Lecture 12:
Divide and Conquer Algorithms

Study Chapter 7.1 – 7.4
Divide and Conquer Algorithms

- **Divide** problem into sub-problems
- **Conquer** by solving sub-problems recursively. If the sub-problems are small enough, solve them in brute force fashion
- **Combine** the solutions of sub-problems into a solution of the original problem (tricky part)
Given: an unsorted array

\[5 \ 2 \ 4 \ 7 \ 1 \ 3 \ 2 \ 6\]

Goal: sort it

\[1 \ 2 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7\]
Mergesort: Divide Step

Step 1 – Divide

log(n) divisions to split an array of size n into single elements
Step 2 – Conquer

\[O(n) \] iterations, each iteration takes \(O(n) \) time. **Total Time:** \(O(n \log n) \)
Mergesort: Merge

Merge

- 2 arrays of size 1 can be easily merged to form a sorted array of size 2

\[
\begin{array}{cc}
5 & 2 \\
\end{array}
\quad \rightarrow \quad
\begin{array}{cc}
2 & 5 \\
\end{array}
\]

- 2 sorted arrays of size \(n \) and \(m \) can be merged in \(O(n+m) \) time to form a sorted array of size \(n+m \)
Mergesort: Merge

Merge 2 arrays of size 4

Etcetera…
Merge Algorithm

1. **Merge**(a, b)
2. \(n_1 \leftarrow \) size of array a
3. \(n_2 \leftarrow \) size of array b
4. \(a_{n_1+1} \leftarrow \infty \)
5. \(a_{n_2+1} \leftarrow \infty \)
6. \(i \leftarrow 1 \)
7. \(j \leftarrow 1 \)
8. **for** \(k \leftarrow 1 \) to \(n_1 + n_2 \)
9. \hspace{1em} **if** \(a_i < b_j \)
10. \hspace{2em} \(c_k \leftarrow a_i \)
11. \hspace{2em} \(i \leftarrow i + 1 \)
12. \hspace{1em} **else**
13. \hspace{2em} \(c_k \leftarrow b_j \)
14. \hspace{2em} \(j \leftarrow j + 1 \)
15. **return** c
MergeSort: Example

Divide

Conquer

20 4 7 6 1 3 9 5

20 4

7 6

4 20

4 6 7 20

1 3 4 5 6 7 9 20

1 3 9 5

1 3

9 5

4 20

7 6

6 7

1 3 5 9

Divide and Conquer
MergeSort Algorithm

1. `MergeSort(c)`
2. \(n \leftarrow \text{size of array } c \)
3. \text{if } n = 1
4. \text{ return } c
5. \textbf{left} \leftarrow \text{list of first } n/2 \text{ elements of } c
6. \textbf{right} \leftarrow \text{list of last } n-n/2 \text{ elements of } c
7. \textbf{sortedLeft} \leftarrow \text{MergeSort(left)}
8. \textbf{sortedRight} \leftarrow \text{MergeSort(right)}
9. \textbf{sortedList} \leftarrow \text{Merge(sortedLeft, sortedRight)}
10. \textbf{return sortedList}
MergeSort: Running Time

- The problem is simplified to baby steps
 - for the i’th merging iteration, the complexity of the problem is $O(n)$
 - number of iterations is $O(\log n)$
 - running time: $O(n \log n)$

Now for a biological problem
D&C Sequence Alignment

Find the best scoring path aligning two sequences

$$\text{Path}(\text{source, sink})$$

1. if(source \& sink are in consecutive columns)
2. output the longest path from source to sink
3. else
4. $\text{middle} \leftarrow$ vertex with largest score from source to sink
5. $\text{Path}(\text{source, middle})$
6. $\text{Path}(\text{middle, sink})$

The only problem left is how to find this “middle vertex”!
Alignment Path

• Space complexity for computing alignment path for sequences of length n and m is $O(nm)$

• We keep a table of all scores and backtracking references in memory to reconstruct the path (backtracking)
Alignment Score

• However, the space complexity of just computing the score itself is only $O(n)$
• For example, we only need the previous column to calculate the current column, and we can throw away that previous column once we’re done using it
Computing Alignment Score: Recycling Columns

Only two columns of scores are saved at any given time

memory for column 1 is used to calculate column 3

memory for column 2 is used to calculate column 4
We want to calculate the longest path from \((0,0)\) to \((n,m)\) that passes through \((i, m/2)\) where \(i\) ranges from 0 to \(n\) and represents the \(i\)-th row.

