Lecture 13: Graph Algorithms

Study Chapter 8.1 – 8.8
Midterm a week from today, March 5
It will cover through Lecture 12, Chapter 7
The Bridge Obsession Problem

Find a tour crossing every bridge just once

Leonhard Euler, 1735

Bridges of Königsberg
Eulerian Cycle Problem

• Find a cycle that visits every *edge* exactly once

• Linear time

 – Starting at any vertex v, and follow a trail of edges until returning to v.

 – As long as there exists a vertex v that belongs to the current tour, but has adjacent edges not part of the tour, start a new trail from v, following unused edges until returning to v, and join the tour formed in this way to the previous tour.

More complicated Königsberg
Finding an Eulerian Cycle

A. 1 \rightarrow 2 \rightarrow 9
Finding an Eulerian Cycle

1 → 2 → 7 → 3 → 2 → 9 → 1

B. 2 → 7 → 3 → 2

1 → 2 → 9 → 1

2 → 7 → 3 → 2
Finding an Eulerian Cycle

C. 3 → 6 → 5 → 4 → 3

1 → 2 → 7 → 3 → 2 → 9 → 1
1 → 2 → 7 → 3 → 6 → 5 → 4 → 3 → 2 → 9 → 1
Finding an Eulerian Cycle

D. $7 \rightarrow 12 \rightarrow 11 \rightarrow 8 \rightarrow 7$

1 \rightarrow 2 \rightarrow 7 \rightarrow 3 \rightarrow 6 \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 9 \rightarrow 1
1 \rightarrow 2 \rightarrow 7 \rightarrow 12 \rightarrow 11 \rightarrow 8 \rightarrow 7 \rightarrow 3 \rightarrow 6 \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 9 \rightarrow 1
Finding an Eulerian Cycle

D. 9 → 11 → 10 → 9

1 → 2 → 7 → 12 → 11 → 8 → 7 → 3 → 6 → 5 → 4 → 3 → 2 → 9 → 1
1 → 2 → 7 → 12 → 11 → 8 → 7 → 3 → 6 → 5 → 4 → 3 → 2 →
9 → 11 → 10 → 9 → 1
Hamiltonian Cycle Problem

• Find a cycle that visits every vertex exactly once
• Deceptively similar to the Eulerian path
• NP-complete
Mapping Problems to Graphs

- **Arthur Cayley** studied chemical structures of hydrocarbons in the mid-1800s

- He used **trees** (acyclic connected graphs) to enumerate structural isomers
Benzer’s work

• Developed deletion mapping
• “Proved” linearity of the gene
• Demonstrated internal structure of the gene

Seymour Benzer, 1950s
Viruses Attack Bacteria

- Normally bacteriophage T4 kills bacteria
- However if T4 is mutated (e.g., an important subsequence is deleted) it is disabled and loses its ability to kill bacteria
- Suppose the bacteria is infected with two different mutants each of which is disabled – would the bacteria still survive?
- Amazingly, a pair of disabled viruses can kill a bacteria even if each of them is disabled.
- How can it be explained?
Benzer’s Experiment

• Idea: infect bacteria with pairs of mutant T4 bacteriophage (virus)
• Each T4 mutant has an unknown interval deleted from its genome
• If the two intervals overlap: T4 pair is missing part of its genome and is disabled – bacteria survive
• If the two intervals do not overlap: T4 pair has its entire genome and is enabled – bacteria die
Complementation between pairs of mutant T4 bacteriophages
Benzer’s Experiment and Graphs

• Construct an interval graph: each T4 mutant is a vertex, place an edge between mutant pairs where bacteria survived (i.e., the deleted intervals in the pair of mutants overlap)

• Interval graph structure reveals whether DNA is linear or branched DNA
Interval Graph: Linear Genes
Interval Graph: Branched Genes
Interval Graph: Comparison

Linear genome

Branched genome
DNA Sequencing: History

Sanger method (1977): labeled ddNTPs terminate DNA copying at random points.

