Lecture 5:
Finding Regulatory Motifs Within DNA Sequences

Study Chapter 4.4-4.9
Initiating Transcription

• As a precursor to transcription (the reading of DNA to construct RNAs that eventually leading to protein synthesis) special proteins bind to the DNA, separate it to enable its reading.

• How do these proteins know where the coding genes are in order to bind?

• Genes are relatively rare
 – O(1,000,000,000) bases/genome
 – O(10000) genes/genome
 – O(1000) bases/gene

• Approximately 1% of DNA codes for genes (10^3•10^4/10^9)
Regulatory Regions

- RNA polymerases seek out *regulatory* or *promoting* regions located 100-1000 bp upstream from the coding region.
- They work in conjunction with special proteins called *transcription factors* whose presence enables gene expression.
- Within these regions are the *Transcription Factor Binding Sites* (TFBS), special DNA sequence patterns known as *motifs* that are specific to a given transcription factor.
Transcription Factor Binding Sites

• A TFBS can be located anywhere within the regulatory region.
• TFBS may vary slightly across different regulatory regions since non-essential bases could mutate.
• Transcription factors are robust (they will still bind) in the presence of small changes in a few bases.

Transcription factor

5'-ccatttagg-3'

cggttggtgacacacattccttcgata
Motifs and Transcriptional Start Sites

Motif \((n)\) - A repeated structural element in architecture or decoration

- ATCCCCG
- TTCCCCG
- ATCCCCG
- ATGCCCG
- ATGCCCC
Identifying Motifs: Complications

• We do not know the motif sequence for every TF
• We do not know where it is located relative to the gene’s start
• Motifs can differ slightly from one gene to the next
• We only know that it occurs frequently
• How to discern a Motif’s frequent “similar” pattern from “random” patterns?
An Aside: Solving Cryptograms

- A popular form of word puzzle

N oucgupju dlgw ynouno nwu sbuf ynoho ld n jlzu dlw eupuo, xbhjb, snqup hp swhvmuo, zusuwhpuo vwlsuhp oucgupjuo.

- Based on letter, multi-letter, and word frequency it is not hard to figure out the most likely answer.

- Try solving it using
How’s a Motif Like a Cryptogram?

- Nucleotides in motifs encode a message in a “genetic” language. Symbols in a cryptogram, encode messages in English.
- In order to solve the problem, we analyze the frequencies of patterns in DNA/Cryptogram.
- Knowledge of established regulatory motifs makes the Motif Finding problem simpler. Knowledge of the words in the English dictionary helps to solve cryptograms.
Motif Finding Complications

- We don’t have a complete dictionary of motifs
- The “genetic” language doesn’t have a standard “grammar”
- Only a small fraction of nucleotide sequences encode for motifs
- The size of the genome sequence is enormous
The Motif Finding Problem

• Given a random sample of DNA sequences:

```
cctgatagacgctatctggctatccacgtacgtaggtcctctgtgcgaatctatgcttttccaaccat
agtactgtgtacattttgatacgtacgtacaccggaacctgaaacaaacggtcagaaccagagaagtgc
aaacgtacgtgcaccccctttttcggctctggccacgacaggctgtgatgtataagacgaaatatttt
agcctccgatgtaagtcagctgtaactattacctgccacccctattacatctttacgtacgtataca
Ctgttataacaacgcggtatgctgttttttgctgctgcgtacgctcgtcgttttataacgtacgtc
```

• Find the pattern that is implanted in each of the individual sequences, namely, the motif

• Additional information:
 – Assume the hidden sequence is of length 8
 – The pattern is not exactly the same in each sequence because random point mutations have been introduced
Motif Finding Example