Define

\[
\text{length}(i)
\]

as the length of the longest path from \((0,0)\) to \((n,m)\) that passes through vertex \((i, m/2)\).
Define \((\text{mid}, m/2)\) as the vertex where the longest path crosses the middle column.

\[
\text{length} (\text{mid}) = \text{optimal length} = \max_{0 \leq i \leq n} \text{length}(i)
\]
Computing Prefix(i)

- $\text{prefix}(i)$ is the length of the longest path from $(0,0)$ to $(i,m/2)$
- Compute $\text{prefix}(i)$ in the left half of the matrix
Computing Suffix(i)

- $suffix(i)$ is the length of the longest path from $(i, m/2)$ to (n, m)
- $suffix(i)$ is the length of the longest path from (n, m) to $(i, m/2)$ with all edges reversed
- Compute $suffix(i)$ in the right half of the “reversed” matrix

store $suffix(i)$ column
\[\text{Length}(i) = \text{Prefix}(i) + \text{Suffix}(i) \]

- Add \text{prefix}(i) and \text{suffix}(i) to compute \text{length}(i):
 - \text{length}(i) = \text{prefix}(i) + \text{suffix}(i)

- You now have a middle vertex of the maximum path \((i, m/2)\) as maximum of \text{length}(i)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>♠</td>
<td>♠</td>
<td>♠</td>
<td>♠</td>
<td>♠</td>
</tr>
<tr>
<td>1</td>
<td>♠</td>
<td>♠</td>
<td>♠</td>
<td>♠</td>
<td>♠</td>
</tr>
<tr>
<td>2</td>
<td>♠</td>
<td>♠</td>
<td>♠</td>
<td>♠</td>
<td>♠</td>
</tr>
<tr>
<td>3</td>
<td>♠</td>
<td>♠</td>
<td>♠</td>
<td>♠</td>
<td>♠</td>
</tr>
<tr>
<td>4</td>
<td>♠</td>
<td>♠</td>
<td>♠</td>
<td>♠</td>
<td>♠</td>
</tr>
</tbody>
</table>

middle point found

9/28/11
Comp 590/Comp 790-87
Fall 2011
Finding the Middle Point

0 m/4 m/2 3m/4 m
Finding the Middle Point again

| 0 | m/4 | m/2 | 3m/4 | m |

Diagram showing the middle point again.
And Again
On first pass, the algorithm touches the entire area

\[\text{Area} = n \times m \]
Time = Area: Second Pass

- On second pass, the algorithm covers only \(\frac{1}{2} \) of the area

\[\text{Area}/2 \]
Time = Area: Second Pass

• On second pass, the algorithm covers only 1/2 of the area

\[\text{Area} / 2 \]

Regardless of \(i \)'s value!
Time = Area: Third Pass

- On third pass, only 1/4th is covered.

Area/4
Geometric Reduction At Each Iteration

\[1 + \frac{1}{2} + \frac{1}{4} + \ldots + \left(\frac{1}{2}\right)^k \leq 2 \]

- Runtime: \(O(\text{Area}) = O(nm) \)

- Total Space: \(O(n) \) for score computation, \(O(n+m) \) to store the optimal alignment
Can We Do Even Better?

• Align in Subquadratic Time?
• Dynamic Programming takes $O(nm)$ for global alignment, which is quadratic assuming $n \approx m$
• Yes, using the *Four-Russians Speedup*
Partitioning Sequences into Blocks

- Partition the $n \times n$ grid into blocks of size $t \times t$
- We are comparing two sequences, each of size n, and each sequence is sectioned off into chunks, each of length t
- Sequence $u = u_1 \ldots u_n$ becomes
 \[
 |u_1 \ldots u_t| \ |u_{t+1} \ldots u_{2t}| \ \ldots \ |u_{n-t+1} \ldots u_n|
 \]
 and sequence $v = v_1 \ldots v_n$ becomes
 \[
 |v_1 \ldots v_t| \ |v_{t+1} \ldots v_{2t}| \ \ldots \ |v_{n-t+1} \ldots v_n|
 \]
Partitioning Alignment Grid into Blocks
Block Alignment

