Lecture 5: Finding Regulatory Motifs Within DNA Sequences

Study Chapter 4.4-4.9
Initiating Transcription

- As a precursor to transcription (the reading of DNA to construct RNAs, eventually leading to protein synthesis) special proteins bind to the DNA, and separate it to enable its reading.
- How do these proteins know where the coding genes are in order to bind?
- Genes are relatively rare
 - $O(1,000,000,000)$ bases/genome
 - $O(10000)$ genes/genome
 - $O(1000)$ bases/gene
- Approximately 1% of DNA codes for genes ($10^310^4/10^9$)
Regulatory Regions

- RNA polymerases seek out regulatory or promoting regions located 100-1000 bp upstream from the coding region.
- They work in conjunction with special proteins called transcription factors whose presence enables gene expression.
- Within these regions are the Transcription Factor Binding Sites (TFBS), special DNA sequence patterns known as motifs that are specific to a given transcription factor.
Transcription Factor Binding Sites

- A TFBS can be located anywhere within the regulatory region.
- TFBS may vary slightly across different regulatory regions since non-essential bases could mutate.
- Transcription factors are robust (they will still bind) in the presence of small changes in a few bases.

Transcription factor: 5'-ccatttagg-3'

Sequence: cgaggctatgcaactccatttaggtggg tgtgacacacattcccctttc gata
Motifs and Transcriptional Start Sites

Motif (n) - A repeated structural element in architecture or decoration

- ATCCCG
- TTCCGG
- ATCCCG
- ATGCCG
- ATGCC

Gene
Identifying Motifs: Complications

- We do not know the motif sequence for every TF
- We do not know where it is located relative to the gene’s start
- Motifs can differ slightly from one gene to the next
- We only know that it occurs frequently
- How to discern a Motif’s frequent “similar” pattern from “random” patterns?
An Aside: Solving Cryptograms

• A popular form of word puzzle:

“By bskq rp klddykr i krhlmlrhy nph rqu kixr pn fypechxopky vlmxysm imsf (F.V.I.). Rqsk krhlmlrly qik vpgyv nyirlhylk bqsmq ihv pn mpvksfyhioxy ospxpmxmix svryhyvkr.”

• Based on letter, multi-letter, and word frequency it is not hard to figure out the most likely answer.

• Try solving it using
 http://quipqiup.com
How’s a Motif Like a Cryptogram?

• Nucleotides in motifs encode a message in a “genetic” language. Symbols in a cryptogram, encode messages in English.
• In order to solve the problem, we analyze the frequencies of patterns in DNA/Cryptogram.
• Knowledge of established regulatory motifs makes the Motif Finding problem simpler. Knowledge of the words in the English dictionary helps to solve cryptograms.
Motif Finding Complications

• We don’t have a complete dictionary of motifs
• The “genetic” language doesn’t have a standard “grammar”
• Only a small fraction of nucleotide sequences encode for motifs
• The size of the genome sequence is enormous
The Motif Finding Problem

• Given a random sample of DNA sequences:

 cctgatagacgctatctggctatccacgtacgtaggtcctcctgtgcaatctatgcttttccaaccat
 agtacctggtgtacatttgatacgtacgtacaccggcaacctgaacaaacgctcaacgataacagagtgc
 aaacgtacgtgcacccctctttttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt
 agcctccgatgtaagtcataagctgtaactattaacctgcccaccctattacatctttacgtacgtataca
 cttattataaaccgcgtcatggggtatgcttttggtcgtacgtacgcttgatcgttaaccgtacgtc

• Find the pattern that is implanted in each of the individual sequences, namely, the motif

• Additional information:
 – Assume the hidden sequence is of length 8
 – The pattern might differ slightly in each sequence because random point mutations may have been introduced
Motif Finding Example