- Finding motifs if there are no mutations
- Probability of a given 8-mer in an infinite sequence is $1/4^8 \approx 1.5 \times 10^{-5}$ (1 every 65 Kb)
- Assuming 5 strings of length 68, there are 5 (68 - 8) = 300 distinct 8-mers
- Probability of any one 8-mer is $300/4^8 \approx 0.005$
- So any repeat is rare

```
4acgtacgt4acgtacgt4acgtacgt4acgtacgt4acgtacgt
cctgatagacgctatatctggctatcc4acgtacgt4aggtcctctgtgcaatctatgcgtttccaaccatagtactggtgtacatattgtag4acgtacgt4acaccggaacctgaaacacgcgtcagaaccagaagtgc
4acgtacgt4acgtacgt4acgtacgt4acgtacgt4acgtacgt
gacccctctttctttcgtggctctggtgccacaggggctgtatgtaagaagcggaaatatttt4acgtacgt4ataca
4acgtacgt4acgtacgt4acgtacgt4acgtacgt4acgtacgt
tagcttatacaacgcgtcatggcgggtatgcgtttttggtcgctgctacgtcgtcgtatcgtta4acgtacgt
```

acgtacgt
The Problem Becomes Harder

- Introduce 2 point mutations into each pattern:

```
cctgatagacgctatctggctatccagaGtgtcctctgtgcaatctatgcgtttccaaaccat
agtactggtgtacatttgatCcAtacgtacacccgcaacctgaaaacacgctcagaaccagaagtgc
aaacgtTAggtgccacccctttttctcttgctgctctgccaacgagggctgatgtataagacgaaatttta
agcctccgatgtaagtcataagctgtaactattacctgccacccctattacatctttacgtCcAtataca
ttgttatacaacgctcatggcgggtatgcgtttttggtcgtgctacgctgatlgtgtaaCgtaqCgC
```

- Our original target pattern no longer appears in any sequence!

Can we still find the motif?
Defining a Motif

- To define a motif, let’s assume that we know where the motif starts in each sequence.
- The start positions can be represented as $s = [s_1, s_2, s_3, \ldots, s_t]$.

![Diagram showing motif start index and gene start positions]
Motifs: Profiles and Consensus

- Line up the patterns by their start indexes
 \[s = (s_1, s_2, \ldots, s_t) \]
- Construct a matrix profile with the frequencies of each nucleotide in columns
- Consensus nucleotide in each position has the highest score in column

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment</td>
<td>a G g t a c T t</td>
<td>C c A t a c g t</td>
<td>a c g t T A g t</td>
<td>a c g t C c A t</td>
</tr>
<tr>
<td>Profile</td>
<td>A 3 0 1 0 3 1 1 0</td>
<td>C 2 4 0 0 1 4 0 0</td>
<td>G 0 1 4 0 0 0 3 1</td>
<td>T 0 0 0 5 1 0 1 4</td>
</tr>
<tr>
<td>Consensus</td>
<td>A C G T A C G T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Consensus

• Think of consensus as an “ancestor” motif, from which mutated motifs emerged
• The distance between an actual motif and the consensus sequence is generally less than that for any two actual motifs
• Hamming distance is number of positions that differ between two strings

\[
\begin{array}{ccccc}
G & A & G & A & C \\
X & X & X & X & X \\
T & A & G & A & C & G & C & A & T
\end{array}
\]

A Hamming distance of 2
Consensus Properties

- A consensus string has a minimal hamming distance to all source strings

\[
d = 4
\]

\[
\begin{align*}
CCGTATA\text{AG} & \quad AGTACACCC \\
\text{AGCTCTA\text{C}A} & \quad \text{ATGTACAAAT} \\
\text{ACGTACA\text{C}T} & \quad \text{ACGTACACT}
\end{align*}
\]
Defining Some Terms

- **DNA** – array of sequence fragments
- **t** - number of sample DNA sequences
- **n** - length of each DNA sequence

- **l** - length of the motif (l-mer)
- **s_i** - starting position of an l-mer in sequence i
- **$s=(s_1, s_2, \ldots, s_t)$** - array of motif’s starting positions
Illustration of Terms

\[l = 8 \]
\[t = 5 \]
\[n = 69 \]
\[s_1 = 26 \quad s_2 = 21 \quad s_3 = 3 \quad s_4 = 56 \quad s_5 = 60 \]
Scoring Motifs

