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Gene expression analysis is a widely used and powerful method for investigating the transcriptional
behavior of biological systems, for classifying cell states in disease, and for many other purposes.
Recent studies indicate that commonassumptions currently embedded in experimental and analyt-
ical practices can lead to misinterpretation of global gene expression data. We discuss these
assumptions and describe solutions that should minimize erroneous interpretation of gene expres-
sion data from multiple analysis platforms.
Global Gene Expression Analysis
Global gene expression analysis provides quantitative informa-

tion about the population of RNA species in cells and tissues.

It is an exceptionally powerful tool of molecular biology that is

used to explore basic biology, diagnose disease, facilitate drug

discovery and development, tailor therapeutics to specific

pathologies and generate databases with information about

living processes. Consequently, expression analysis is among

the most commonly used methods in modern biology; there

are over 750,000 expression data sets in the National Center

for Biotechnology Information Gene Expression Omnibus

(GEO) public database (Edgar et al., 2002).

Global gene expression analysis uses DNA microarrays,

RNA-Seq, and other methods to measure the levels of RNA

species in biological systems (Geiss et al., 2008; Heller,

2002; Lockhart and Winzeler, 2000; Ozsolak and Milos, 2011;

Schena et al., 1998; Wang et al., 2009). DNA microarrays,

which have been most frequently used for expression analysis,

consist of millions of individual oligonucleotide probes fixed

to a solid surface. The oligonucleotide probes typically have

sequences representative of known RNA species and are

generally used to quantitate the relative levels of RNA spe-

cies that hybridize to the probes. Massively parallel sequenc-

ing technologies, developed more recently, provide a mea-

sure of the frequency of RNA species through sequencing of

RNA-derived cDNA populations. Other approaches, such as

digital molecular barcoding, represent a fusion of the hybridi-

zation and counting approaches. For instance, the nCounter

digital quantification platform relies on hybridization of labeled

probes to RNA molecules and single-molecule imaging to

provide a measurement of the frequency of particular RNA

species.
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Assumptions and Interpretation
Almost all global expression analysis involves isolation of RNA

from two or more cellular sources, introducing similar amounts

of RNA from the sources into the experimental platform and

analyzing the data by using algorithms that normalize the signal

from the samples (Kulkarni, 2011; Mortazavi et al., 2008; Quack-

enbush, 2002; Schulze andDownward, 2001). If the cellular sour-

ces produce equivalent amounts of RNA/cell, and the yields of

RNA and its derivatives are equivalent throughout experimental

manipulation, then normalized expression data should produce

an accurate representation of the relative levels of each gene

product.

We recently found that cells with high levels of c-Myc can

amplify their gene expression program, producing two to three

times more total RNA and generating cells that are larger than

their low-Myc counterparts (Lin et al., 2012; Nie et al., 2012).

This discovery has led us to question the common assumption

that cells produce similar levels of RNA/cell and the general

practice of introducing similar amounts of total RNA into analysis

platforms without including standardized controls that would

reveal transcriptional amplification or repression. As described

below, it is likely that this assumption and practice has led to

erroneous interpretations. We describe here an experimental

approach to genome-wide analysis of RNA expression that is

more likely to produce accurate assessments of changes in

steady-state levels of RNA.