• Finding motifs if there are no mutations
• Probability of a given 8-mer in an infinite sequence is $1/4^8 \approx 1.5 \times 10^{-5}$ (1 every 65Kb)
• Assuming 5 strings of length 68, there are $5 \times (68 - 8) = 300$ distinct 8-mers
• Probability of any one 8-mer is $300/4^8 \approx 0.005$
• So any repeat is rare

cctgatagacgctatctggctatcc**acgtacgt**aggtcctctgtgcaatctatgcgctttccaaaccatagtactgtgtgcataatttg*agcgtacgt*cacccccctggtggcatatatattgatatattcgcccccccctattaccatcttt**acgtacgt**atacactgtttatatacaacgcgcgctcatggccgggtatgcttttggtcgtcgtacgcctcgatgc**taacgtacgtc**

acgtacgt
The Problem Becomes Harder

• Introduce 2 point mutations into each pattern:

cctgatagacgctatctggctatcc\textcolor{red}{aGgtacTT}aggtcctctgtgcgaatctatgcgttttccaaccatagtactggtgtacattttagt\textcolor{red}{CcAtacg}tacaccggcaacctgaaaaaacgctcagaaccagaagtgc
aa\textcolor{red}{acgtTAgt}gcacccctctttttctctggtgcctgctcttgcccaacgaggggtatgtgtataagacgaaattttagcctccgatgtaagtagctgtaactattacctgcccaccctactattacatcct\textcolor{red}{acgtCcAtataca}
ctgtttatacaacgctcatggcgggtatgcgttttgtcgtctgatcgctgta\textcolor{red}{CcgtaCGc}

• Our original target pattern no longer appears in any sequence!

Can we still find the motif?
Defining a Motif

• To define a motif, let’s assume that we know where the motif starts in each sequence

• The start positions can be represented as

\[s = [s_1, s_2, s_3, \ldots, s_t] \]
Motifs: Profiles and Consensus

- Line up the patterns by their start indexes
 \[s = (s_1, s_2, \ldots, s_t) \]

- Construct a matrix profile with the frequencies of each nucleotide in columns

- Consensus nucleotide in each position has the highest score in column
Consensus

- One can think of the consensus as an “ancestor” motif, from which mutated motifs emerged.
- The *distance* between an actual motif and the consensus sequence is generally less than that for any two actual motifs.
- *Hamming distance* is the number of positions that differ between two strings.

\[
\begin{array}{cccccc}
G & A & G & A & C & T \\
X & X & & & & T \\
T & A & G & A & C & G & C & A & T
\end{array}
\]

A Hamming distance of 2
Consensus Properties

- A consensus string has a minimal hamming distance to all source strings.

\[
d = 4
\]

\[
\begin{align*}
\text{CGTATA} & \quad \text{AGGTACACT} \\
\text{d} & = 6 \\
\text{CGTACACT} & \quad \text{ATGTACACT} \\
\text{d} & = 3 \\
\text{AGCTC} & \quad \text{ATGTACACT} \\
\text{d} & = 4 \\
\end{align*}
\]

\[
\begin{align*}
\text{d} & = 3 \\
\text{d} & = 2 \\
\text{d} & = 3 \\
\text{d} & = 2 \\
\text{d} & = 3 \\
\end{align*}
\]
Defining Some Terms

- **DNA** – array of sequence fragments
- **t** - number of sample DNA sequences
- **n** - length of each DNA sequence

- **l** - length of the motif (l-mer)
- **s_i** - starting position of an l-mer in sequence i
- **s=(s_1, s_2, ..., s_t)** - array of motif’s starting positions
Illustration of Terms

\[l = 8 \]

\[t = 5 \]

\[s = \{ s_1 = 26, s_2 = 21, s_3 = 3, s_4 = 56, s_5 = 60 \} \]

\[n = 69 \]

\[DNA \]

cctgatagacgctatctggctatcc\textcolor{red}{aGgtacTt}aggtcctctgtgcaatctatgcttttccaaccat

agtactggtgtacattttgat\textcolor{red}{CcAtacgt}acaccggcaacctgaaacaaacgctcagaaccagaagtgc

