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Lecture 19:
Clustering

Study Chapter 10.1 - 10.3
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Apphca’uons of Clustermg

Vlewmg and analyzmg Vast amounts of
biological data as a whole set can be perplexing

* It is often easier to
interpret data if they
are partitioned into
similar subgroups.

* Such similar groups
are “clusters”
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Inferrmg Gene Functmnahty

e Researchers often want to know the functions of
newly sequenced genes

* Comparing the new gene sequences to known DNA
sequences often does not give away the function of

gene

* For 40% of sequenced genes, functionality cannot be
ascertained using only comparisons to sequences of
other known genes

* Microarrays allow biologists to infer gene function
even when sequence similarity alone is insufficient
to infer function.
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Mlcroarrays and Expressmn Analys1s

* Microarrays compare the activity (expression
level) of the genes

— Under varying conditions (e.g.. with and w/o
disease)

— At different time points
— In different tissues

* Expression level is estimated by measuring
the amount of mRNA for that particular gene
— A gene is active if it is being transcribed
— More mRNA usually indicates more gene activity

11/7/11 Comp 590/ Comp 790-87 Fall 2011 4



Mlcroarray Experlments

— Produce cDNA from mRNA (DNA is more
stable)

- Attach Fhosphor to cDNA to see when a
particular gene is expressed

— Different color phosphors are available to
compare many samples at once

— Hybridize cDNA over the microarray

— Scan the microarray with a phosphor-
illuminating laser

— [llumination reveals transcribed genes

— Scan microarray multiple times for the different
color phosphor’s
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Microarray

Tissue 1 Tsue 2

11/7/11

Image analysis

) Intensity calculations
mR NA extraction

Gene ismore expressedin

. control than in test sample
cDNA synthesis

Dye labeling
Gene is more expressed in
. test sample than in control
Mexing
Purification
Gene iz equally expressad in
L control and intest sample
Hybridzation
Gene is neither detectably
. expressedin control norin
lest sample
Scanning

E ach spol represents a singe gene

Image analysis
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Clustering Dimension

TOPOISOMERASE | |- (TOP2A)

CYCLIN B1 - (CCNB1)

DNA REPLICATION LICENSING FACTOR CDC47 HOMOLOG - (MCM2)
MINICHROMOSOME M. IANCE DEFICIENT 3- (MCM3)
HYALURONAN-| MEDIATED MOTILITY RECEPTOR RHAMM - (HMMR)
REPLICATION FACTOR C, 37-KD SUBUNIT- (RFC4)

NUCLEAR AUTOANTIGENIC SPERM PROTEIN - (NASP)

DNA METHYLTRANSFERASE - (DNMT1)

ALPHA-CATENIN RELATED PROTEIN - (CT NNAL1)

%TAIOGOES': IDENTIFIED BY MONOCLONAL ANTIBODY KI-67 - (MIK67)

HUMAN CDCB-RELATED PROTEIN HSCDCS6 - (CDC18L)
[E)g_fA_RSEZF;IaIgATION LICENSING FACTOR CDC47 HOMOLOG - (MCM2)
DNA REPLICATION LICENSING FACTOR MCM8 P105MCM - (MCM8)
HOMO SAPIENS HPV18 E1 PROTEIN BINDING PROTEIN - (| U96131)
HUMAN MITOTIC CENTROMERE-ASSOCIATED KINESIN - (HsMCAK)
EST H84617

EST N26840

EST H13689
C TRYPTOPHANYL-TRNA SYNTHETASE - (WARS)
HOMO SAPIENS PHOSPHOLIPID SCRAMBLASE - (PLSCR1)
EST H6254
INTERFERON-INDUGED 17 KD PROTEIN - (IFI17)
EST N68439
EST T84506
LEUCINE AMINOPEPTIDASE - (LNPEP)
INTERFERON GAMMA -INDUCED PROTEIN 10 - (INP10)
FACTOR B PREC
INTERFEHON INDUCED LEUCINE ZIPPER ROTEIN - (IFP35)
HOMO SAPIENS MRNA EXPRESSED IN OSTEOBLAST - (GS3686)
LVSYL OXIDASE - (LOX)