- **Block alignment** of sequences u and v:
 1. An entire block in u is aligned with an entire block in v
 2. An entire block is inserted
 3. An entire block is deleted

- **Block path**: a path that traverses every $t \times t$ square through its corners
Block Alignment: Examples

valid

invalid
Block Alignment Problem

- **Goal**: Find the longest block path through an edit graph
- **Input**: Two sequences, \(u \) and \(v \) partitioned into blocks of size \(t \). This is equivalent to an \(n \times n \) edit graph partitioned into \(t \times t \) subgrids
- **Output**: The block alignment of \(u \) and \(v \) with the maximum score (longest block path through the edit graph)
Constructing Alignments within Blocks

- To solve: compute alignment score $f_{i,j}$ for each pair of blocks $|u_{(i-1)*t+1}...u_{i*t}|$ and $|v_{(j-1)*t+1}...v_{j*t}|$
- How many blocks are there per sequence?
 (n/t) blocks of size t
- How many pairs of blocks for aligning the two sequences?
 $(n/t) \times (n/t)$
- For each block pair, solve a mini-alignment problem of size $t \times t$, which requires $t \times t = O(t^2)$ effort
- Looks like a wash $O((n/t)^2 t^2) = O(n^2)$, but is it?
Constructing Alignments within Blocks

Block pair represented by each small square

n/t

Solve mini-alignment problems
Block Alignment: Dynamic Programming

- Let $s_{i,j}$ denote the optimal block alignment score between the first i blocks of u and first j blocks of v

\[
 s_{i,j} = \max \begin{cases}
 s_{i-1,j} - \sigma_{\text{block}} \\
 s_{i,j-1} - \sigma_{\text{block}} \\
 s_{i-1,j-1} + \beta_{i,j}
 \end{cases}
\]

σ_{block} is the penalty for inserting or deleting an entire block.

$\beta_{i,j}$ is score of pair of blocks in row i and column j.
Indices i,j range from 0 to n/t

Running time of algorithm is

$$O\left(\frac{n}{t}\right)^2 O(\beta_{i,j}) = O(\frac{n^2}{t^2})$$

Computing all $\beta_{i,j}$ requires solving $(n/t)^2$ mini block alignments, each of size (t^2)

So computing all $\beta_{i,j}$ takes time

$$O\left(\frac{n^2}{t^2}\right) t^2 = O(n^2)$$

Looks like a wash, but is it?
A key insight of dynamic programming was to reuse repeated computations by storing them in a tableau.

Are there any repeated computations in Block Alignments?

Let’s check out some numbers…

- Let’s assume \(n = m = 4000 \) and \(t = 4 \)
- \(n/t = 1000 \), so there are 1,000,000 blocks
- How many possible many blocks are there?
 - Assume we are aligning DNA with DNA, so there sequences are over an alphabet of \{A,C,G,T\}
 - Possible sequences are \(4^t = 4^4 = 256 \),
 - Possible alignments are \(4^t \times 4^t = 65536 \)

There are fewer possible alignments than blocks, thus we must be frequently revisiting alignments!
Four Russians Technique

• The trick is in how to pick t relative to n
• If we pick $t = \log_2(n)/4$
• Instead of having $(n/t)^*(n/t)$ mini-alignments, construct $4^t \times 4^t$ mini-alignments for all pairs of t nucleotide sequences, and put in a lookup table.
• However, size of lookup table is not really that huge if t is small.
• If $t = (\log_2 n)/4$. Then $4^t \times 4^t = 4^{\sqrt{n^2}} \times 4^{\sqrt{n^2}} = n$
Look-up Table for Four Russians Technique

Each sequence has t nucleotides:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>AAAAA</th>
<th>AAAAC</th>
<th>AAAAG</th>
<th>AAAAT</th>
<th>AAAACA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAAAA</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>AAAAAC</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>AAAAAG</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>AAAAAT</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>AAAACA</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Lookup table “Score”

- Size is n, which is much smaller than $(n/t)*(n/t) \Rightarrow$ repeats
- Rather than precomputing this table, you could actually use a hash table and compute it lazily.
- You can also order the sequences (alphabetize them) to exploit the symmetry, thus cutting the table-size in half.
New Recurrence

- The new lookup table \(\text{Score} \) is indexed by a pair of \(t \)-nucleotide strings, so

\[
s_{i,j} = \max \begin{cases}
 s_{i-1,j} - \sigma_{\text{block}} \\
 s_{i,j-1} - \sigma_{\text{block}} \\
 s_{i-1,j-1} + \text{Score}(i^{\text{th}} \text{ block of } v, j^{\text{th}} \text{ block of } u)
\end{cases}
\]
Four Russians Speedup Runtime

• Since computing the lookup table Score of size n takes $O(n)$ time, the running time is dominated by the $(n/t)*(n/t)$ accesses to the lookup table.