\textcolor{red}{aaacgtTAg}tgccacctctctcttcgtcgtgctcgggccacagggctgtatgtatataagacgaaatatttt

agcctccgatgtagctatagctgtaactattacctgccaccccctattacatcttt\textcolor{red}{acgtCcAt}atatac

c\textcolor{red}{ataca}ctgttatacaacgcctagctgctgctttggtctcgtacgctcagctcagatcgta\textcolor{red}{CcgtagGc}
Scoring Motifs

Given \(s = (s_1, \ldots, s_t) \) and DNA:

\[
\text{Score}(s, \text{DNA}) = \sum_{i=1}^{l} \max_{k \in \{A, C, G, T\}} \text{count}(k, i)
\]

Consensus: a c g t a c g t

Score: 3 + 4 + 4 + 5 + 3 + 4 + 3 + 4 = 30
The Motif Finding Problem

- **Goal**: Given a set of DNA sequences, find a set of l-mers, one from each sequence, that maximizes the consensus score.

- **Input**: A $t \times n$ matrix of DNA, and l the length of the pattern to find.

- **Output**: An array of t starting positions $s = (s_1, s_2, \ldots, s_t)$ maximizing $Score(s, DNA)$.
Brute Force Solution

• Compute the scores for all possible combinations of starting positions \(s \)
• The best score determines the best profile and the consensus pattern in DNA
• The goal is to maximize \(\text{Score}(s,DNA) \) by varying the starting positions \(s_i \), where:

\[
 s_i = [1, \ldots, n-l+1] \\
 i = [1, \ldots, t]
\]
1. BruteForceMotifSearch(DNA, t, n, l)
2. bestScore ← 0
3. for each s = (s_1, s_2, ..., s_t) from (1, 1, ..., 1) to (n- l+1, n- l+1, ..., n- l+1)
4. if score(s, DNA, l) > bestScore
5. bestScore ← score(s, DNA, l)
6. bestMotif ← (s_1, s_2, ..., s_t)
7. return bestMotif
Running Time of BruteForceMotifSearch

- Search \((n - \ell + 1)\) positions in each of \(t\) sequences, by examining \((n - \ell + 1)^t\) sets of starting positions.
- For each set of starting positions, the scoring function makes \(\ell\) operations, so complexity is \(\ell(n - \ell + 1)^t = O(\ell n^t)\).
- That means that for \(t = 8\), \(n = 1000\), \(\ell = 10\) we must perform approximately \(10^{25}\) computations.
- Generously assuming \(10^9\) comps/sec it will require only \(10^{16}\) secs.
- \(10^{16}/(60 * 60 * 24 * 365) \rightarrow \) millions of years.
The Median String Problem

- Given a set of t DNA sequences find a pattern that appears in all t sequences with the minimum number of mutations
- This pattern will be the motif
- Rather than finding the maximal consensus string, this approach attempts to the minimal distance string
Total Distance: An Example

- Given \(v = \text{“acgtacgt”} \) and \(s \)

\[
d_H(v, x) = 0
\]

\[
cctgatagacgctatctggctatccacgtacgtaggtcctctgtgcaatctatgcttttccaacctacgtacgtcgtgtaatttgacgtacgtacacccggaacctgaaacaaacgctcagaaccagaagtgcaacgtacgtcaccctctttctgtggctctggccacgcagggtgtatgtatagaagacgaaatctttcagccgatgtatagtcattattacctgctacctgattatatccttacgtacgtatatacaacgtacgtcgtttttatgtgtgctgtacgtacgtacgtcgtacgtcgtbcaacgtacgtc
\]

\(v \) is the sequence in red, \(x \) is the sequence in blue

- \(\text{TotalDistance}(v, DNA) = 0 \)
Total Distance: An Example

• Given $v = \text{“acgtacgt”}$ and s

 $d_H(v, x) = 1$

 $d_H(v, x) = 0$

 $d_H(v, x) = 2$

 $d_H(v, x) = 0$

 $d_H(v, x) = 1$

 v is the sequence in red, x is the sequence in blue

• $TotalDistance(v, DNA) = 1 + 0 + 2 + 0 + 1 = 4$
Total Distance: Definition

• For each DNA sequence i, compute all $d_H(v, x)$, where x is an ℓ-mer with starting position s_i