- Given \(s = (s_1, \ldots, s_t) \) and DNA:

\[
\text{Score}(s, \text{DNA}) = \sum_{i=1}^{l} \max_{k \in \{A,C,G,T\}} \text{count}(k, i)
\]

\[
\begin{array}{ccccccccc}
A & 3 & 0 & 1 & 0 & 3 & 1 & 1 & 0 \\
C & 2 & 4 & 0 & 0 & 1 & 4 & 0 & 0 \\
G & 0 & 1 & 4 & 0 & 0 & 0 & 3 & 1 \\
T & 0 & 0 & 5 & 1 & 0 & 1 & 4 \\
\end{array}
\]

Consensus \(\text{acgtaacgta} \)

Score \(3+4+4+5+3+4+3+4=30 \)
The Motif Finding Problem

- **Goal**: Given a set of DNA sequences, find a set of l-mers, one from each sequence, that maximizes the consensus score

- **Input**: A $t \times n$ matrix of DNA, and l the length of the pattern to find

- **Output**: An array of t starting positions $s = (s_1, s_2, \ldots, s_t)$ maximizing $Score(s, DNA)$
Brute Force Solution

- Compute the scores for all possible combinations of starting positions s
- The best score determines the best profile and the consensus pattern in DNA
- The goal is to maximize $Score(s, DNA)$ by varying the starting positions s_i, where:

$$s_i = [1, \ldots, n-l+1]$$

$$i = [1, \ldots, t]$$
1. BruteForceMotifSearch(DNA, t, n, l)
2. bestScore ← 0
3. for each $s = (s_1, s_2, ..., s_t)$ from $(1, 1, ..., 1)$ to $(n-l+1, n-l+1, ..., n-l+1)$
4. if score(s, DNA, l) > bestScore
5. bestScore ← score(s, DNA, l)
6. bestMotif ← $(s_1, s_2, ..., s_t)$
7. return bestMotif
Running Time of BruteForceMotifSearch

- Search \((n - l + 1)\) positions in each of \(t\) sequences, by examining \((n - l + 1)^t\) sets of starting positions.
- For each set of starting positions, the scoring function makes \(l\) operations, so complexity is \(l(n - l + 1)^t = O(ln^t)\).
- That means that for \(t = 8\), \(n = 1000\), \(l = 10\) we must perform approximately \(10^{25}\) computations.
- Generously assuming \(10^9\) comps/sec it will require only \(10^{16}\) secs.
- \(10^{16}/(60 * 60 * 24 * 365) \rightarrow\) millions of years.
The Median String Problem

• Given a set of t DNA sequences find a pattern that appears in all t sequences with the minimum number of mutations

• This pattern will be the motif

• Rather than finding the maximal consensus string, this approach attempts to the minimal distance string
Total Distance: An Example

- Given \(v = \text{“acgtacgt”} \) and \(s \)

\[
d_H(v, x) = 0
\]

\[
cctgatagacgctatctggctatctacgtacgtacgtacgtaggtcctctgtgcgaatctatatgcgttttccaaccat
\]

\[
d_H(v, x) = 0
\]

\[
agctctgggtatcatttgatagctacgtacgtacaccggcaacctgaaaaaacgcctcagaaccagaagtgcc
\]

\[
acgtacgt
\]

\[
d_H(v, x) = 0
\]

\[
aacgtacgtgcaccctctttctttcgtggctctggccaacgagggctgtatgtataagacgaaaaatat
\]

\[
d_H(v, x) = 0
\]

\[
agcctccgtatgtagecctagatagctgtaactattaacctgtgccaccctattacatctacgtacgtataaca
\]

\[
d_H(v, x) = 0
\]

\[
ctgttatacaacgctgctatggccgggtatatgcgttttgggtcgtgcgtacgctcgatcgtaacgtacgtc
\]