T AA045025
PROTEIN KINASE C ZETA - (PRKC2)
EST AA100010
HOMO SAPIENS MRNA EXPRESSED IN OSTEOBLAST - (GS3686)
TRANSCRIPTIONAL REGULATOR STAF-50 - (HSSTAFS50)
EST T71983
EST AA075317
2-5' OLIGOADENYLATE SYNTHETASE E - AS1L
MICROTUBULAR AGGREGATE PROTEIN P44 - (HUMCAMAPS)
SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 1-ALPHA/BETA - (STAT1)
SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 1-ALPHA/BETA - (STAT1)
EST AA767654
2'-5' OLIGOADENYLATE SYNTHETASE E - (OAS1)
COMPLEMENT C3 PRECURSOR - (C3)
ESTS SIMILAR TO NMDA RECEPTOR GLUTAMATE-BINDING CHAIN
INTERFERON, ALPHA-INDUCIBLE PROTEIN CLONE - (IFI-6-16)
URIDINE MONOPHOSPHATE SYNTHETASE - (UMPS)

HOMO SAPIENS PROSTASIN - (PRSSS8)
LEPTIN MURINE OBESITY HOMOLOG - (LEP)
1 ANTIGEN - {HLA-B)

BEI'A 2 MICROGLOBULIN - (B M)
N-METHYL-D-ASPARTATE RECEPTOR - (NR1-3)
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Clustermg Mlcroarray Data

* Easier to interpret if partitioned into “gene” or “sample”
clusters

* Conceptually we could treat each gene in N arrays as a
point in N-dimensional space

* Make a distance matrix for the distance between every
two gene points in the N-dimensional space

* Genes with a small distance share the same expression
characteristics and might be functionally related or
similar.

* Clustering reveal groups of functionally related genes
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Clustering of Microarray Data (cont’d)

Time | 1he 2hr  3hr 91 g2 gs g4 95 96 g7 gs  gs Q1o
gy 10.0 20 100 gy 00 81 92 7.7 93 23 51102 6.1 7.0
ga 10.0 0.0 9.0 ga 81 00120 09120 95101128 20 1.0
gs 4.0 2.5 3.0 gs 92120 00112 0.711.1 81 1.110511.5
g4 an 05 85 a 7.7 0911.2 0011.2 92 95120 16 1.1
gz 4.0 85 2.5 g 93120 07112 0.011.2 85 10106116
ga 10.5 20 120 ga 23 95111 92112 00 56121 7.7 85
7 o 85 110 7 51101 81 95 85 56 00 9.1 82 93
gs 2.7 8.7 2.0 gs 102128 1.1120 10121 91 00114124
ga 9.7 2.0 9.0 ga 6.1 20105 16106 7.7 83114 00 11
g10 10.2 1.0 9.2 g10 70 10115 1.111.6 85 93124 1.1 0.0
(a) Intensity matric, I (b) Distance matrix, d

/_\

92
S

;‘ L J

Clusters

(c) Expression patems as points in three-dime ntsional

QF“CD
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Homogeneity and Separation Principles

. Homogene1ty Elements within a cluster are close to
each other

* Separation: Elements in different clusters tend to be
further apart from each other

..clustering is not an easy task!

Given these points a RIS
clustering algorithm = L
might make two distinct '
clusters
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Bad Clustermg

This clustering violates both
Homogeneity and Separation principles

Close distances
from points in
separate clusters

Far distances from
points in the same
cluster
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Good Clustermg

This clustering satisfies both
Homogeneity and Separation principles
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represent genes and the length of the paths between
leaves represents the distances between genes. Similar
genes lie within the same subtrees.