 ($1 \leq s_i \leq n - \ell + 1$)

• Find minimum of $d_H(v, x)$ among all ℓ-mers in sequence i

• $TotalDistance(v, DNA)$ is the sum of the minimum Hamming distances for each DNA sequence i

• $TotalDistance(v, DNA) = \min_s d_H(v, s)$, where s is the set of starting positions s_1, s_2, \ldots, s_t
The Median String Problem

- **Goal**: Given a set of DNA sequences, find a median string
- **Input**: A $t \times n$ matrix DNA, and l, the length of the pattern to find
- **Output**: A string v of l nucleotides that minimizes $\text{TotalDistance}(v,DNA)$ over all strings of that length
Median String Search Algorithm

1. `MedianStringSearch(DNA, t, n, l)`
2. `bestMotif ← ""`
3. `bestDistance ← t × l`
4. for each \(l\)-mer, \(s\), from “AAA…A” to “TTT…T”
5. \[\text{if} \ TotalDistance(s, DNA) < bestDistance\]
6. \[\text{bestDistance} ← TotalDistance(s, DNA)\]
7. \[\text{bestMotif} ← s\]
8. `return bestMotif`
Are these Equivalent Problems?

- Motif Finding Problem \equiv Median String Problem?
- Note: Motif Finding is a maximization problem while Median String is a minimization problem
- If Motif Finding problem and Median String problem are computationally equivalent they must give the same output for a common input
- How do you prove it?

Need to show that minimizing TotalDistance is equivalent to maximizing Score
• At any column i

$$\text{Score}_i + \text{TotalDistance}_i = t$$

• Because there are l columns

$$\text{Score} + \text{TotalDistance} = l \times t$$

• Rearranging:

$$\text{Score} = l \times t - \text{TotalDistance}$$

• $l \times t$ is constant the minimization of the right side is equivalent to the maximization of the left side
Why Bother?

- What is the point of reformulating the Motif Finding problem as the Median String problem?
 - The Motif Finding Problem needs to examine all the combinations for s. That is $(n - l + 1)^t$ combinations!!!
 - The Median String Problem needs to examine all 4^l combinations for v. This number is relatively smaller ($l < t$ and $4 < n$)

\[
\begin{align*}
\text{If } n=1000, \ l=10, \ t=8 & \Rightarrow (1000-10+1)^8 \approx 9.3 \times 10^{23} \\
& \Rightarrow 8(1000-10+1)4^{10} \approx 8.3 \times 10^{9}
\end{align*}
\]
Improving Motif Finding

1. `BruteForceMotifSearch(DNA, t, n, l)`
2. `bestScore ← 0`
3. for each `s = (s_1, s_2, ..., s_t)` from `(1, 1, ..., 1)`
 to `(n - l + 1, n - l + 1, ..., n - l + 1)`
4. if `score(s, DNA, l) > bestScore`
5. `bestScore ← score(s, DNA, l)`
6. `bestMotif ← (s_1, s_2, ..., s_t)`
7. return `bestMotif`
How to Structure the Search?

• How can we perform the line

\[
\text{for each } s = (s_1, s_2, \ldots, s_t) \text{ from } (1,1,\ldots,1) \text{ to } (n-l+1, \ldots, n-l+1) \?
\]

\[
(1,1,1,1) \quad (1,1,2,1) \quad \ldots \quad (1,2,2,1) \quad \ldots \quad (60,60,60,1)
\]

\[
(1,1,1,2) \quad (1,1,2,1) \quad \ldots \quad (1,2,2,2) \quad \ldots \quad (60,60,60,1)
\]

\[
\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots
\]

\[
(1,1,1,60) \quad (1,1,2,60) \quad \ldots \quad (1,2,2,60) \quad \ldots \quad (60,60,60,60)
\]

• We need a method to more efficiently examine the many possible motifs locations (not nested for loops, why?)

