
10/3/13 Comp 555 Fall 2013 1

10/3/13 Comp 555 Fall 2013 2

– Divide problem into sub-problems
– Conquer by solving sub-problems

recursively. If the sub-problems are small
enough, solve them in brute force fashion

– Combine the solutions of sub-problems into a
solution of the original problem (tricky part)

10/3/13 Comp 555 Fall 2013 3

• Given: an unsorted array

• Goal: sort it

5 2 4 7 1 3 2 6

1 2 2 3 4 5 6 7

10/3/13 Comp 555 Fall 2013 4

Step 1 – Divide
5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

5 2 4 7 1 3 2 6

log(n) divisions to split an array of size n into single elements

10/3/13 Comp 555 Fall 2013 5

Step 2 – Conquer

1 2 2 3 4 5 6 7

2 4 5 7 1 2 3 6

2 5 4 7 1 3 2 6

5 2 4 7 1 3 2 6

O(n)

O(n)

O(n)

O(n logn) logn iterations, each iteration takes O(n) time. Total Time:

10/3/13 Comp 555 Fall 2013 6

Merge
•  2 arrays of size 1 can be easily merged to

form a sorted array of size 2

•  2 sorted arrays of size n and m can be
merged in O(n+m) time to form a sorted
array of size n+m

5 2 2 5

10/3/13 Comp 555 Fall 2013 7

Merge 2 arrays of size 4

2 4 5 7

1 2 3 6

1
2 4 5 7

2 3 6

1 2

4 5 7

2 3 6

1 2 2
4 5 7

3 6

1 2 2 3

4 5 7

6

1 2 2 3 4
Etcetera…

1 2 2 3 4 5 6 7

10/3/13 Comp 555 Fall 2013 8

1.   Merge(a,b)
2.  n1 ← size of array a
3.  n2 ← size of array b
4.  an1+1 ← ∞
5.  an2+1 ← ∞
6.  i ← 1
7.  j ← 1
8.   for k ← 1 to n1 + n2
9.  if ai < bj
10.  ck ← ai
11.  i ← i +1
12.  else
13.  ck ← bj
14.  j← j+1
15.  return c

10/3/13 Comp 555 Fall 2013 9

1.   MergeSort(c)
2.  n ← size of array c
3.   if n = 1
4.  return c
5.   left ← list of first n/2 elements of c
6.   right ← list of last n-n/2 elements of c
7.   sortedLeft ← MergeSort(left)
8.   sortedRight ← MergeSort(right)
9.   sortedList ← Merge(sortedLeft,sortedRight)
10.  return sortedList

10/3/13 Comp 555 Fall 2013 10

• The problem is simplified to baby steps
– for the i’th merging iteration, the

complexity of the problem is O(n)
– number of iterations is O(log n)
– running time: O(n logn)

Now for a biological problem

10/3/13 Comp 555 Fall 2013 11

Alignment Path
•  Space complexity for

computing alignment path
for sequences of length n
and m is O(nm)

•  We keep a table of all scores
and backtracking references
in memory to reconstruct
the path (backtracking)

n

m

10/3/13 Comp 555 Fall 2013 12

Alignment Score
•  However, the space

complexity of just computing
the score itself is only O(n)

•  For example, we only need
the previous column to
calculate the current column,
and we can throw away that
previous column once we’re
done using it

2

n

10/3/13 Comp 555 Fall 2013 13

memory for column
 1 is used to
 calculate column 3

memory for column
 2 is used to
 calculate column 4

Only two columns of scores are saved at any
given time

10/3/13 Comp 555 Fall 2013 14

 Path(source, sink)
1.  if(source & sink are in consecutive columns)
2.  output the longest path from source to sink
3.  else
4.  middle ← vertex with largest score from source to sink
5.  Path(source, middle)
6.  Path(middle, sink)

The only problem left is how to find this “middle vertex”!

