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•  Viewing and analyzing vast amounts of 
biological data as a whole set can be perplexing 

•  It is often easier to  
interpret data if they  
are partitioned into  
similar subgroups. 

•  Such similar groups  
are “clusters” 
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•  Researchers often want to know the functions of 
newly sequenced genes 

•  Comparing the new gene sequences to known DNA 
sequences often does not give away the function of 
gene 

•  For 40% of sequenced genes, functionality cannot be 
ascertained using only comparisons to sequences of 
other known genes 

•  Microarrays allow biologists to infer gene function 
even when sequence similarity alone is insufficient 
to infer function. 
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• Microarrays compare the activity (expression 
level) of the genes 
– Under varying conditions (e.g.. with and w/o 

disease) 
– At different time points  
–  In different tissues 

• Expression level is estimated by measuring  
the amount of mRNA for that particular gene 
– A gene is active if it is being transcribed 
– More mRNA usually indicates more gene activity 
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– Produce cDNA from mRNA (DNA is more 
stable) 

– Attach phosphor to cDNA to see when a 
particular gene is expressed 

– Different color phosphors are available to 
compare many samples at once 

– Hybridize cDNA over the microarray 
–  Scan the microarray with a phosphor-

illuminating laser 
–  Illumination reveals transcribed genes  
–  Scan microarray multiple times for the different 

color phosphor’s 
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Samples 

Genes 
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•  Easier to interpret if partitioned into “gene” or “sample” 
clusters 

•  Conceptually we could treat each gene in N arrays as a 
point in N-dimensional space 

•  Make a distance matrix for the distance between every 
two gene points in the N-dimensional space 

•  Genes with a small distance share the same expression 
characteristics and might be functionally related or 
similar. 

•  Clustering reveal  groups of functionally related genes 
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Clusters 
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•  Homogeneity: Elements within a cluster are close to 
each other 

•  Separation: Elements in different clusters tend to be 
further apart from each other 

•  …clustering is not an easy task! 

Given these points a 
clustering algorithm 
might make two distinct 
clusters 



11/7/11 Comp 590/Comp 790-87  Fall 2011 11 

This clustering violates both  
Homogeneity and Separation principles 

Close distances 
from points in 
separate clusters 

Far distances from 
points in the same 
cluster 
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This clustering satisfies both 
Homogeneity and Separation principles 
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•  Hierarchical: Organize elements into a tree, leaves 
represent genes and the length of the paths between 
leaves represents the distances between genes. Similar 
genes lie within the same subtrees. 

–  Agglomerative: Start with every element in its own cluster, 
and iteratively join clusters together 

–  Divisive: Start with one cluster and iteratively divide it into 
smaller clusters 

•  Optimization based: Determine point sets that 
attempt to minimize distances within clusters 
(homogeneity) or maximize distances between clusters 
(separation) 

–  K-means, K-mediods, Vector Quantization (VQ) 
•  Dendrogram: A tree representation of clustering, 

where one dimension is metric and others are some 
meaningful ordering of the points being clustered 
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Agglomerative: Start with each point as a cluster,  
Join closest two clusters, Form a new cluster using  
the joined clusters, Repeat. 

Branch heights
 correspond to
 the separation
 between
 clusters at the
 time they were
 merged   
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Assigning Clusters: Establish a threshold of joining 
distance. Remove all clusters above it. 



• Which clusters to join? 
–  Distance based 

• Cluster means 
• Closest pair 
• Closest to mediod  

(most centrally located  
   point in cluster) 

–  Variance based 
• Minimize residuals of a

 model fit 
• Closest after projection onto

 axis with greatest variance 
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1.  Hierarchical Clustering (d , n) 
2.     Form n clusters each with one element 
3.     Construct a graph T  by assigning one vertex to each cluster 
4.      while there is more than one cluster 
5.        Find the two closest clusters C1 and C2  
6.        Merge C1 and C2 into new cluster C with |C1| +|C2| elements 
7.         Compute distance from C to all other clusters 
8.        Add a new vertex C to T and connect to vertices C1 and C2 
9.        Remove rows and columns of d corresponding to C1 and C2 
10.        Add a row and column to d  corresponding to the new cluster C 
11.      return T 

The algorithm takes an nxn distance matrix d of 
pairwise distances between points as an input. 
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Divisive: Start with a single cluster composed of all points,  
Choose largest cluster, Split or partition it based on any  
metric. 