Consider two different models for changes in gene expression

(Figure 1). In the first, RNA levels for a minority of genes are

elevated, but the levels of total RNA in the two cells are similar

(Figure 1A). The absolute levels of most RNA species are there-

fore similar in the two cells, and when the total signal for the RNA

population is normalized by standard algorithms, the resulting
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Figure 1. Normalization and Interpretation of Expression Data
(A) Schematic representation of pattern of change in gene expression when levels of total RNA in the two cells are similar. The square box represents
a perturbation such as increased expression of a gene regulator or a change in environment or cell state. Red arrows point to target genes affected by the
perturbation, which are represented as circles. Red shading of circles indicates relative transcriptional increase.
(B) Schematic representation of microarray normalization when the overall levels of mRNA per cell are not changing in two conditions. Relative mRNA levels for
nine different genes (A-I) are indicated along the y axis for condition 1 (black) and condition 2 (orange). The panels, from left to right, depict the actual relationship
between mRNA levels for the two conditions; the effect of median normalization; the calculated fold-changes based on median normalization, with increased
expression represented by red bars above the midline and decreased expression represented by green bars below the midline; and the perceived transcriptional
response of a limited transcriptional increase in gene expression.
(C) Schematic representation of pattern of change in gene expression when levels of total RNA in the two cells is different such as in transcriptional amplification,
where most genes are expressed at higher levels. The square box represents a perturbation such as increased expression of a gene regulator or a change in
environment or cell state. Red arrows point to target genes affected by the perturbation, which are represented as circles. Red shading of circles indicates relative
transcriptional increase.
(D) Schematic representation of microarray normalization when the overall levels of mRNA per cell are increased in one condition compared to another. Relative
mRNA levels for nine different genes (A–I) are indicated along the y axis for condition 1 (black) and condition 2 (orange). The panels, from left to right, depict the
actual relationship between mRNA levels for the two conditions; the effect of median normalization; the calculated fold changes based on median normalization,
with increased expression represented by red bars above themidline and decreased expression represented by green bars below themidline; and the perceived
transcriptional response following transcriptional amplification of gene expression.
expression data appropriately indicates an increase in the rela-

tive RNA levels for a set of genes (Figure 1B). In the second

model, the two cells express a similar set of genes, but one

cell produces and accumulates two to three times more RNA/

gene for many of the same genes expressed in the other cell

(Figure 1C), an effect that has been termed transcriptional ampli-

fication (Lin et al., 2012; Nie et al., 2012). In the conventional

approach to expression analysis, similar amounts of RNA from

the two cells are introduced into the assay, thus masking the

fact that one of the cells has two to three times more RNA than

the other (Figure 1D). This potential source of error is typically

overlooked because of the commonly believed, though rarely

stated, assumption that the absolute amount of total mRNA in

each cell is similar across different cell types or experimental

perturbations. Furthermore, the most commonly used analysis

methods are primarily intended to account for technical varia-

tions in signal to noise and assume that the signals for different

samples from different experiments should be scaled to have

the same median or average value or that the distributions of

signal intensities for each experiment within a set should all be

the same (Bolstad et al., 2003; Huber et al., 2002; Irizarry et al.,

2003; Kalocsai and Shams, 2001; Li and Wong, 2001; Reimers,
2010; Wu et al., 2004). Normalization of signal from cells that

experience transcriptional amplification can thus have the net

result of equalizing values that are actually different and pro-

ducing the erroneous perception that some genes have elevated

expression, whereas a similar number of genes have reduced

expression.

Experimental Approach
To produce a reliable gene expression analysis protocol that