Both methods generate labeled fragments of varying lengths that are further electrophoresed.
1. Start at primer (restriction site)
2. Grow DNA chain
3. Include ddNTPs
4. Stops reaction at all possible points
5. Separate products by length, using gel electrophoresis
DNA Sequencing

• Shear DNA into millions of small fragments
• Read 500 – 700 nucleotides at a time from the small fragments (Sanger method)
Fragment Assembly

- **Computational Challenge**: assemble individual short fragments (reads) into a single genomic sequence (“superstring”)

- Until late 1990s the shotgun fragment assembly of human genome was viewed as intractable problem
Shortest Superstring Problem

- **Problem**: Given a set of strings, find a shortest string that contains all of them
- **Input**: Strings s_1, s_2, \ldots, s_n
- **Output**: A string s that contains all strings s_1, s_2, \ldots, s_n as substrings, such that the length of s is minimized

- **Complexity**: NP – complete
- **Note**: this formulation does not take into account sequencing errors
Shortest Superstring Problem: Example

The Shortest Superstring problem

Set of strings: \{000, 001, 010, 011, 100, 101, 110, 111\}

Concatenation
Superstring
\[
000 001 010 011 100 101 110 111
\]

Shortest superstring
\[
000
0 0 0 1 1 1 0 1 0 0
001
111
101
100
\]
Overlap graph of 8 3-bit strings

Shortest Superstring Solution?

Find the heaviest path (by summing edge weights) that includes all vertices.

Sound familiar?
Reducing SSP to TSP

- Define $\text{overlap} \ (s_i, s_j)$ as the length of the longest prefix of s_j that matches a suffix of s_i.

aaaggcatcaaatctaaaggcatcaaaa

What is $\text{overlap} \ (s_i, s_j)$ for these strings?
Reducing SSP to TSP

- Define $\text{overlap} (s_i, s_j)$ as the length of the longest prefix of s_j that matches a suffix of s_i.

\[\text{aaaggcatcaaatct} \text{aaaggcatcaaa} \]
\[\text{aaaggcatcaaa} \text{tctaaaggcatcaaa} \]

$\text{overlap}=12$
Reducing SSP to TSP

- Define \(\text{overlap} (s_i, s_j) \) as the length of the longest prefix of \(s_j \) that matches a suffix of \(s_i \).

\[
\begin{align*}
\text{aaaggcatcaatct} & \text{aaaggcatcaaa} \\
\text{aaaggcatcaaaatctaaaggcatcaaa} & \text{aaaggcatcaaaatctaaaggcatcaaa}
\end{align*}
\]

- Construct a graph with \(n \) vertices representing the \(n \) strings \(s_1, s_2, \ldots, s_n \).
- Compute \(\text{overlap} (s_i, s_j) \) between vertices \(s_i \) and \(s_j \).
- Insert edge \(\text{Max}(|s_i| - \text{overlap}, |s_j| - \text{overlap}) \)
- Find the shortest path which visits every vertex exactly once. This is the **Traveling Salesman Problem** (TSP), which is \(NP \) – complete.
SSP to TSP: An Example

\[S = \{ \text{ATC, CCA, CAG, TCC, AGT} \} \]

SSP

- AGT
- CCA
- ATC
- ATCCAGT
- TCC
- CAG

TSP

A graph showing the distances between nodes: ATC, CCA, CAG, TCC, AGT.

Distance labels: 0, 1, 2.
Sequencing by Hybridization (SBH): History

• **1988:** SBH suggested as an alternative sequencing method. Nobody believed it will ever work.

• **1991:** Light directed polymer synthesis developed by Steve Fodor and colleagues.

• **1994:** Affymetrix develops first 64-kb DNA microarray.

 - **First microarray prototype (1989)**
 - **First commercial DNA microarray prototype w/16,000 features (1994)**
 - **500,000 features per chip (2002)**
How SBH Works

• Attach all possible DNA probes of length l to a flat surface, each probe at a distinct and known location. This set of probes is called the DNA array.

• Apply a solution containing fluorescently labeled DNA fragment to the array.

• The DNA fragment hybridizes with those probes that are complementary to substrings of length l of the fragment.
How SBH Works (cont’d)

• Using a spectroscopic detector, determine which probes hybridize to the DNA fragment to obtain the \(l \)-mer composition of the target DNA fragment.

• Apply the combinatorial algorithm (below) to reconstruct the sequence of the target DNA fragment from the \(l \)-mer composition.
Hybridization on DNA Array

Universal DNA Array

DNA target TATCCGT TT (complement of ATAGGCAAAA) hybridizes to the array of all 4-mers:

- TAGGCAAAA
- ATAG
- TAGG
- AGGC
- GGC
- GCAA
- CAAA
\textbf{l-mer composition}

- \textit{Spectrum} \((s, l)\) - unordered multiset of all possible \((n - l + 1)\) \(l\)-mers in a string \(s\) of length \(n\)
- The order of individual elements in \(\text{Spectrum} \ (s, l)\) does not matter
- For \(s = \text{TATGGTGC}\) all of the following are equivalent representations of \(\text{Spectrum} \ (s, 3)\):
 \[
 \begin{align*}
 &\{\text{TAT, ATG, TGG, GGT, GTG, TGC}\} \\
 &\{\text{ATG, GGT, GTG, TAT, TGC, TGG}\} \\
 &\{\text{TGG, TGC, TAT, GTG, GGT, ATG}\}
 \end{align*}
 \]
l-mer composition

