Lecture 12:
Divide and Conquer Algorithms

Study Chapter 7.1 - 7.4

10/3/13 Comp 555 Fall 2013

D1V1de and Conquer Algorlthms

— Divide problem into sub-problems

— Conquer by solving sub-problems
recursively. If the sub-problems are small
enough, solve them in brute force fashion

— Combine the solutions of sub-problems into a
solution of the original problem (tricky part)

10/3/13 Comp 555 Fall 2013 2

Sortmg Problem ReV151ted

* Given: an unsorted array

512147 (1|3 |26

e (Goal: sort it

10/3/13 Comp 555 Fall 2013 3

Mergesort D1V1de Step

Step 1 — D|V|de

512417113 |2 |6

<5 20 |4 71 |1 3 2 6

log(n) divisions to split an array of size n into single elements

10/3/13 Comp 555 Fall 2013 4

Mergesort Conquer Step

Q2471 3| |2 |6
O(n)

215 4 |7 1|3 216

2 1415 |7 112 |3 |6

logn iterations, each iteration takes O(n) time. Total Time: O(n logn)

10/3/13 Comp 555 Fall 2013 5

Mergesort Merge

Merge

2 arrays of size 1 can be easily merged to
form a sorted array of size 2

5 2 |—P» |2 |5

2 sorted arrays of size n and m can be
merged in O(n+m) time to form a sorted
array of size n+m

10/3/13 Comp 555 Fall 2013 6

Mergesort

Merge

Merge 2 arrays of size 4

1(21213

Etce

4 . [1]2]2(3]4|5]|6]|7

1(212(3|4

Fall 2013

Comp 555

10/3/13

Merge Algonthm

Merge(a,b)
nl < size of array a
n2 < size of array b

dprp] <=
an2+,eoo
<1
J<1
fork < 1tonl + n2
if a, < b,
Ckeai
f—i+1]
else
Ckebj
J— j+1
return c

10/3/13 Comp 555 Fall 2013 8

MergeSort Algorlthm

. Merquort(c)

1
2. n < size of array ¢

3. ifn=1

4 return c

5. left < list of first n/2 elements of ¢

6. right < list of last n-n/2 elements of ¢

7. sortedLeft — MergeSort(/eft)

8. sortedRight < MergeSort(right)

9. sortedList < Merge(sortedLeft,sortedRight)
10.return sortedList

10/3/13 Comp 555 Fall 2013

MergeSort Runnmg T1me

. The problem is 51mp11f1ed to baby steps

— for the 7"th merging iteration, the
complexity of the problem is O(n)

—number of iterations is O(log n)
—running time: O(n logn)

Now for a biological problem

10/3/13 Comp 555 Fall 2013 10

Al1gnments Requlre Quadratic Memory

Alignment Path

* Space complexity for
computing alignment path r |
for sequences of length n
and m is O(nm)

* We keep a table of all scores
and backtracking references
in memory to reconstruct \

the path (backtracking)

10/3/13 Comp 555 Fall 2013 11

Computing Alignment Score with
Linear Memory

lllll

Alignment Score

However, the space
complexity of just computing (" [.1.]
the score itself is only O(n)
For example, we only need n< [

1

I

I

[
the previous column to i
calculate the current column, | [Hi
and we can throw away that
previous column once we're

done using it

— |)

=
A S -

=
- s s e o - e
—

10/3/13 Comp 555 Fall 2013 12

Computing Alignment Score: Recycling Columns

Only two columns of scores are saved at any
given time

v]|[® < |l vARVEI M 115

v C el VARV 4 H\4

A 1H\4 AR 2111\4 VAIRVEIL 2114

v Cle VARV A 4

v |l VARVAI M
memory for column memory for column
1 is used to 2 is usedto
calculate column 3 calculate column 4

10/3/13 Comp 555 Fall 2013 13

D&C Sequence Ahgnment

Find the best scoring path L

. . i,m2)
aligning two sequences

Path(source, sink)
if(source & sink are in consecutive columns)
output the longest path from source to sink

]
2
3 else

4. middle — vertex with largest score from source to sink
5

6

Path (source, middle)
Path(middle, sink)

The only problem left is how to find this “middle vertex™!