- Agflomerative: Start with every element in its own cluster,
and iteratively join clusters together

—  Divisive: Start with one cluster and iteratively divide it into
smaller clusters
* Optimization based: Determine point sets that
attempt to minimize distances within clusters
§homogeneity) or maximize distances between clusters
separation)
—  K-means, K-mediods, Vector Quantization (VQ)

* Dendrogram: A tree representation of clustering,
where one dimension is metric and others are some
meaningful ordering of the points being clustered
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H1erarch1cal Clustermg Example

Agglomemtzve Start W1th each pomt as a cluster

Join closest two clusters, Form a new cluster using
the joined clusters, Repeat.

| {91, 92, 93, 94> 95, Y6» 97> 9a» Jo}

{91, 92, 94> 96+ 97> 9o}

Branch heights
{92, 94, 97, 9o} correspong to
A the separation
between
clusters at the
{g1, 96} time they were
merged
{92, 94 97} 4

{92, 94}
{93, 95, s}
{93, 95} ‘l

O3 U5 95 91 96 97 92 9a Q9 M
11/8/11
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H1erarch1ca1 Clustermg Example

Assigning Clusters: Establish a threshold of joining
distance. Remove all clusters above it.

| {91, 92: 93 94 95: 96> 97> 9s» o}

{92, 94,97}

{92, 94}

{93, 95, 9g}
{93, 95}

o

93 95 98 91 96 97 92 914 Yo
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Agglomeratwe Issues

’ Wthh clusters to ]om7 @
<!

— Distance based
e Cluster means
* Closest pair

* Closest to mediod
(most centrally located
point in cluster)

— Variance based

e Minimize residuals of a
model fit

* Closest after projection onto
axis with greatest variance
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Hierarchical Clustering Algonthm

Hlerarchlcal CIusterlnq (d, n)

I}

Ve Form n clusters each with one element

3. Construct a graph T by assigning one vertex to each cluster
4, while there is more than one cluster

5. Find the two closest clusters C; and C,

6. Merge C; and G, into new cluster Cwith /C;/ +/C,/ elements
7. Compute distance from Cto all other clusters

8. Add a new vertex Cto T and connect to vertices C; and C,
9. Remove rows and columns of d corresponding to C; and C,
10. Add a row and column to d corresponding to the new cluster C
11. return T

The algorithm takes an nxn distance matrix d of
pairwise distances between points as an input.
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Hierarchical Clustermg Example

Dzvzszve Start W1th a smgle cluster composed of all pomts,
Choose largest cluster, Split or partition it based on any
metric.

| {91, 92, 93, 94> 95, Y6» 97> 9a» Jo}

{91, 92, 94> 96+ 97> 9o}

{92, 94, 97, 9o}

{9+, 96!

{92 94,97}

{93, 95, 9} L

99
11/8/11 Comp 590/ Comp 790-87 Fall 2011 18

L e Y




Divisive Issues

’ Advantage Termmates when ob]ectlve is met

— A target number of clusters
— Minimize size/variance of largest cluster
— Achieves a desired separation metric between clusters
* Division Criteria
— Minimize distance between the separating
hyperplane and the closest point to each cluster
— Minimize residual variance
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H1erarch1ca1 Clustermg cont'd)

. Hlerarchlcal Clustermg is often used to Construct
trees for explaining evolutionary history

Tarsiers J/ New World monkeys Old World monkeys other apes

gﬁ
Early primate
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Hlerarchlcal Clustermg Algorlthm

1. Hierarchical Clustering (d, n)

2. Form n clusters each with one element

3. Construct a graph T by assigning one vertex to each cluster
4, while there is more than one cluster

5. Find the two closest clusters C; and C,

6. Merge C; and G, into new cluster Cwith /C;/ +/C,/ elements
7. Compute distance from Cto all other clusters

8. Add a new vertex Cto T and connect to vertices C; and C,
9. Remove rows and columns of d corresponding to C; and C,
10. Add a row and column to d corresponding to the new cluster C
11. return T

