produce an F

1
 generation (part a). Common 

segregating generations that are used for quantitative trait locus (QTL) mapping are 
backcrosses of the F

1
 to either parental line (BC

1
 and BC

2
); the F

2
 generation, which  

is derived from mating F
1
 individuals; and recombinant inbred lines (RILs), which are 

derived by inbreeding F
2
 families. Experimental designs that are based on introgression 

use chromosome substitution lines (part b), introgression lines (part c) or near-isogenic 
lines (part d); three chromosomes (C1–C3) are depicted for each type of lines.
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Experimental designs for assessing epistasis between 
mutations and QTLs can be adapted to determine the 
effects of naturally segregating epistatic modifiers of 
mutations that affect traits which show quantitative phe­
notypic variation in natural populations. In this case, the 
effects of both the mutant and the wild-type alleles of the 
locus in question need to be assessed for the quantita­
tive trait phenotype in different genetic backgrounds in 
either an introgression or an F1 design. Epistasis occurs 
if the additive effect of the mutation varies with genetic 
background, which is detected as a significant interac­
tion between the mutant and background genotypes. 
These designs have been used in D. melanogaster to 

demonstrate epistasis for the extended-lifespan pheno­
type that is caused by the overexpression of a human 
superoxide dismutase transgene in motorneurons78. 
Similarly, epistasis was found between several mutations 
that affect startle response79 (FIG. 5), olfactory behaviour 
and sleep traits80 in different DGRP line backgrounds. 
Moreover, there is epistasis between a null myostatin 
allele and genetic background for growth traits in mice81; 
between the disease resistance mutation Rp1‑D21 and 
genetic background for the hypersensitive response in 
maize82; and for an RNAi knockdown HSP90 allele and 
genetic background for both morphological and life  
history traits in A. thaliana83.

Figure 4 | Two-dimensional search for epistatic interactions.  Data from an experiment mapping QTLs that affect  
Drosophila melanogaster lifespan in a recombinant inbred line population are depicted107. The x and y axes show the 
marker loci. Two main-effect QTLs are indicated at cytological positions 46C–49D and at 50D (shown in red boxes). 
The body of the graph depicts the p‑values of the QTL–QTL interaction terms. Main-effect QTLs do not interact with 
each other, but they do interact with QTLs that do not have significant main effects. QTLs without significant main 
effects show significant interaction effects.
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Only a few studies so far have analysed QTL-mapping 
populations to map, either by linkage or by association, 
loci that interact with focal mutations72,74,75,81–83. Some stud­
ies have used candidate gene association analyses to test 
whether the mutant allele interacts with naturally occur­
ring alleles at the mutant locus75 or with naturally occurring  
variants at a known interacting locus74. Others carried  
out unbiased genome scans in a QTL-mapping popula­
tion72,81–83, which typically uncovered unlinked interacting  
loci that do not have significant main effects.

Implications of pervasive epistasis
The studies reviewed here indicate that epistasis is a com­
mon feature of the genetic architecture of quantitative 
traits in model organisms. By extension, the same is likely 
to be true for quantitative traits in other organisms in 
which gene–gene interactions are more difficult to detect, 
including humans. The epistatic interactions that have 
been detected define previously uncharacterized, highly 

interconnected genetic networks that are enriched for bio­
logically plausible gene ontology categories, and metabolic 
and cellular pathways. Analyses of epistasis reveal that 
much quantitative genetic variation is hidden and is not 
apparent from analyses of main effects of causal variants, 
and that additivity is an emergent property of underlying 
epistatic networks. Furthermore, several types of obser­
vations suggest that natural populations have evolved 
suppressing epistatic interactions as homeostatic (that is, 
canalizing) mechanisms. These observations include less-
than-additive interactions between QTLs; cryptic genetic 
variation for invariant phenotypes in natural populations 
that can only be observed in the presence of a decana­
lizing mutation; and naturally segregating variation that 
generally suppresses the effects of induced mutations for 
quantitative traits.