10/3/13 Comp 555 Fall 2013 14

COmputmg the Ahgnment Path

m/2 m We want to calculate the Iongest
path from (0,0) to (n,m) that
passes through (/,m/2) where i
ranges from O to n and

/2 represents the i-th row

/ \ Define

Prefix(i)

length(i)

S‘ ff .
o)~ as the length of the longest path

from (0,0) to (n,m) that passes
through vertex (i, m/2)

10/3/13 Comp 555 Fall 2013 15

Crossmg the Mldlme

Prefix(i)

Suffix(i)

Define (mid,m/2) as the vertex where the longest path crosses
the middle column.

length(mid) = optimal length = max,_; _, length(i)

10/3/13 Comp 555 Fall 2013 16

Computing Prefix()

prefIX|s the Ingth of te Iongest pathfrom -
(0,0) to (i,m/2)

Compute prefix(i) in the left half of the matrix

' \
”

store prefix(i) column

<4< € ¢ ¢ | <
<

0 m/2 m

10/3/13 Comp 555 Fall 2013 17

Computmg Sufﬁx()

. sufflx(l) IS the Iength of the Iongest path from (/ m/2) to (n m)
* suffix(i) is the length of the longest path from (n,m) to (i,m/2)
with all edges reversed

« Compute suffix(i) in the right half of the “reversed” matrix

r'g ‘\
o store suffix(i) column
a
a
a
0 m/2 m

10/3/13 Comp 555 Fall 2013 18

Length(i) = Preﬁx() + Suffix(i)

» Add prefix(i) and suffix(/) to compute length(i):
- length()=prefix(i) + suffix(i)
* You now have a middle vertex of the maximum
path (,m/2) as maximum of length(i)

VAL X A
0

o
V¥4 e }ymdle point found
o
o
o
m

Q

Q

VARVEL ¥
R

Q

0

Clea b

10/3/13 Comp 555 Fall 2013 19

Fmdmg the Mlddle Pomt

10/3/13 Comp 555 Fall 2013 20

Fmdmg the M1ddle Pomt agam

10/3/13 Comp 555 Fall 2013 21

And Agam

0O m/8 m/4 3m/8 m/2 5m/8 3m/4 7m/8 m

10/3/13 Comp 555 Fall 2013 22

Time = Area: First Pass

On first level, the algorithm touches the
entire area

7 P0G L AR A AR
o P P o e B P P R A PP A A
X,

b T N T i S S S S 0

o o o o e P P P R P PP A

e e T

A AR R A

R

oL o,
— 7 e e
Area = n*m SRR

R

S N T S S S S S 0

L 0 0 L L L L 8 8 L L,
&

e e

N

L L, L

S
*3

.--. B L L

b T N T i S S S S 0

o o o o e P P P R P PP A

e e T

A AR R A

R

L

b T N T i S S S S 0

o o o o e P P P R P PP A

e e T

A AR R A

R

b T N T i S S S S 0

S N T S S S S S 0

O L
o B B B B BB P B PPN
//ﬁﬁﬁ%ﬁﬁ%ﬁﬁ%ﬁﬁ%ﬁﬁ%ﬁﬁ

e e
R

10/3/13 Comp 555 Fall 2013 23

Tlme = Area Second Pass

On second level, the algorithm covers only
1/2 of the area m/2

Area/?2

10/3/13 Comp 555 Fall 2013 24

Tlme = Area Second Pass

On second pass, the algorithm covers only
1/2 of the area m/2

Area/?2

Regardless of i’s value!

10/3/13 Comp 555 Fall 2013 25

Tlme = Area Th1rd Pass

On third pass, onIy 1/4th is covered.

Area/4

10/3/13 Comp 555 Fall 2013 26

Geometric Reduction At Each Iteration

1 —I—/z % e + (k< 2
Runtime: O(Area) = O(nm)

l5th pass: 1/16

3 pass: 1/\4\k

first pass: 1 4th pass: 1/8

2"d pass: 1/2

Total Space: O(n) for score computation, O(n+m) to store the optimal
alignment

10/3/13 Comp 555 Fall 2013 27

Can We Do Even Better7

* Align in Subquadratic Time?

* Dynamic Programming
takes O(nm) for global
alignment, which is
quadratic
assuming n ~ m

* Yes, using the
Four-Russians Speedup

10/3/13 Comp 555 Fall 2013 28

Partltlomng Sequences into Blocks

. Partltlon the nxn grld into blocks of size t X t

* We are comparing two sequences, each of size n,
and each sequence is sectioned off into chunks,
each of length ¢

* Sequence u = u,...u, becomes

|uq. | | Upqe e Uoe | oo | Uppee Uy |

and sequence v = v,...v, becomes

| 01...0¢| | Opaq O | oor | Opiaq-- 204 |

10/3/13 Comp 555 Fall 2013 29

nment Grld into Blocks

PO D PO OO PO O DD OO OO

Partitioning Ali

DAPUDCPUDCPUWDAPUWDAdPUWDdPUD 19 DAL

n n/t
- N - > ~
4 t A
/_H
n < ! { > nlt
S partition)