- **Spectrum** \((s, l)\) - unordered multiset of all possible \((n - l + 1)\) \(l\)-mers in a string \(s\) of length \(n\)
- The order of individual elements in *Spectrum* \((s, l)\) does not matter
- For \(s = \text{TATG} \text{GTGC}\) all of the following are equivalent representations of *Spectrum* \((s, 3)\):
 - \{TAT, ATG, TGG, GGT, GTG, TGC\}
 - \{ATG, GGT, GTG, TAT, TGC, TGG\}
 - \{TGG, TGC, TAT, GTG, GGT, ATG\}
- We usually choose the lexicographically sorted representation as the canonical one.
Different sequences – the same spectrum

- Different sequences may have the same spectrum:

 \[
 \text{Spectrum(GTATCT,2)} = \\
 \text{Spectrum(GTCTAT,2)} = \\
 \{\text{AT, CT, GT, TA, TC}\}
 \]
The SBH Problem

• **Goal:** Reconstruct a string from its l-mer composition

• **Input:** A set S, representing all l-mers from an (unknown) string s

• **Output:** String s such that $Spectrum(s, l) = S$
SBH: Hamiltonian Path Approach

\[S = \{ \text{ATG, AGG, TGC, TCC, GTC, GGT, GCA, CAG} \} \]

ATG AGG TGC TCC GTC GGT GCA CAG

\[\text{ATG CAG G TCC} \]

Path visited every VERTEX once
SBH: Hamiltonian Path Approach

A more complicated graph:

\[S = \{ \text{ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT} \} \]
SBH: Hamiltonian Path Approach

\[S = \{ \text{ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT} \} \]

Path 1:

\[\text{ATGCGTGGCA} \]

Path 2:

\[\text{ATGGCGTGCA} \]
SBH: Eulerian Path Approach

$S = \{ \text{ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT} \}$

Vertices correspond to $(l-1)$ - mers: $\{ \text{AT, TG, GC, GG, GT, CA, CG} \}$

Edges correspond to l - mers from S

de Bruijn Graph: a graph representing the overlap of k-length sequences as vertices with directed edges from sequences whose $k-1$ suffix matches the $k-1$ prefix of a vertex

Find path that visits every EDGE once
$S = \{ \text{AT, TG, GC, GG, GT, CA, CG} \}$ corresponds to two different paths:

ATGGCGTGCA

ATGCGTGGCA
Euler Theorem

- A graph is balanced if for every vertex the number of incoming edges equals to the number of outgoing edges:
 \[\text{in}(v) = \text{out}(v) \]

- **Theorem:** A connected graph is Eulerian if and only if each of its vertices are balanced.
Euler Theorem: Proof

- Eulerian \rightarrow balanced

 for every edge entering v (incoming edge) there exists an edge leaving v (outgoing edge).

 Therefore

 \[in(v) = out(v) \]

- Balanced \rightarrow Eulerian

 ???
Algorithm for Constructing an Eulerian Cycle

a. Start with an arbitrary vertex \(v \) and form an arbitrary cycle with unused edges until a dead end is reached. Since the graph is Eulerian this dead end is necessarily the starting point, i.e., vertex \(v \).
Algorithm for Constructing an Eulerian Cycle (cont’d)

b. If cycle from (a) above is not an Eulerian cycle, it must contain a vertex \(w \), which has untraversed edges. Perform step (a) again, using vertex \(w \) as the starting point. Once again, we will end up in the starting vertex \(w \).
Algorithm for Constructing an Eulerian Cycle (cont’d)

c. Combine the cycles from (a) and (b) into a single cycle and iterate step (b).

Running time: linear to the number of edges
Euler Theorem: Extension

- **Theorem:** A connected graph has an Eulerian path if and only if it contains at most two semi-balanced vertices and all other vertices are balanced.
 - Semi-balanced vertex: \(\text{in}(v) \) and \(\text{out}(v) \) differ by 1
Some Difficulties with SBH

• **Fidelity of Hybridization:** difficult to detect differences between probes hybridized with perfect matches and 1 or 2 mismatches

• **Array Size:** Effect of low fidelity can be decreased with longer l-mers, but array size increases exponentially in l. Array size is limited with current technology.

• **Practicality:** SBH is still impractical. As DNA microarray technology improves, SBH may become practical in the future

• **Practicality again:** Although SBH is still impractical, it spearheaded expression analysis and SNP analysis techniques