• Advantage: Terminates when objective is met 
–  A target number of clusters 
–  Minimize size/variance of largest cluster 
–  Achieves a desired separation metric between clusters 

• Division Criteria 
–  Minimize distance between the separating 

hyperplane and the closest point to each cluster 
–  Minimize residual variance 
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• Hierarchical Clustering is often used to construct 
trees for explaining evolutionary history  
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1.  Hierarchical Clustering (d , n) 
2.     Form n clusters each with one element 
3.     Construct a graph T  by assigning one vertex to each cluster 
4.      while there is more than one cluster 
5.        Find the two closest clusters C1 and C2  
6.        Merge C1 and C2 into new cluster C with |C1| +|C2| elements 
7.         Compute distance from C to all other clusters 
8.        Add a new vertex C to T and connect to vertices C1 and C2 
9.        Remove rows and columns of d corresponding to C1 and C2 
10.        Add a row and column to d  corresponding to the new cluster C 
11.      return T 

 Different definitions of  
“distances between clusters”  
may lead to different clusterings 
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•  dmin(C, C*) =  min  d(x,y) 
            for all elements x in C  and y in C* 

–  Distance between two clusters is the smallest distance between any 
pair of their elements 

•  davg(C, C*) = (1 / |C*||C|) ∑ d(x,y)  
             for all elements x in C  and y in C* 

–  Distance between two clusters is the average distance between all 
pairs of their elements 
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•  Need a function to optimize– “Squared-Error Distortion” 
•  Given a data point v and a set of points X,  
         define the distance from v to X  

                                        d(v, X)  

          as the (Euclidean) distance from v to the closest point from X.  

•  Given a set of n data points V={v1…vn} and a set of k points X,  
         define the Squared Error Distortion  

                     d(V,X) = ∑d(vi, X)2  / n      1 < i < n 
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•  Input: A set, V, consisting of n points and a 
parameter k 

• Output: A set X consisting of k points (cluster 
centers) that minimizes the squared error 
distortion d(V,X) over all possible choices of X 
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•  Input: A set, V, consisting of n points  

• Output: A single point x (cluster center) that 
minimizes the squared error distortion d(V,x)  
over all possible choices of x 

x is just the centroid (mean) of all points 
 1-Mean Clustering problem is easy. 
However, it becomes very difficult  
(NP-complete) for more than one center.  

 An efficient heuristic method for K-Means 
clustering is the Lloyd algorithm 
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1.  Lloyd Algorithm 
2.     Arbitrarily assign the k cluster centers 
3.      while the cluster centers keep changing 
4.        Assign each data point to the cluster Ci       

 corresponding to the closest cluster   
 representative (center)  (1 ≤ i ≤ k) 

5.        After the assignment of all data points,   
 compute new cluster representatives  
 according to the center of gravity of each  
 cluster, that is, the new cluster            

representative is  
            ∑v / |C|  for all v in C   for every cluster C  

*This may lead to merely a locally optimal clustering. 
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•  Lloyd algorithm is fast but in each iteration it moves 
many data points, not necessarily converging.  

•  A more conservative method would be to move one 
point at a time only if it improves the overall 
clustering cost 

•  The smaller the clustering cost of a partition of data 
points is the better that clustering is 

•  Different methods (e.g., the squared error 
distortion) can be used to measure this clustering 
cost 
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1.  ProgressiveGreedyK-Means(k) 
2.  Select an arbitrary partition P into k clusters 
3.   while forever 
4.     bestChange  0 
5.      for every cluster C 
6.         for every element i not in C 
7.           if moving i to cluster C  reduces its clustering cost 
8.             if (cost(P) – cost(Pi  C) > bestChange 
9.               bestChange  cost(P) – cost(Pi  C)   
10.               i*  I 
11.               C*  C 
12.      if bestChange > 0 
13.        Change partition P  by moving i* to C* 

14.     else 
15.         return P 
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•  Yes! 