addresses this experimental and data normalization issue, we

investigated the use of spiked-in standards (Benes and Muck-

enthaler, 2003; Hartemink et al., 2001; Hill et al., 2001; Jiang

et al., 2011;Mortazavi et al., 2008).We implemented an approach

that uses spiked-in RNA standards to allow normalization to cell

number and permit correction for differences in yields during

experimental manipulation (Figure 2A). We performed genome-

wide analysis on P493-6 cells expressing low or high levels of

c-Myc (Pajic et al., 2000; Schuhmacher et al., 1999) in which cells

with high levels of the transcription factor were found to produce

2- to 3-fold higher levels of the same RNA species found in cells

with low levels (Lin et al., 2012). Cell number was determined

by counting cells with C-Chip disposable hemocytometers
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Figure 2. Spike-In Controls, Normalized to Cell Number, Enable Accurate Interpretation of Transcriptional Changes
(A) Schematic representation ofmicroarray normalizationwhen the total level of mRNAper cell is different as in transcriptional amplification, but spike-in RNAs are
used as standards for normalization. mRNA levels are indicated along the y axis for condition 1 (black) and condition 2 (orange); individual genes are represented
along the x axis. Spike-in standards in the mRNA for condition 1 are represented by black triangles and spike-in standards in the mRNA for condition 2 are
represented by orange triangles (S1–S3). The panels, from left to right, depict the actual relationship between mRNA levels for the two conditions; the effect of
normalization using the spike-in standards; the resulting fold changes from condition 1 and condition 2, where increased expression is represented by red bars
above the midline; and the perceived transcriptional response following transcriptional amplification of gene expression normalized with spike-in RNAs.
(B) Heatmap showing the results of different normalizationmethods on the interpretation of microarray data. The data represent fold change of expression in high-
Myc versus low-Myc cells. Each line represents data for individual probes on the microarray. Red indicates increased expression in high-Myc versus low-Myc
cells. Green indicates decreased expression in high-Myc versus low-Myc cells. Black indicates no change in expression. Left: data using a standard microarray
normalization method (MAS5). Right: the same data, now renormalized by using spike-in standards.
(C) Heatmap showing the results of different normalization methods on the interpretation of RNA-sequencing data. The data represent fold change of expression
in high-Myc versus low-Myc cells. Each line represents data for an individual gene. Red indicates increased expression in high-Myc versus low-Myc cells. Green
indicates decreased expression in high-Myc versus low-Myc cells. Black indicates no change in expression. Left: data using a standard sequencing normalization
(reads per kilobase of exon model per million mapped reads). Right: the same data, now renormalized by using spike-in standards.
(D) Heatmap showing the results of different sample preparation methods on the interpretation of digital quantification data. The data represent fold change of
counts of mRNA molecules in high-Myc versus low-Myc cells. Each line represents data for an individual gene. Red indicates increased expression in high-Myc
versus low-Myc cells. Green indicates decreased expression in high-Myc versus low-Myc cells. Black indicates no change in expression. Left: the results if the
quantification is performed with equal amounts of total RNA for the high-Myc versus low-Myc cells. Right: the results if the quantification is performed with RNA
from equal numbers of high-Myc and low-Myc cells.
(Digital Bio) and equivalent numbers of high- and low-Myc cells

were harvested. The DNA content of the two samples was

measured and found to be equivalent. Following total RNA

extraction, spiked-in RNA standards were added in proportion

to the number of cells present in the sample. Samples were

then split andprepared formicroarray, RNA-seq, anddigital anal-

ysis by using NanoString.

DNA-microarrays were first used to compare the high-Myc

versus low-Myc cell RNA populations (Figure 2B; Table S1 avail-

able online). Similar amounts of RNA from the low- and high-Myc

cells were introduced into the Affymetrix DNA microarray assay
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following the manufacturer’s protocol, which is the most com-

mon approach used in expression analysis. The resulting data

were processed by using standard normalization methods and

by using the spike-in standards for normalization. The results ob-

tained by using standard approaches can be interpreted tomean

that the expression levels of some genes are unchanged,

whereas others increase or decrease (Figure 2B). The interpreta-

tion is quite different when the same data is normalized by using

spike-in standards that reflect cell number: 90% of the genes

show increases in expression in high-Myc cells relative to low-

Myc cells (Figure 2B).



RNA-Seq analysis was then used to compare the high-Myc

versus low-Myc cell RNA populations (Figure 2C; Table S2).

Similar amounts of RNA from the low- and high-Myc cells were

subjected to sequencing. The resulting data were processed

by using standard normalization methods and by using the

spike-in standards for normalization. Again, the results obtained

by using standard approaches suggest that the expression

levels of some genes are unchanged, whereas others increase

or decrease (Figure 2C), yet when the same data are normalized

by using spike-in standards that reflect cell number, there is

an increase in transcript levels for the vast majority of genes

(Figure 2C).