Find the best scoring path
 aligning two sequences

10/3/13 Comp 555 Fall 2013 15

 m/2 m

n
Prefix(i)

Suffix(i)

We want to calculate the longest
path from (0,0) to (n,m) that
passes through (i,m/2) where i
ranges from 0 to n and
represents the i-th row

Define

 length(i)

as the length of the longest path
 from (0,0) to (n,m) that passes
 through vertex (i, m/2)

10/3/13 Comp 555 Fall 2013 16

 m/2 m

n

Prefix(i)

Suffix(i)

Define (mid,m/2) as the vertex where the longest path crosses
 the middle column.

 length(mid) = optimal length = max0≤i ≤n length(i)

10/3/13 Comp 555 Fall 2013 17

•  prefix(i) is the length of the longest path from
(0,0) to (i,m/2)

•  Compute prefix(i) in the left half of the matrix

0 m/2 m

store prefix(i) column

10/3/13 Comp 555 Fall 2013 18

•  suffix(i) is the length of the longest path from (i,m/2) to (n,m)
•  suffix(i) is the length of the longest path from (n,m) to (i,m/2)

with all edges reversed
•  Compute suffix(i) in the right half of the “reversed” matrix

0 m/2 m

store suffix(i) column

10/3/13 Comp 555 Fall 2013 19

•  Add prefix(i) and suffix(i) to compute length(i):
•  length(i)=prefix(i) + suffix(i)

•  You now have a middle vertex of the maximum
path (i,m/2) as maximum of length(i)

middle point found

0 m/2 m

0

i

10/3/13 Comp 555 Fall 2013 20

0 m/4 m/2 3m/4 m

10/3/13 Comp 555 Fall 2013 21

0 m/4 m/2 3m/4 m

10/3/13 Comp 555 Fall 2013 22

0 m/8 m/4 3m/8 m/2 5m/8 3m/4 7m/8 m

10/3/13 Comp 555 Fall 2013 23

•  On first level, the algorithm touches the
entire area

Area = n*m
Computing

prefix(i)
Computing

suffix(i)

10/3/13 Comp 555 Fall 2013 24

•  On second level, the algorithm covers only
1/2 of the area

Area/2

m/2

i

10/3/13 Comp 555 Fall 2013 25

•  On second pass, the algorithm covers only
1/2 of the area

Area/2

m/2

i

Regardless of i’s value!

10/3/13 Comp 555 Fall 2013 26

•  On third pass, only 1/4th is covered.

Area/4

10/3/13 Comp 555 Fall 2013 27

1 + ½ + ¼ + ... + (½)k ≤ 2
•  Runtime: O(Area) = O(nm)

• Total Space: O(n) for score computation, O(n+m) to store the optimal
alignment

first pass: 1

2nd pass: 1/2

3rd pass: 1/4

5th pass: 1/16

4th pass: 1/8

10/3/13 Comp 555 Fall 2013 28

• Align in Subquadratic Time?
• Dynamic Programming

takes O(nm) for global
alignment, which is
quadratic
assuming n ≈ m

• Yes, using the
Four-Russians Speedup

10/3/13 Comp 555 Fall 2013 29

•  Partition the n x n grid into blocks of size t x t
• We are comparing two sequences, each of size n,

and each sequence is sectioned off into chunks,
each of length t

•  Sequence u = u1…un becomes
 |u1…ut| |ut+1…u2t| … |un-t+1…un|
 and sequence v = v1…vn becomes
 |v1…vt| |vt+1…v2t| … |vn-t+1…vn|

10/3/13 Comp 555 Fall 2013 30

partition

n n/t

n/t

t

t n

10/3/13 Comp 555 Fall 2013 31

•  Block alignment of sequences u and v:
1. An entire block in u is aligned with an entire

block in v
2. An entire block is inserted
3. An entire block is deleted

•  Block path: a path that traverses every t x t
square through its corners

10/3/13 Comp 555 Fall 2013 32

valid invalid

10/3/13 Comp 555 Fall 2013 33

• Goal: Find the longest block path through an
edit graph

•  Input: Two sequences, u and v partitioned into
blocks of size t. This is equivalent to an n x n
edit graph partitioned into t x t subgrids

• Output: The block alignment of u and v with the
maximum score (longest block path through the
edit graph

10/3/13 Comp 555 Fall 2013 34

•  To solve: compute alignment score ßi,j for each pair
of blocks |u(i-1)*t+1…ui*t| and |v(j-1)*t+1…vj*t|

•  How many blocks are there per sequence?