\(v \) is the sequence in red, \(x \) is the sequence in blue

- **TotalDistance(\(v, \text{DNA} \)) = 0**
Total Distance: An Example

- Given \(\mathbf{v} = \text{“acgtacgt”} \) and \(\mathbf{s} \)

 \[
 d_H(\mathbf{v}, \mathbf{x}) = 1 \\
 d_H(\mathbf{v}, \mathbf{x}) = 0 \\
 d_H(\mathbf{v}, \mathbf{x}) = 2 \\
 d_H(\mathbf{v}, \mathbf{x}) = 0 \\
 d_H(\mathbf{v}, \mathbf{x}) = 1 \\
 \]

\(\mathbf{v} \) is the sequence in red, \(\mathbf{x} \) is the sequence in blue

- \(\text{TotalDistance}(\mathbf{v}, \text{DNA}) = 1 + 0 + 2 + 0 + 1 = 4 \)
Total Distance: Definition

• For each DNA sequence \(i \), compute all \(d_H(v, x) \), where \(x \) is an \(\ell \)-mer with starting position \(s_i \)
 \[(1 \leq s_i \leq n - \ell + 1)\]

• Find minimum of \(d_H(v, x) \) among all \(\ell \)-mers in sequence \(i \)

• \(\text{TotalDistance}(v, \text{DNA}) \) is the sum of the minimum Hamming distances for each DNA sequence \(i \)

• \(\text{TotalDistance}(v, \text{DNA}) = \min_s d_H(v, s) \), where \(s \) is the set of starting positions \(s_1, s_2, \ldots, s_t \)
The Median String Problem

- **Goal**: Given a set of DNA sequences, find a median string
- **Input**: A $t \times n$ matrix DNA, and ℓ the length of the pattern to find
- **Output**: A string v of ℓ nucleotides that
 minimizes $\text{TotalDistance}(v,DNA)$ over all strings of that length
Median String Search Algorithm

1. `MedianStringSearch(DNA, t, n, l)`
2. `bestMotif ← “”`
3. `bestDistance ← t × l`
4. for each `l–mer, s, from “aaa…a” to “ttt…t”`
5. if `TotalDistance(s, DNA) < bestDistance`
6. `bestDistance ← TotalDistance(s, DNA)`
7. `bestMotif ← s`
8. return `bestMotif`
Equivalent Problems

- Motif Finding Problem \equiv Median String Problem
- The Motif Finding is a maximization problem while Median String is a minimization problem
- However, the Motif Finding problem and Median String problem are computationally equivalent (they give the same output for a common input)
- Need to show that minimizing $TotalDistance$ is equivalent to maximizing $Score$
We’re looking for the same thing

At any column i

$$Score_i + \text{TotalDistance}_i = t$$

Because there are l columns

$$Score + \text{TotalDistance} = l^* t$$

Rearranging:

$$Score = l^* t - \text{TotalDistance}$$

$l^* t$ is constant the minimization of the right side is equivalent to the maximization of the left side
Why Bother?

• What is the point of reformulating the Motif Finding problem as the Median String problem?
 – The Motif Finding Problem needs to examine all the combinations for s. That is $(n - l + 1)^t$ combinations!!!
 – The Median String Problem needs to examine all 4^l combinations for v. This number is relatively smaller

$$n=1000, \ l=10, \ t=8 \quad \Rightarrow \quad (1000-10+1)^8 \approx 9.3 \times 10^{23}$$
$$\quad \Rightarrow \quad 8(1000-10+1)4^{10} \approx 8.3 \times 10^{9}$$
Improving Motif Finding

1. \textbf{BruteForceMotifSearch}(DNA, t, n, \ell) \\
2. \textbf{bestScore} \leftarrow 0 \\
3. \textbf{for each} \ s = (s_1, s_2, \ldots, s_t) \ \textbf{from} \ (1, 1, \ldots, 1) \ \textbf{to} \ (n-\ell+1, n-\ell+1, \ldots, n-\ell+1) \\
4. \quad \textbf{if} \ \text{score}(s, \ DNA, \ell) > \text{bestScore} \\
5. \quad \textbf{bestScore} \leftarrow \text{score}(s, \ DNA, \ell) \\
6. \quad \textbf{bestMotif} \leftarrow (s_1, s_2, \ldots, s_t) \\
7. \textbf{return} \ \text{bestMotif}
How to Structure the Search?