10/3/13 Comp 555 Fall 2013 30

Block Allgnment

. Block allgnment of sequences U and v:

1. An entire block in u is aligned with an entire
block in v

2.An entire block is inserted
3.An entire block is deleted

* Block path: a path that traverses every ¢ x ¢
square through its corners

10/3/13 Comp 555 Fall 2013 31

Block Ahgnment Examples

valid invalid

10/3/13 Comp 555 Fall 2013 32

Block Ahgnment Problem

’ Goal Fmd the longest block path through an

edit graph

Input: Two sequences, u and o partitioned into
blocks of size t. This is equivalent to an n x n
edit graph partitioned into ¢ x ¢ subgrids

* QOutput: The block alignment of # and v with the
maximum score (longest block path through the

edit graph

10/3/13 Comp 555 Fall 2013 33

Constructmg Ahgnments within Blocks

* To solve: compute alignment score f§;; for each pair

of blocks | 1y4q--- U | and |v(]_1)*t+1...vj*t

* How many blocks are there per sequence?

(n/t) blocks of size t

* How many pairs of blocks for aligning the two
sequences?

(n/t) x (n/1)
* For each block pair, solve a mini-alignment problem
of size t x t, which requires t x t = O(#?) effort

* Looks like a wash O((n/t)? t?) = O(n?), but is it?

10/3/13 Comp 555 Fall 2013 34

Constructing Alignments within Blocks

i > Solve mini-alignment problems

Block pair represented by
each small square

10/3/13 Comp 555 Fall 2013 35

Block Ahgnment Dynanuc Programmmg

. Let 54, denote the 0pt1ma1 block ahgnment score
between the first i blocks of # and first j blocks of
v

N\ .
4 O, 1S the penalty
Si-1j = Oblock o trsart
§;; = Max or 1mserting or
) Sij-1 ™ Oblock > deleting an entire
block
Sirjo1 T ﬁz’,j . .
\) p; ; 1s score of pair

of blocks in row I
and column ;.

10/3/13 Comp 555 Fall 2013 36

Block Ahgnment Runtlme

* Indices i,j range from 0 to n/¢
* Running time of algorithm is
O([n/ t*[n/ 11O(B,) = O(n?/ 1)
* Computing all B, ;requires solving (n/t)*(n/t)
mini block alignments, each of size (t*t)
* So computing all §;; takes time
O((r2/£) £) = O(n?)
e [.00ks like a wash, but is it?

10/3/13 Comp 555 Fall 2013 37

Recall Our Bag of Tr1c1<s

* A key 1ns1ght of dynamlc programming was to reuse
repeated computations by storing them in a tableau

* Are there any repeated computations in Block
Alignments?

* Let's check out some numbers...

— Lets assume n =m =4000 and t =4
— n/t =1000, so there are 1,000,000 blocks
— How many possible many blocks are there?

* Assume we are aligning DNA with DNA, so there sequences are
over an alphabet of {A,C,G, T}

 Possible sequences are 4t= 4% = 256,
* Possible alignments are 4 x 4' = 65536

— There are fewer possible alignments than blocks, thus we

must be frequently revisiting alignments!
10/3/13 Comp 555 Fall 2013 38

Four Russ1ans Techmque

. The tr1ck is in how to pick t relative to n
* If we pick t = log,(n)/4

* Instead of having (n/t)*(n/t) mini-alignments,
construct 4’ x 4’ mini-alignments for all pairs of ¢
nucleotide sequences, and put in a lookup table.

* However, size of lookup table is not really that
huge if ¢ is small.

o If t = (log,n)/4. Then 4! x 4! = “n2x+n2=n

10/3/13 Comp 555 Fall 2013 39

each sequence
has ¢ nucleotides

10/3/13

AAAAAA
AAAAAC
AAAAAG
AAAAAT
AAAACA

AAAAAA

AAAAAC
AAAAAG
AAAAAT

AAAACA

&~ | [&

(GO I I S (O 1
W] O = |
L= |

N W] W W |

Comp 555

Lookup table “Score”

size 1s n, which 1s much smaller
than (n/t)*(n/f) = repeats

Rather than precomputing this
table you could actually use a
hash table and compute it lazily

~—

You can also order the sequences
(alphabetize them) to exploit the
symmeftry, thus cutting the
table-size in half

Fall 2013 40

New Recurrence

. The new lookup table Score is mdexed by a pair
of t-nucleotide strings, so

B Si-1; = Oblock

Y Sii1 ~ Oblock
S;.1,.1 T Score(i™ block of v, j™ block of u)

\

10/3/13 Comp 555 Fall 2013 41

Four Ru551ans Speedup Runtlme

. Smce Computmg the lookup table Score of size 1

takes O(n) time, the running time is dominated
by the (n/t)*(n/t) accesses to the lookup table

* Overall running time: O([n2/#?])