 (n/t) blocks of size t
•  How many pairs of blocks for aligning the two

sequences?
 (n/t) x (n/t)
•  For each block pair, solve a mini-alignment problem

of size t x t, which requires t x t = O(t2) effort
•  Looks like a wash O((n/t)2 t2) = O(n2), but is it?

10/3/13 Comp 555 Fall 2013 35

n/t

Block pair represented by
each small square

Solve mini-alignment problems

10/3/13 Comp 555 Fall 2013 36

•  Let si,j denote the optimal block alignment score
between the first i blocks of u and first j blocks of
v

si,j = max
si-1,j - σblock

si,j-1 - σblock

si-1,j-1 + βi,j

σblock is the penalty
for inserting or
deleting an entire
block

βi,j is score of pair
of blocks in row i
and column j.

10/3/13 Comp 555 Fall 2013 37

•  Indices i,j range from 0 to n/t

•  Running time of algorithm is

 O([n/t]*[n/t]*O(βi,j)) = O(n2/t2)

•  Computing all βi,j requires solving (n/t)*(n/t)
mini block alignments, each of size (t*t)

•  So computing all βi,j takes time

 O((n2/t2) t2) = O(n2)
•  Looks like a wash, but is it?

•  A key insight of dynamic programming was to reuse
 repeated computations by storing them in a tableau

•  Are there any repeated computations in Block
 Alignments?

•  Let’s check out some numbers…
–  Lets assume n = m = 4000 and t = 4
–  n/t = 1000, so there are 1,000,000 blocks
–  How many possible many blocks are there?

•  Assume we are aligning DNA with DNA, so there sequences are
 over an alphabet of {A,C,G,T}

•  Possible sequences are 4t = 44 = 256,
•  Possible alignments are 4t x 4t = 65536

–  There are fewer possible alignments than blocks, thus we
 must be frequently revisiting alignments!

10/3/13 Comp 555 Fall 2013 38

10/3/13 Comp 555 Fall 2013 39

•  The trick is in how to pick t relative to n
•  If we pick t = log2(n)/4
•  Instead of having (n/t)*(n/t) mini-alignments,

construct 4t x 4t mini-alignments for all pairs of t
nucleotide sequences, and put in a lookup table.

• However, size of lookup table is not really that
huge if t is small.

•  If t = (log2n)/4. Then 4t x 4t
 = 4√n2 x 4√n2 = n

6 4 4 4 4

4 6 4 4 3

4 4 6 4 3

4 4 4 6 3

4 3 3 3 6

10/3/13 Comp 555 Fall 2013 40

Lookup table “Score”

AAAAAA

AAAAAC

AAAAAG

AAAAAT

AAAACA

…

A
A
A
A
A
A

A
A
A
A
A
C

A
A
A
A
A
G

A
A
A
A
A
T

A
A
A
A
C
A

…

each sequence
has t nucleotides

size is n, which is much smaller
than (n/t)*(n/t)  repeats

Rather than precomputing this
 table you could actually use a
 hash table and compute it lazily

You can also order the sequences
 (alphabetize them) to exploit the
 symmetry, thus cutting the
 table-size in half

10/3/13 Comp 555 Fall 2013 41

•  The new lookup table Score is indexed by a pair
of t-nucleotide strings, so

si,j = max
si-1,j - σblock

si,j-1 - σblock

si-1,j-1 + Score(ith block of v, jth block of u)