• How can we perform the line

\[
\text{for each } s = (s_1, s_2, \ldots, s_t) \text{ from } (1,1,\ldots,1) \text{ to } (n-l+1,\ldots,n-l+1)
\]

• We need a method to more efficiently examine the many possible motifs locations

• This is not very different than exploring all “\(t\)-digit base \((n-l+1)\)” numbers
Improving Median String

1. MedianStringSearch(DNA, t, n, l)
2. bestMotif ← “”
3. bestDistance ← t × l
4. for each l-mer, s, from “aaa...a” to “ttt...t”
5. if TotalDistance(s, DNA) < bestDistance
6. bestDistance ← TotalDistance(s, DNA)
7. bestMotif ← s
8. return bestMotif
For the Median String Problem we need to consider all 4^ℓ possible ℓ-mers:

- aa... aa
- aa... ac
- aa... ag
- aa... at
- aa... ca
- ...
- ...
- tt... tt

How to organize this search?
We’ve used variations of this idea before

```python
def NextLeaf(a, L, k):
    # generates L^k permutations
    for i in reversed(xrange(L)):
        if (a[i] < k):
            a[i] += 1
            break
        else:
            a[i] = 1
    return a
```

Each call generates a new permutation
NextLeaf Usage

• This is the basic loop structure that we have used for many examples thus far (e.g. BruteForceChange)

```python
def AllLeaves(L, k):
    a = [1 for i in xrange(L)]
    while True:
        print a
        a = NextLeaf(a, L, k)
        if (sum(a) == L)
            return
```

• Is there another way to search permutations?
• Our standard method for enumerating permutations just traverses the leaf nodes

• Suppose after checking the first or second letter we already know the solution could not be the one we are looking for?
Analyzing Search Trees

• Characteristics of the search trees:
 – The unique permutations reside at leaves
 – A parent node is a common prefix of its children

• How can we traverse the tree?

• Things we’d like to do:
 – Visit all the nodes (interior and leaves)
 – Visit the next node (in an ordered way)
 – Bypass the children of a node
Depth First Search

- Start from the root and explore down to the bottom one path at a time
Visiting the Next Vertex

- Uses 0s to encode unspecified part of interior nodes (the dashes in our figure)

```python
def NextVertex(a, i, L, k):
    if (i < L):
        a[i] = 1
        return (a, i+1)
    else:
        for j in reversed(xrange(L)):
            if (a[j] < k):
                a[j] += 1
                return (a, j+1)
            a[j] = 0
        return (a, 0)
```
Bypass Nodes

• Given a prefix (internal vertex), find next vertex after skipping all of the current vertex’s children

```python
def Bypass(a, i, L, k):
    for j in reversed(xrange(i)):
        if (a[j] < k):
            a[j] += 1
            return (a, j+1)
    a[j] = 0
    return (a, 0)
```
Bypass Example

- Bypassing descendents of nodes “12—” and “211—”

Initial Location

Location after 4 moves
Revisiting Brute Force Search

- Now that we have a method for navigating the tree, let's convert our pseudocode version of BruteForceMotifSearch to real code.

```python
def BruteForceMotifSearchAgain(DNA, t, n, l):
    s = [1 for i in xrange(t)]
    bestScore = Score(s, DNA)
    while (True):
        s = NextLeaf(s, t, n-l+1)
        if (Score(s, DNA) > bestScore):
            bestScore = Score(s, DNA)
            bestMotif = [x for x in s]
        if (sum(s) == t):
            break
    return bestMotif
```
Can We Do Better?