• This is not very different than exploring all “\(t\)-digit base \((n-l+1)\)” numbers
Improving Median String

1. MedianStringSearch(DNA, t, n, l)
2. bestMotif ← ""
3. bestDistance ← t × l
4. for each l-mer, s, from “aaa...a” to “ttt...t”
5. if TotalDistance(s, DNA) < bestDistance
6. bestDistance ← TotalDistance(s, DNA)
7. bestMotif ← s
8. return bestMotif
How to Best Explore Permutations?

• For the Median String Problem we need to consider all 4^l possible l-mers:

 aa... aa
 aa... ac
 aa... ag
 aa... at
 aa... ca
 .
 .
 .
 tt... tt

How to organize this search?
Our standard method for enumerating permutations can be considered as a traversal of leaf nodes in a search tree.

Suppose after checking the first or second letter we already know the solution could not be the one we are looking for?
• This is the basic loop structure that we have used for many examples thus far (e.g. BruteForceChange)

```python
def AllLeaves(L, k):
    a = [1 for i in xrange(L)]
    while True:
        print a
        a = NextLeaf(a, L, k)
        if (sum(a) == L):
            return
```

• Is there another way to search permutations?
How does NextLeaf work?

- Code for NextLeaf is the same logic as counting

```python
def NextLeaf(a, L, k):
    # generates all L^k permutations
    for i in reversed(xrange(L)):
        if (a[i] < k):
            a[i] += 1
            break
        else:
            a[i] = 1
    return a
```

- “a” is the current permutation list ([1,1,1,15,7]), “L” is the # of variables (5 in this case) and “k” is the upper range (60 here)
Analyzing Search Trees

- Characteristics of the search trees:
 - The unique permutations reside at leaves
 - A parent node is a common prefix of its children
- How can we traverse the tree rather than just the leaves?
- Things we’d like to do:
 - Visit all the nodes (interior and leaves)
 - Visit the next node (in an ordered way)
 - Bypass the children of a node

```
AA-  AT-  AG-  AC-  TA-  TT-  TG-  TC-  GA-  GT-  GG-  GC-  CA-  CT-  CG-  CC-
AAAA AAAA AAAA AAAA TTTT TTTT TTTT TTTT GGGG GGGG GGGG GGGG CCCC CCCC CCCC CCCC
AAAA TTTT GGGG CCCC AAAA TTTT GGGG CCCC AAAA TTTT GGGG CCCC AAAA TTTT GGGG CCCC
ATGC ATGC
```
Depth First Traversal

- Start from the root and explore down to the bottom one path at a time, backup and explore unvisited children.
Visiting the Next Vertex

- Uses 0s to encode unspecified part of interior nodes (the dashes in our figure)

```python
def NextVertex(a, i, L, k):
    if (i < L):  # if not a leaf
        a[i] = 1  # we go down a level
        return (a, i+1)
    else:        # otherwise count
        for j in reversed(xrange(L)):
            if (a[j] < k):
                a[j] += 1
                return (a, j+1)
        a[j] = 0
    return (a, 0)
```
Given a prefix (internal vertex), find next vertex after skipping all of the current vertex’s children

```python
def Bypass(a, i, L, k):
    for j in reversed(xrange(i)):
        if (a[j] < k):
            a[j] += 1
            return (a, j+1)
        a[j] = 0
    return (a, 0)
```
Bypass Example

• Bypassing descendents of nodes “12—” and “211—”
Revisiting Brute Force Search

- Now that we have a method for navigating the tree, let's convert our pseudocode version of `BruteForceMotifSearch` to real code.

```python
def BruteForceMotifSearchAgain(DNA, t, n, l):
    s = [1 for i in xrange(t)]
    bestScore = Score(s, DNA)
    while (True):
        s = NextLeaf(s, t, n-l+1)
        if (Score(s, DNA) > bestScore):
            bestScore = Score(s, DNA)
            bestMotif = [x for x in s]
        if (sum(s) == t):
            break
    return bestMotif
```
Can We Do Better?