We then used whole-sample, digital gene expression quantifi-

cation (NanoString, Seattle, WA) to compare transcript levels

in the high-Myc and low-Myc cells. In one experiment, equal

amounts of RNA from the high- and low-Myc cells were com-

pared by using this method. The results of this analysis sug-

gest that the expression levels of some genes is unchanged,

whereas others increase or decrease. In a second experiment,

equal numbers of high- and low-Myc cells were used to prepare

RNA, and these total RNA populations were subjected to digital

gene expression quantification. Here, the data indicate there is

an increase in transcript levels for the vast majority of genes in

high- versus low-Myc cells (Figure 2D, Table S3).

In summary, three of the major technologies typically used for

global gene expression analysis—microarray, RNA-sequencing,

and digital quantification—detect a widespread increase in tran-

scripts/cells in cells that experience transcriptional amplification

by c-Myc. Significantly, all three of these major technologies

used for gene expression fail to detect the widespread increase

of transcription when inappropriate normalization methods are

used. Instead, they erroneously suggest the interpretation that

a similar number of genes show increases and decreases in

expression.

Implications
Our results indicate that spike-in controls of the type described

here are a robust, cross-platform method to allow normalization

to cell number and thus enablemore accurate detection of differ-

ential gene expression and changes in gene expression pro-

grams. The clear implication is that the use of spike-in controls

normalized to cell number should become the default standard

for all expression experiments, as opposed to their more limited

use in experiments where gross changes in RNA levels are

already anticipated, as exemplified by transcription shutdown

experiments (Bar-Joseph et al., 2012). When cell counting may

be problematic, as for expression experiments from solid tumors

or tissues, DNA content may be used as a surrogate if ploidy and

DNA replication profiles are also characterized to prevent the

introduction of a DNA content-based artifact.

The discovery of transcriptional amplification and the realiza-

tion that common experimental methods may lead to erroneous

interpretation of gene expression experiments has implications

for much current biological research. How prevalent is misinter-

pretation of genome-wide expression data due to the assump-

tion that cells produce similar levels of total RNA? The answer

is likely related to the prevalence of regulatory mechanisms

that globally amplify or suppress transcription. What are the
implications for classifying cell states in disease? Significant

effort is being devoted to expression profiling cancer cells and

these studies use standard normalization methods (Alizadeh

et al., 2000; Beer et al., 2002; Berger et al., 2010; Bhattacharjee

et al., 2001; Bittner et al., 2000; Golub et al., 1999; Lapointe et al.,

2004; Northcott et al., 2012; Ramaswamy et al., 2001; Ross

et al., 2000; Schmitz et al., 2012; Shipp et al., 2002; Su et al.,

2001; Cancer Genome Atlas, 2012; van ’t Veer et al., 2002;

van de Vijver et al., 2002; Yeoh et al., 2002). Because c-Myc

expression occurs at widely varying levels in various tumor cells,

transcriptional amplification is likely having a profound impact on

cancer cell signatures. Where expression data are being used to

gain insights into cancer cell behavior and regulation, it should

be interpreted with added caution.

Experimental Procedures
Cell Culture

P493-6 cells were kindly provided by Chi Van Dang, University of

Pennsylvania. Cells were propagated in RPMI-1640 supple-

mented with 10% fetal bovine serum and 1% GlutaMAX (Invitro-

gen, 35050-061). The conditional pmyc-tet construct in P493-6

cells was repressed with 0.1 mg/ml tetracycline (Sigma, T7660)

for 72 hr. Cells were then washed three times with RPMI-1640

medium containing 10% tetracycline system approved FBS

(Clontech, 631105) and 1% GlutaMAX and recultured in tetracy-

cline-free culture conditions. All experiments were performed in

the absence of EBNA2 activation. Cell numberswere determined

by manually counting cells with C-Chip disposable hemocytom-

eters (Digital Bio, DHC-N01) prior to lysis and RNA extraction.