• Sets of $s=(s_1, s_2, \ldots, s_t)$ may have a weak profile for the first i positions (s_1, s_2, \ldots, s_i)

• Every row of alignment may add at most ℓ to Score

• Optimism: if all subsequent $(t-i)$ positions (s_{i+1}, \ldots, s_t) add

\[(t - i) \times \ell \text{ to } \text{Score}(s, i, \text{DNA})\]

• If $\text{Score}(s, i, \text{DNA}) + (t - i) \times \ell < \text{BestScore}$, it makes no sense to search subtrees of the current vertex

 – Use ByPass()
Rewrite Using Tree Traversal

- Before we apply a branch-and-bound strategy let’s rewrite the brute-force algorithm using a search tree

```python
def SimpleMotifSearch(DNA, t, n, l):
    s = [0 for i in xrange(t)]
    bestScore = 0
    i = 0
    while (True):
        if (i < t):
            s, i = NextVertex(s, i, t, n-l+1)
        else:
            if (Score(s, DNA, l) > bestScore):
                bestScore = Score(s, DNA, l)
                bestMotif = [x for x in s]
                s, i = NextVertex(s, i, t, n-l+1)
        if (sum(s) == 0):
            break
    return bestMotif
```
Branch and Bound Motif Search

- Since each level of the tree goes deeper into search, discarding a prefix discards all following branches.

- This saves us from looking at \((n - \ell + 1)^{t-i}\) leaves.
 - Use `NextVertex()` and `ByPass()` to navigate the tree.
def BranchAndBoundMotifSearch(DNA, t, n, l):
 s = [0 for i in xrange(t)]
 bestScore = 0
 i = 0
 while (True):
 if (i < t):
 optimisticScore = Score(s, DNA, l) + (t-i)*l
 if (optimisticScore < bestScore):
 s, i = Bypass(s, i, t, n-l+1)
 else:
 s, i = NextVertex(s, i, t, n-l+1)
 else:
 score = Score(s, DNA, l)
 if (score > bestScore):
 bestScore = score
 bestMotif = [x for x in s]
 s, i = NextVertex(s, i, t, n-l+1)
 if (sum(s) == 0):
 break
 return bestMotif
Improving Median Search

• Recall the computational differences between motif search and median string search
 – The Motif Finding Problem needs to examine all \((n-\ell+1)^\ell\) combinations for \(s\).
 – The Median String Problem needs to examine \(4^\ell\) combinations of \(v\). This number is relatively small

• We want to use median string algorithm with the Branch and Bound trick!
Insight for Improving Median Search

• Note that if, at any point, the total distance for a prefix is greater than that for the best word so far:

\[\text{TotalDistance (prefix, DNA)} > \text{BestDistance} \]

there is no use exploring the remaining part of the word

• We can eliminate that branch and BYPASS exploring that branch further
def BranchAndBoundMedianSearch(DNA,t,n,l):
 s = [1 for i in xrange(t)]
 bestDistance, bestWord = l*t, '
 i = 1
 while (i > 0):
 if (i < l):
 prefix = NucleotideString(s, i)
 optimisticDistance = TotalDistance(prefix, DNA)
 if (optimisticDistance > bestDistance):
 s, i = Bypass(s,i,l,t)
 else:
 s, i = NextVertex(s,i,l,t)
 else:
 word = NucleotideString(s, l)
 if (TotalDistance(word, DNA) < bestDistance):
 bestDistance = TotalDistance(word, DNA)
 bestWord = word
 s, i = NextVertex(s,i,l,t)
 return bestWord
Today’s Bad Example

• An embarrassing confession. I got bitten by a bug in the online notes for the book!

• The target motif has a consensus score of 30
• But \([2, 5, 46, 4, 1] = 31\) and \([2, 5, 46, 6, 1] = 34\)
• \(>30\) solutions with consensus of 30 or better
• Which is the real Motif?
Further Improvements

• More improvements to Motif searching
 – Why just prune based on prefixes? Can you consider suffixes too?
 – Consider a random subset of t strings, or l characters
 – Consider multiple letters at a time?

• How do you really find a TFBS?
 – Multiple answers
 – Near optimal answers
 – Motifs are just a starting point

• Next Time
 – We revisit greedy algorithms