- Sets of \(s=(s_1, s_2, \ldots, s_t) \) may have a weak profile for the first \(i \) positions \((s_1, s_2, \ldots, s_i) \)
- Every row of alignment may add at most \(\ell \) to Score
- **Optimism**: if all subsequent \((t-i) \) positions \((s_{i+1}, \ldots, s_t) \) match, we’ll add

\[
(t - i) \times \ell \text{ to } \text{Score}(s,i,\text{DNA})
\]

- If \(\text{Score}(s,i,\text{DNA}) + (t - i) \times \ell < \text{BestScore} \), it makes no sense to search subtrees of the current vertex
 - Use **ByPass()**
Rewrite Using Tree Traversal

- Before we apply a branch-and-bound strategy let’s rewrite the brute-force algorithm using a search tree

```python
def SimpleMotifSearch(DNA, t, n, l):
    s = [0 for i in xrange(t)]
    bestScore = 0
    i = 0
    while (True):
        if (i < t):
            s, i = NextVertex(s, i, t, n-l+1)
        else:
            if (Score(s, DNA, l) > bestScore):
                bestScore = Score(s, DNA, l)
                bestMotif = [x for x in s]
                s, i = NextVertex(s, i, t, n-l+1)
            if (sum(s) == 0):
                break
    return bestMotif
```
Branch and Bound Motif Search

- Since each level of the tree goes deeper into search, discarding a prefix discards all following branches.

- This saves us from looking at \((n - \ell + 1)^{t-i}\) leaves.
 - Use `NextVertex()` and `ByPass()` to navigate the tree.
def BranchAndBoundMotifSearch(DNA, t, n, l):
 s = [0 for i in xrange(t)]
 bestScore = 0
 i = 0
 while (True):
 if (i < t):
 optimisticScore = Score(s, DNA, l) + (t-i)*l
 if (optimisticScore < bestScore):
 s, i = Bypass(s, i, t, n-l+1)
 else:
 s, i = NextVertex(s, i, t, n-l+1)
 else:
 score = Score(s, DNA, l)
 if (score > bestScore):
 bestScore = score
 bestMotif = [x for x in s]
 s, i = NextVertex(s, i, t, n-l+1)
 if (sum(s) == 0):
 break
 return bestMotif
Improving Median Search

• Recall the computational differences between motif search and median string search
 – The Motif Finding Problem needs to examine all \((n-l+1)^t\) combinations for \(s\).
 – The Median String Problem needs to examine \(4^t\) combinations of \(v\). This number is relatively small

• We want to use median string algorithm with the Branch and Bound trick!
Insight for Improving Median Search

- Note that if, at any point, the total distance for a prefix is greater than that for the best word so far:

\[\text{TotalDistance (prefix, DNA)} > \text{BestDistance} \]

there is no use exploring the remaining part of the word

- We can eliminate that branch and BYPASS exploring that branch further
def BranchAndBoundMedianSearch(DNA, t, n, l):
 s = [1 for i in xrange(t)]
 bestDistance, bestWord = l*t, ''
 i = 1
 while (i > 0):
 if (i < l):
 prefix = NucleotideString(s, i)
 optimisticDistance = TotalDistance(prefix, DNA)
 if (optimisticDistance > bestDistance):
 s, i = Bypass(s,i,l,t)
 else:
 s, i = NextVertex(s,i,l,t)
 else:
 word = NucleotideString(s, l)
 if (TotalDistance(word, DNA) < bestDistance):
 bestDistance = TotalDistance(word, DNA)
 bestWord = word
 s, i = NextVertex(s,i,l,t)
 return bestWord
• An embarrassing confession. I got bitten by a bug in the online notes for the book!

• The target motif has a consensus score of 30
• But \([2, 5, 46, 4, 1] = 31\) and \([2, 5, 46, 6, 1] = 34\)
• >30 solutions with consensus of 30 or better
• Which is the real Motif?
Further Improvements

• More improvements to Motif searching
 – Why just prune based on prefixes?
 Can you consider suffixes too?
 – Consider a random subset of t strings, or l characters
 – Consider multiple letters at a time?

• How do you really find a TFBS?
 – Multiple answers
 – Near optimal and approximate answers (later on)
 – Motifs are just a starting point

• Next Time
 – We revisit greedy algorithms