RNA Extraction and Synthetic RNA Spike-In

Ten million P493-6 cells were homogenized in 1 ml of TRIzol

Reagent (Life Technologies, 15596-026), purified with the

mirVANA miRNA isolation kit (Ambion, AM1560) following

the manufacturer’s instructions and resuspended in 100 ml

nuclease-free water (Ambion, AM9938). Total RNA was spiked-

in with the External RNA Controls Consortium (ERCC) ExFold

RNA spike-in controls, treated with DNA-free DNase I (Ambion,

AM1906), and analyzed on Agilent 2100 Bioanalyzer for integrity.

The external control spike-ins used in the microarray and RNA-

Seq analysis were obtained from the ERCCExFold RNASpike-In

kit (Ambion, 4456739). The ERCC RNA Spike-In Control Mixes

used here comprise a set of 92 polyadenylated transcripts that

mimic natural eukaryotic mRNAs. The RNAs range in size from

250–2,000 nucleotides in length and span an approximately

106-fold concentration range.

After extracting total RNA from equal numbers of cells, a fixed

amount of diluted ERCC Spike-In Mix #1 was added. The

amount of spike-in added was calibrated to the RNA yield of

the high-Myc cells to ensure the spike-in signal was in the appro-

priate dynamic range (ERCC User Guide, Table 4). For these

experiments, 1ml of a 1:10 dilution of Mix #1 was added to total

RNA extracted from 1 3 106 cells. RNA with the RNA integrity

number (RIN) above 9.8 was used for library generation for

RNA-Seq or hybridized to GeneChip PrimeView Human Gene

Expression Arrays (Affymetrix) by using 10 mg or 100 ng of total

RNA, respectively.

For these experiments, we followed the manufacturer’s

recommendation and added the spike-in controls to total RNA
Cell 151, October 26, 2012 ª2012 Elsevier Inc. 479



following RNA extraction. However, we have found that spike-in

controls can also be added directly to the sample-Trizol homog-

enate prior to RNA purification if desired.

Microarray Sample Preparation and Analysis

For microarray analysis, 100 ng of total RNA containing ERCC

ExFold Mix #1 RNA spike-in controls (see above) was used to

prepare biotinylated aRNA (cRNA) according to the manufac-

turer’s protocol (30 IVT Express Kit, Affymetrix 901228). Gene-

Chip arrays (Primeview, Affymetrix 901837) were hybridized

and scanned according to standard Affymetrix protocols. All

samples were processed in technical duplicate. Imageswere ex-

tracted with Affymetrix GeneChip Command Console (AGCC)

and analyzed by using GeneChip Expression Console. A Prime-

view Chip Definition File that included probe information for the

ERCC controls, provided by Affymetrix, was used to generate

CEL files. We processed the CEL files by using standard tools

available within the affy package in R. The CEL files were pro-

cessed with the expresso command to convert the raw probe

intensities to probe set expression values. The parameters of

the expresso command were set to generate Affymetrix MAS5-

normalized probe set values. We used a loess regression to

renormalize these MAS5 normalized probe set values by using

only the spike-in probe sets to fit the loess. The affy package

provides a function, loess.normalize, which will perform loess

regression on a matrix of values (defined by using the parameter

mat) and allows for the user to specify which subset of data to use

when fitting the loess (definedby using the parameter subset, see

the affypackagedocumentation for further details). For this appli-

cation, the parameters mat and subset were set as the MAS5-

normalized values and the row indices of the ERCCcontrol probe

sets, respectively. The default settings for all other parameters

were used. The result of this was a matrix of expression values

normalized to the control ERCC probes. The probe set values

from the duplicates were averaged together and the log2 fold

change from the low-Myc to the high-Myc samples are shown.

RNA-Seq Sample Preparation and Analysis

Using 10 mg of total RNA containing ERCC ExFold Mix #1 RNA

spike-in controls (see above), we prepared sequencing libraries

according to the following protocol. Polyadenylated RNA was

purified by two rounds of selection with Dynabeads mRNA

Purification Kit for mRNA Purification from total RNA (Life Tech-

nologies, 610-06) following the manufacturer instructions. This

resulting RNA was then further processed for RNA-Seq assays.