10/3/13 Comp 555 Fall 2013 42

•  Since computing the lookup table Score of size n
takes O(n) time, the running time is dominated
by the (n/t)*(n/t) accesses to the lookup table

• Overall running time: O([n2/t2])
•  Since t = (log2n)/4, substitute in:
• O([n2/{log2n}2]) = O(n2/log(n log n))

10/3/13 Comp 555 Fall 2013 43

• We can divide up the grid into blocks and run
dynamic programming only on the corners of
these blocks

•  In order to speed up the mini-alignment
calculations to under n2, we create a lookup table
of size n, which consists of all scores for all t-
nucleotide pairs

•  Running time goes from quadratic, O(n2), to
subquadratic: O(n2/log(n log n))

10/3/13 Comp 555 Fall 2013 44

• Unlike the block partitioned graph, the LCS path
is not restricted to pass through the vertices of
the blocks.

block alignment longest common subsequence

10/3/13 Comp 555 Fall 2013 45

•  In block alignment, we only care about the
corners of the blocks.

•  In LCS, we care about all points on the edges of
the blocks, because those are points that the path
can traverse.

•  Recall, each sequence is of length n, each block is
of size t, so each sequence has (n/t) blocks.

10/3/13 Comp 555 Fall 2013 46

block alignment has
(n/t)*(n/t) = (n2/t2)
points of interest

LCS alignment
has O(n2/t)
points of interest

10/3/13 Comp 555 Fall 2013 47

•  Given alignment scores si,* in the first row and scores s*,j in
the first column of a t x t mini square, compute alignment
scores in the last row and column of the minisquare.

•  To compute the last row and the last column score, we use
these 4 variables:
1. alignment scores si,* in the first row
2. alignment scores s*,j in the first column
3. substring of sequence u in this block (4t possibilities)
4. substring of sequence v in this block (4t possibilities)

10/3/13 Comp 555 Fall 2013 48

•  If we used this to compute the grid, it would
take quadratic, O(n2) time, but we want to do
better.

Given these
2t – 1 scores

we can calculate
these 2t – 3 scores

t x t block

10/3/13 Comp 555 Fall 2013 49

•  Build a lookup table for all possible values of the
four variables:

1.  all possible scores for the first row s*,j
2.  all possible scores for the first column s*,j

3.  substring of sequence u in this block (4t possibilities)
4.  substring of sequence v in this block (4t possibilities)

•  For each quadruple we store the value of the score
for the last row and last column.

•  This will be a huge table, but we can eliminate
alignments scores that don’t make sense

10/3/13 Comp 555 Fall 2013 50

• Alignment scores in LCS are monotonically
increasing, and adjacent elements can’t differ by
more than 1

•  Example: 0,1,2,2,3,4 is ok; 0,1,2,4,5,8, is not
because 2 and 4 differ by more than 1 (and so do
5 and 8)

•  Therefore, we only need to store quadruples
whose scores are monotonically increasing and
differ by at most 1

10/3/13 Comp 555 Fall 2013 51

•  Instead of recording numbers that correspond to
the index in the sequences u and v, we can use
binary to encode the differences between the
alignment scores

0 1 2 2 3 4

1 1 1 0 1 1

original encoding

binary encoding

10/3/13 Comp 555 Fall 2013 52

•  2t possible scores (t = size of blocks)
•  4t possible strings

– Lookup table size is (2t * 2t)*(4t * 4t) = 26t
•  Let t = (logn)/4;

– Table size is: 26((logn)/4) = n(6/4) = n(3/2)
•  Time = O([n2/t2]*logn)
• O([n2/{logn}2]*logn) = O(n2/logn)

10/3/13 Comp 555 Fall 2013 53

• We take advantage of the fact that for each block
of t = log(n), we can pre-compute all possible
scores and store them in a lookup table of size
n(3/2)

• We used the Four Russian speedup to go from a
quadratic running time for LCS to subquadratic
running time: O(n2/log(n log n))

• Next Time: Graph Algorithms