Different definitions of
“distances between clusters”
may lead to different clusterings
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Hierarchical Clustering: Recomputing Distances
WP WPWA WD WA WA WAV WCIUD

CPUDd SAPUWDAP WO TrUDCPUWOD PO UMD Y4

H Y €

d,.(C, C)= min d(x,y)

for all elements x in C and y in C'

— Distance between two clusters is the smallest distance between any
pair of their elements

* d (CC)=(1/ |ICICl) Y d(xy)

for all elements x in C and y in C

— Distance between two clusters is the average distance between all
pairs of their elements
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Optlmlza’uon-based Approaches

Need a function to optimize— “Squared-Error Distortion”
*  (Given a data point v and a set of points X,
define the distance from v to X

d(v, X)

as the (Euclidean) distance from v to the closest point from X.

*  (Qiven a set of n data points V={v,...v } and a set of k£ points X,
define the Squared Error Distortion

dV,.X)=>dv, X)) /n 1<i<n
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K-Means Clustering Problem: Formulation

* Input: A set, V, consisting of n points and a
parameter k

* Output: A set X consisting of k points (cluster
centers) that minimizes the squared error
distortion d(V,X) over all possible choices of X
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1-Mean Clustering Problem: an Easy Case

* Input: A set, V, consisting of n points

* Output: A single point x (cluster center) that
minimizes the squared error distortion d(V,x)
over all possible choices of x

x 1s just the centroid (mean) of all points

1-Mean Clustering problem is easy.
However, it becomes very difficult
(NP-complete) for more than one center.

An efficient heuristic method for K-Means
clustering is the Lloyd algorithm
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K-Means Clustermg Lloyd Algonthm

LIovd Alqorlthm
Arbitrarily assign the k cluster centers

1

2.

3. while the cluster centers keep changing
4

Assigh each data point to the cluster C
corresponding to the closest cluster
representative (center) (1 < /i< k)

5. After the assignment of all data points,
compute new cluster representatives
according to the center of gravity of each
cluster, that is, the new cluster

representatlve IS

>v/ |C| forallvinC for every cluster C

*This may lead to merely a locally optimal clustering.
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%

expression in condition 2

11/7/11

S
V2
Y
Xl &
S
® O
X, o ¢
IS ¢ ¢
00 y
XS @ o
[ [ [ X3 [
1 2 3 4

expression in condition 1
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;

expression in condition 2

11/7/11

o o
o o°
X4 o

expression in condition 1
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;

expression in condition 2

11/7/11

aP>U
& ® o
¢ Q=>o°
X, g
® &
IS
@ . o
¢ \ ¢ ‘ 4
Y ‘( X3 9
X, ° TS
@
XS o © o
1 2 3 4 5

expression in condition 1
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;

expression in condition 2

11/7/11

aP>U
o * o
S IR
o] ©
o
IS
S . o
o @ ¢
& ¢ @ o
@ X3 ¢
@ ¢ o
IS IS o
1 y, 3 4 5

expression in condition 1
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Conservatlve K—Means Algorlthm

. Lloyd algorlthm is fast but in each 1terat10n it moves
many data points, not necessarily converging.

e A more conservative method would be to move one
point at a time only if it improves the overall
clustering cost

The smaller the clusterin ]g cost of a partition of data
points is the better that clustering is

Different methods (e %1 the squared error
distortion) can be used to measure this clustering
cost
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K-Means Greedy Algorlthm

ProqressweGreedyK Means(k)

s

2. Select an arbitrary partition Pinto k clusters
3. while forever

4. bestChange < 0

5. for every cluster C

6. for every element i not in C

/. if moving /to cluster C reduces its clustering cost
8. if (cost(P) - cost(P; o) > bestChange
9. bestChange < cost(P) - cost(P; 5 )
10. &<

I1. C<«C

12. if bestChange > 0

13. Change partition P by moving i“to C
14. else

15. return P
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Are there better algorlthms’?
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