Briefly, polyadenylated RNA was fragmented with divalent

cations under elevated temperature. First strand cDNA synthesis

was performed with random hexamers and Superscript III

reverse transcriptase (Life Technologies, 18080-051). Second

strand cDNA synthesis was performed by using RNase H and

DNA Polymerase I. In the second-strand synthesis reaction,

dTTP was replaced with dUTP. After cDNA synthesis, the

double-stranded products were end repaired, a single ‘‘A’’

base was added, and Illumina PE adaptors were ligated onto

the cDNA products. The ligation products with an average size

of 300 bp were purified by using agarose gel electrophoresis.

Following gel purification, the strand of cDNA containing dUTP

was selectively destroyed during incubation of purified double-

stranded DNA with HK-UNG (Epicenter, HU59100). The adaptor

ligated single-stranded cDNA was then amplified with 15 cycles
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of PCR and PCR products were purified by using gel electropho-

resis. These RNA-Seq libraries were subsequently sequenced

on Illumina HiSeq 2000. Sequences were aligned by using Bow-

tie (version 0.12.2) to build version NCBI36/HG18 of the human

genome where the sequences of the ERCC synthetic spike-in

RNAs (http://tools.invitrogen.com/downloads/ERCC92.fa) had

been added. The RPKM (reads per kilobase of exon per million)

was then computed for each gene and synthetic spike-in RNA.

We used a loess regression to renormalize the RPKM values

by using only the spike-in values to fit the loess. The affy package

in R provides a function, loess.normalize, which will perform

loess regression on a matrix of values (defined by using the

parameter mat) and allows for the user to specify which subset

of data to use when fitting the loess (defined by using the param-

eter subset, see the affy package documentation for further

details). For this application the parameters mat and subset

were set as a matrix of all RPKM values and the row indices of

the ERCC spike-ins, respectively. The default settings for all

other parameters were used. The result of this was a matrix of

RPKM values normalized to the control ERCC spike-ins. Eigh-

teen thousand five hundred and thirty-six genes with a RPKM

value of 1.0 or greater in the low-Myc sample were selected,

and the log2 fold ratio between the low-Myc and high-Myc

samples were calculated and shown as a heatmap.

NanoString nCounter Gene Expression Assay Sample

Preparation and Analysis

For digital gene expression using NanoString nCounter Gene

Expression CodeSets, 1 3 106 cells were collected and lysed

directly either in 100 ml RLT buffer (QIAGEN, 74104) to yield

a concentration of 10,000 cells per ml or in 500 ml lysis buffer

with the mirVANA miRNA isolation kit (Ambion, AM1560).

Samples were processed according to the cell lysate protocol

(nCounter Gene Expression Protocol, NanoString) or the total

RNA extraction protocol (Ambion). Four ml of cell lysate (for

cell-count normalization) or 100 ng of total RNA (for total RNA

normalization) was subsequently incubated overnight at 65�C
in nCounter Reporter CodeSet, Capture ProbeSet, and hybrid-

ization buffer. Following hybridization, samples were immedi-

ately processed with the nCounter PrepStation and subse-

quently analyzed on an nCounter Digital Analyzer. All samples

were processed in biological duplicate.

We used two custom nCounter Reporter CodeSets en-

compassing 429 genes. These codesets encompassed sets of

known cancer related genes (CodeSets CS-1 and CS-2)

(Delmore et al., 2011). For each NanoString data set, we used

a piecewise linear interpolation of control RNAs (added after

hybridization as part of the nCounter PrepStation protocol) to

their known concentrations to normalize each data set. Two

hundred and sixty-six genes showing expression with a normal-

ized value of 1.0 or greater in both the low-Myc Total-RNA and

low-Myc Cell-Count samples were selected, and the log2 fold

ratio between the low-Myc and high-Myc samples were calcu-

lated and shown as a heatmap.
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