* Since t = (log,n)/4, substitute in:
* O([n?/{logyn}?]) = O(n?/log(n log n))

10/3/13 Comp 555 Fall 2013 42

. We can d1V1de up the grld mto blocks and run
dynamic programming only on the corners of
these blocks

* In order to speed up the mini-alignment
calculations to under n?, we create a lookup table
of size n, which consists of all scores for all ¢-
nucleotide pairs

* Running time goes from quadratic, O(n?), to
subquadratic: O(n?/log(n log n))

10/3/13 Comp 555 Fall 2013 43

Four Russians Speedup for LCS

. Unhke the block partltloned grap the LCS path

is not restricted to pass through the vertices of
the blocks.

FETTTRIS POTPPP PP TRTTTIII SITTITTT TIPTPRN POPPPITE OPPPTIS PRTTe

block alignment longest common subsequence

10/3/13 Comp 555 Fall 2013 44

Block Ahgnment vs. LCS

’ In block ahgnment we only care about the
corners of the blocks.

In LCS, we care about all points on the edges of

the blocks, because those are points that the path
can traverse.

* Recall, each sequence is of length n, each block is
of size t, so each sequence has (11/t) blocks.

10/3/13 Comp 555 Fall 2013 45

Block Alignment vs. LCS: Points Of Interest

block alignment has LCS alignment
(n/t)*(nlt) = (n%/t?) has O(n?/t)
points of interest points of interest

10/3/13 Comp 555 Fall 2013 46

Traversmg Blocks for LCS

* Given alignment scores s; . in the flrst row and scores S.; in

the first column of a ¢ x t mini square, compute alignment
scores in the last row and column of the minisquare.

* To compute the last row and the last column score, we use
these 4 variables:
1. alignment scores s, . in the first row
2. alignment scores s.; in the first column
3. substring of sequence u in this block (4! possibilities)

4. substring of sequence v in this block (4 possibilities)

10/3/13 Comp 555 Fall 2013 47

Traversmg Blocks for LCS (Cont d)

. If we used th1s to compute the gnd 1t Would
take quadratic, O(n?) time, but we want to do
better.

/\

Given these N
2t — 1 scores

we can calculate
< these 2t — 3 scores

-

t X t block

10/3/13 Comp 555 Fall 2013 48

Four Russians Speedup

. Bulld a lookup table for all poss1b1e Values of the
four variables:
1. all possible scores for the first row s.,

2. all possible scores for the first column s.

3. substring of sequence u in this block (4 possibilities)
4. substring of sequence v in this block (4! possibilities)

* For each quadruple we store the value of the score
for the last row and last column.

* This will be a huge table, but we can eliminate
alignments scores that don’t make sense

10/3/13 Comp 555 Fall 2013 49

Reducmg Table Size

. Ahgnment scores in LCS are monotomcally
increasing, and adjacent elements can’t differ by
more than 1

* Example: 0,1,2,2,3,4 is 0k; 0,1,2,4,5,8, is not
because 2 and 4 differ by more than 1 (and so do
5 and 8)

* Therefore, we only need to store quadruples
whose scores are monotonically increasing and
differ by at most 1

10/3/13 Comp 555 Fall 2013 50

Efficient Encodin

AP UWOOCP WO CPUWHOIdPUUOdIPWW PO dP?WdEPWOh P4 (D

g

* Instead of recording numbers that correspond to
the index in the sequences u and v, we can use
binary to encode the differences between the
alignment scores

(0 1 9)) 3 4 original encoding

1 1 1 0 1 1 binary encoding

10/3/13 Comp 555 Fall 2013 51

Reducmg Lookup Table S1ze

. 2t p0551b1e scores (t = size of blocks)
* 4! possible strings
— Lookup table size is (2t * 2)*(4t * 4t) = 26t
* Lett=(logn)/4;
— Table size is: 26(ogm/4) = n6/4) = pB3/2)
e Time = O([n?/t?]*logn)
* O([n?/{logn}?]*logn) = O(n?*/logn)

10/3/13 Comp 555 Fall 2013 52

Summary

. We take advantage of the fact that for each block
of t = log(n), we can pre-compute all possible

scores and store them in a lookup table of size
1(3/2)

We used the Four Russian speedup to go from a
quadratic running time for LCS to subquadratic
running time: O(n?/log(n log n))

* Next Time: Graph Algorithms

10/3/13 Comp 555 Fall 2013 53