This realization is paradigm shifting. Rather than 
perceiving phenotypic variation for quantitative traits in 
natural populations as highly variable, it may be more 

Figure 5 | Epistasis between naturally occurring 
variation and mutations in D. melanogaster.  A graphical 
representation shows genotypes of i homozygous 
Drosophila melanogaster Genetic Reference Panel (DGRP) 
lines (DGRP_i), in which C1, C2 and C3 represent the three 
major chromosomes (part a). Co‑isogenic C2 chromosomes 
that contain either a wild-type allele (wt) or a mutant allele 
(M; red star) of a focal gene that affects a quantitative trait 
have been introgressed into each DGRP line. The 
quantitative trait is measured for all pairs of wild-type and 
mutant DGRP introgression lines. The difference in 
phenotype between the wild-type and mutant alleles in 
the background on which the mutant was generated is 2a. 
If there are only additive effects on the phenotype, then 
the expectation is that the effect of the mutation will  
be the same on each DGRP line background, and the 
expected phenotype of the ith DGRP line with the mutant 
C2 allele is DGRP_i wt + 2a. If this is not the case, then the 
difference between the expected and the observed 
phenotypes is due to epistasis. Estimates of epistatic 
interactions (I) for ten mutations that affect startle 
response in 20 DGRP backgrounds79 are shown (part b). 
The interaction effects vary among mutations and DGRP 
lines. These effects are large and predominantly positive; 
that is, naturally occurring variation suppresses the effects 
of the mutations. 
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Minor allele frequency
The frequency of the less 
common allele at a bi‑allelic 
locus.

Founder-effect speciation 
models
A class of models for the 
evolution of reproductive 
isolation that is based on 
changes in selection pressures 
and on allele frequencies  
of epistatically interacting  
loci, which result from  
the establishment of a  
new population in a new 
environment from a small 
number of individuals.

Dobzhansky–Muller 
incompatibilities
Substitutions that occur during 
divergence of two lineages; 
these substitutions are neutral 
in the respective genetic 
backgrounds of the two 
lineages but cause a reduction 
in fertility and/or viability in 
hybrids between the two 
lineages. 

Genomic prediction methods
Models that are derived from a 
discovery sample which 
consists of individuals with 
measured phenotypes and 
genome-wide marker data; 
these models are used to 
predict individual phenotypes 
in an independent sample from 
the same population using only 
genome-wide marker data.

accurate to wonder why there is not more variation in 
organismal phenotypes, given the large amount of seg­
regating molecular genetic polymorphism. Genome-
wide association studies in both model organisms67 and 
humans84 typically find an inverse relationship between 
minor allele frequency and additive effect, such that the  
rarer alleles are associated with larger effects than  
the more common alleles. Statistically, rare alleles must 
have larger effects than common alleles to be detected in 
a mapping population of the same size; the puzzle is why 
so few common alleles of large effect are found to segre­
gate within natural populations. One possible explana­
tion is that rare alleles have large effects because they are 
relatively new mutations compared with common alleles, 
and epistatic modifiers that ameliorate their effects have 
not yet occurred in the population. Common alleles are 
presumably older and could achieve an intermediate  
frequency owing to a modifier mutation at another locus 
that suppresses the effect of the polymorphism.

However, QTLs that are detected by linkage map­
ping in populations derived from crosses of inbred lines 
typically have moderately large effects20,21. Possibly, these 
loci were not common in the populations from which 
the parental inbred lines were derived. Alternatively, the  
lines that survived inbreeding could be enriched for 
compatible epistatic interactions that were decanalized 
by crossing to a different genetic background. In this 
case, one would predict that adding further parental 
lines to linkage-mapping populations might incorpo­
rate additional canalizing alleles, such that more QTLs 
with smaller effects will be found in these populations 
than in populations that are derived from crosses of two 
inbred lines. This prediction seems to be borne out in an 
outbred advanced intercross population that is derived 
from eight inbred mouse strains85, as well as in the maize 
nested association-mapping population that consists of 
200 RILs from each of 25 crosses between diverse inbred 
lines and a single common parental line86.

Pervasive epistasis has consequences for plant and 
animal breeding, evolutionary biology and human 
genetics. Applied breeding programmes rely on artifi­
cial selection within populations, as well as on trans­
fer of exotic genetic material to elite lines, to improve 
quantitative traits of agronomic importance. In the pres­
ence of epistasis, the genetic architecture of response 
to artificial selection from the same base population 
could differ among replicate lines, as well as within the 
same line over time, owing to allele frequency drift and 
to changes in frequency of causal alleles as a result of 
selection. Loci that have beneficial effects in one genetic 
background will not have the same effects when they are 
introgressed into another background, unless interact­
ing loci are identified and co‑introgressed. Many mod­
ern breeding programmes use additive models that are 
based on both dense molecular markers and estimates of 
trait phenotypes from a reference population to predict 
breeding values of selection candidates on the basis of 
only genotypic information16,17; in the presence of epista­
sis, genomic prediction may be poor if the frequency of 
causal alleles varies between the reference and the test 
populations.