• Overall running time: $O(\left\lfloor n^2/t^2 \right\rfloor)$

• Since $t = (\log_2 n)/4$, substitute in:

• $O(\left\lfloor n^2/\{\log_2 n\}^2 \right\rfloor) = O(n^2/\log(n \log n))$
So Far...

- We can divide up the grid into blocks and run dynamic programming only on the corners of these blocks.

- In order to speed up the mini-alignment calculations to under n^2, we create a lookup table of size n, which consists of all scores for all t-nucleotide pairs.

- Running time goes from quadratic, $O(n^2)$, to subquadratic: $O(n^2/\log n)$.
Four Russians Speedup for LCS

• Unlike the block partitioned graph, the LCS path is not restricted to pass through the vertices of the blocks.

block alignment

longest common subsequence
Block Alignment vs. LCS

• In block alignment, we only care about the corners of the blocks.
• In LCS, we care about all points on the edges of the blocks, because those are points that the path can traverse.
• Recall, each sequence is of length n, each block is of size t, so each sequence has (n/t) blocks.
Block Alignment vs. LCS: Points Of Interest

- Block alignment has $(n/t)(n/t) = (n^2/t^2)$ points of interest
- LCS alignment has $O(n^2/t)$ points of interest
Traversing Blocks for LCS

• Given alignment scores $s_{i,*}$ in the first row and scores $s_{*,j}$ in the first column of a $t \times t$ mini square, compute alignment scores in the last row and column of the minisquare.

• To compute the last row and the last column score, we use these 4 variables:
 1. alignment scores $s_{i,*}$ in the first row
 2. alignment scores $s_{*,j}$ in the first column
 3. substring of sequence u in this block (4^t possibilities)
 4. substring of sequence v in this block (4^t possibilities)
Traversing Blocks for LCS (cont’d)

• If we used this to compute the grid, it would take quadratic, \(O(n^2)\) time, but we want to do better.

Given these 2t – 1 scores

we can calculate these 2t – 3 scores

\(t \times t\) block
Four Russians Speedup

- Build a lookup table for all possible values of the four variables:
 1. all possible scores for the first row $s_{*,j}$
 2. all possible scores for the first column $s_{*,j}$
 3. substring of sequence u in this block (4^t possibilities)
 4. substring of sequence v in this block (4^t possibilities)
- For each quadruple we store the value of the score for the last row and last column.
- This will be a huge table, but we can eliminate alignments scores that don’t make sense
Reducing Table Size

- Alignment scores in LCS are monotonically increasing, and adjacent elements can’t differ by more than 1.
- Example: 0,1,2,2,3,4 is ok; 0,1,2,4,5,8, is not because 2 and 4 differ by more than 1 (and so do 5 and 8).
- Therefore, we only need to store quadruples whose scores are monotonically increasing and differ by at most 1.
Efficient Encoding of Alignment Scores

- Instead of recording numbers that correspond to the index in the sequences \(u \) and \(v \), we can use binary to encode the differences between the alignment scores.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>orig. enc.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- binary encoding
Reducing Lookup Table Size

- 2^t possible scores ($t = \text{size of blocks}$)
- 4^t possible strings
 - Lookup table size is $(2^t \times 2^t) \times (4^t \times 4^t) = 2^{6t}$
- Let $t = (\log n)/4$;
 - Table size is: $2^{6((\log n)/4)} = n^{(6/4)} = n^{(3/2)}$
- Time = $O([n^2/t^2]*\log n)$
- $O([n^2/\{\log n\}^2]*\log n) = O(n^2/\log n)$
Summary

• We take advantage of the fact that for each block of $t = \log(n)$, we can pre-compute all possible scores and store them in a lookup table of size $n^{3/2}$

• We used the Four Russian speedup to go from a quadratic running time for LCS to subquadratic running time: $O(n^2 / \log n)$
Next Time

- Graph Algorithms