Two major unresolved questions in evolutionary 
biology concern the mechanisms that maintain quan­
titative variation in natural populations, and the causes 
of adaptation and speciation. The puzzle of maintaining 
quantitative variation10,87,88 arises because heritabilities  
of quantitative traits are appreciable in natural popu­
lations such that the magnitudes of genetic and envi­
ronmental variation are approximately equal. However, 
most quantitative traits seem to be under strong stabiliz­
ing selection89, which reduces genetic variation. Direct 
estimates of mutational variance for quantitative traits in 
many model organisms are ~0.001 of the environmental 
variance90. Most theoretical models that assess the pos­
sibility that quantitative genetic variation is maintained 
by a balance between elimination of variation by stabi­
lizing selection and re‑introduction by mutation cannot 
simultaneously account for the empirical estimates89,91. 
Estimates of mutational variance are too low to gener­
ate the observed levels of genetic variance under strong 
selection. Suppressing epistasis between QTLs could 
cause overestimates of the strength of stabilizing selec­
tion, and suppressing epistasis between mutations could 
lead to underestimates of the magnitude of mutational 
variation. This necessitates a revision of the inference 
that mutation–selection balance does not account for 
much segregating variation for traits under stabilizing 
selection79. Furthermore, both inbreeding and genetic 
drift cause variation in allele frequencies from the paren­
tal population. With epistasis, this can result in the ‘con­
version’ of epistatic variance to additive variance, which 
potentially enables rapid adaptation to new environ­
ments92–94. Epistasis is central to Wright’s13 models of the 
genetic basis of evolution and to founder-effect speciation  
models92. With epistasis, the genetic architecture of 
response to natural selection will be different in different 
populations and will potentially increase the likelihood 
of the evolution of Dobzhansky–Muller incompatibilities5,6 
and consequent speciation events.

Epistasis is one of several non-mutually exclusive 
explanations for the small effects, missing heritability 
and the lack of replication of top trait-associated variants 
in different populations in human genome-wide associa­
tion studies84. First, with suppressing epistasis, additive 
effects of common interacting loci will be small. Second, 
estimates of h2 in humans are obtained from twice the 
difference in the correlation of monozygotic and dizy­
gotic twins10, and these estimates are biased upward in 
the presence of dominance and epistasis. Thus, suppress­
ing epistasis could potentially account for the high levels 
of heritability and the small amounts of additive genetic 
variation that have been estimated from mapped loci in 
human populations. Third, estimates of additive effects 
of causal alleles will differ between populations that have 
different allele frequencies but the same underlying epi­
static genetic architecture66,68. Additive genomic prediction 
methods that use all variants explain a much higher pro­
portion of phenotypic variance in human genome-wide 
association studies than that obtained by summing the 
variance explained from individual markers that exceed 
the genome-wide significance threshold95, but the pre­
diction accuracy of these methods is low in independent 
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populations96,97. Genomic prediction methods that allow 
non-additive effects98.99 are likely to increase the accuracy 
of individual risk prediction, but understanding the biol­
ogy of human quantitative traits and complex diseases 
will require knowledge of the underlying loci.

Conclusions and future prospects
Mapping epistatic interactions is statistically and experi­
mentally challenging. Much progress in understanding 
and predicting genetic interaction networks that affect 
quantitative traits has been made by taking advantage of 
the unique resources and experimental designs that are 
available for model organisms. Epistasis is common and 
can cause cryptic genetic variation for quantitative traits 
in natural populations; however, the mapping of causal 
interacting variants is in its infancy. Future advances 
will be made by using these experimental designs on a 

much larger scale and by taking advantage of decreasing 
costs of sequencing individual genomes, as well as pros­
pects for high-throughput and accurate measurements 
of quantitative trait phenotypes21. Molecular variants, 
both singly and in combination, perturb transcriptional, 
metabolic and protein–protein interaction networks 
which, in turn, causally affect organismal phenotypes21. 
However, systems genetic models so far only consider 
additive effects of variants on transcripts and traits21. In 
the future, we must assess the effects of pairwise and 
higher order epistatic interactions between polymor­
phic DNA variants on molecular interaction networks 
and, in turn, evaluate their effects on organismal phe­
notypes to understand the mechanistic basis of epistasis. 
Only then will we be able to go beyond describing the 
phenomenon of epistasis to predicting and testing its 
consequences for genetic systems.
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