
L23 – Parallel Processing 1 Comp 411 – Spring 2012 4/23/12 

Multi-Core & Parallel Processing 

Chapter 7 

I’m going to study with 9
 friends... we’ll be done in

 an hour. 

I’ve gotta spend at least
 10 hours studying for

 the Comp 411 final! 
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TIPs Anyone? 

   Mega – 106    Giga – 109    Tera – 1012    Peta – 1015 

Light travels about 1 ft / 10-9 secs in free space. 
A Tera-Hertz uniprocessor could have no clock-to-clock
 path longer than 300 microns (thickness of a hair)… 

We already know of problems that require greater than a TIP
 (Simulations of weather, weapons, brains) 

MIPS = 
Clock Frequency (in MHz) 

Clocks per Instruction 
I guess that means
 that there are 1012

 microphones in a
 Megaphone? 
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Driving Down the Denominator 
Techniques for increasing parallelism: 

 Pipelining – reasonable for a small number of stages  
(5-10), after that bypassing and stalls become
 unmanageable. 

 Superscalar – replicate data paths and design control
 logic to discover parallelism in traditional programs. 

 Explicit parallelism – must learn how to write programs
 that run on multiple CPUs. 
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Superscalar Parallelism 
-  Multiple Functional Units (ALUs, Addr units, etc)  
-  Multiple instruction dispatch 
-  Dynamic Pipeline Scheduling 
-  Speculative execution 

Reservation
 Station 

Reservation
 Station 

Reservation
 Station 

Reserv. Stn 

Popular 5-10 years ago 
– but the end is near! 
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Explicit Parallelism 
Three key aspects of Parallel computing:  

Control, Communications, and types of processing elements 

Decoding the Parallel Processor Alphabet Soup: 
SIMD - Single-Instruction-Multiple-Data 

   Unified control, Homogeneous processing elements 
VLIW - Very-Long-Instruction-Word 

   Unified control, Hetrogeneous processing elements 
MIMD - Multiple-Instruction-Multiple-Data 

Distributed control, Message Passing 
SMP – Symmetric Multi-Processor 

 Distributed control, Shared memory, Homogenous PEs 
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SIMD Processing 

Each datapath has its own local data (Register File) 
All data paths execute the same instruction 
Conditional branching is difficult…   

(What if only one CPU has R1 == $0?) 
Conditional operations are more common in SIMD machines 

if (flag1) Rc = Ra <op> Rb 
Global ANDing or ORing of flag registers are used for  

high-level control 

Reg File 

ALU 

PC 

+1 or Branch 

Reg File 

ALU 

Reg File 

ALU 

Reg File 

ALU 

Data 
Memory 

Instruction 
Memory 

addr 

addr 

data 

data 

Addressing 
Unit 

Control 

This sort of 
construct is 
also becoming 
popular on 
modern 
uniprocessors 
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SIMD Coprocessing Units 

SIMD data path added to a traditional CPU core 
Register-only operands 
Core CPU handles memory traffic 
Partitionable Datapaths for variable-sized 

 “PACKED OPERANDS” 

Reg File 

64-bit ALU 

64 

64 

64 

Intel “MMX” 
Multimedia 
Extensions 



L23 – Parallel Processing 8 Comp 411 – Spring 2012 4/23/12 

SIMD Coprocessing Units 

SIMD data path added to a traditional CPU core 
Register-only operands  
Core CPU handles memory traffic 
Partitionable Datapaths for variable-sized 

 “PACKED OPERANDS” 

Reg File 

32-bit ALU 

64 

64 

64 

32-bit ALU Two 
32-bit ALUs 

FA 
a   b 

s 
co    ci 

FA 
a   b 

s 
co    ci 

A32 B32  A31 B31 

S32        S31 

... ... 

Intel “MMX” 
Multimedia 
Extensions 
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SIMD Coprocessing Units 

SIMD data path added to a traditional CPU core 
Register-only operands 
Core CPU manages memory traffic 
Partitionable Datapaths for variable-sized 

  “PACKED OPERANDS” 

Reg File 

16-bit ALU 

64 

64 

64 

16-bit ALU 
16-bit ALU 

16-bit ALU Four 
16-bit ALUs 

Nice data size for: 
 Graphics, 
 Signal Processing, 
 Multimedia Apps, 
 etc. 

Intel “MMX” 
Multimedia 
Extensions 



L23 – Parallel Processing 10 Comp 411 – Spring 2012 4/23/12 

SIMD Coprocessing Units 

SIMD data path added to a traditional CPU core 
Register-only operands 
Core CPU manages memory traffic 
Partitionable Datapaths for variable-sized 

  “PACKED OPERANDS” 

Reg File 
64 

64 

64 

Eight 
8-bit ALUs 

8-bit ALU 8-bit ALU 
8-bit ALU 8-bit ALU 8-bit ALU 8-bit ALU 8-bit ALU 8-bit ALU 

MMX instructions: 
 PADDB - add bytes 
 PADDW - add 16-bit words 
 PADDD - add 32-bit words 
 (unsigned & w/saturation) 
 PSUB{B,W,D} – subtract 
 PMULTLW – multiply low 
 PMULTHW – multiply high 
 PMADDW – multiply & add 
 PACK – 
 UNPACK – 
 PAND – 
 POR -   
   

Intel “MMX” 
Multimedia 
Extensions 
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VLIW Variant of SIMD Parallelism 
A single-WIDE instruction controls multiple heterogeneous

 datapaths. 
Exposes parallelism to compiler (S/W vs. H/W) 

Register File 

Integer ALU #1 

Floating Point 
Adder 

Integer ALU #2 

Floating Point 
Multiplier 

FP Regs 
Instr. Fetch 

& Branch 
Prediction 

Load 
Store 
Unit 

Instr 

$ 

Data 

$ 

M
em

ory Interface 

IOP1 RC1 RA1 RB1 IOP2 RC2 RA2 RB2 FOP FD1 FA1 FB1 FD2 FA2 FB2 MemOP 
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MIMD: Multi-CPU Architecture 
•  Reaction to Superscalar Approach 

–  Diminishing returns for H/W to find instruction-level parallelism 
–  Improving Superscalar H/W becomes more and more complex 
–  Give up, and let the S/W folks figure it out  

•  Multiple CPUs (each with its own a PC/program) 
•  H/W focuses on communication 

–  Crossbars  
(switches to share  
multiple buses) 

–  Meshes  
(point-to-point  
store-and-forward  
communication) 

–  Shared Caches and  
memory interfaces  
(further taxing a  
known bottleneck) 

•  S/W focuses on  
partitioning of  
data & algorithms 

mini 
MIPS 

L1$ 

link 

link 
mini 
MIPS 

L1$ 

link 

link 
mini 
MIPS 

L1$ 

link 

link 
mini 
MIPS 

L1$ 

link 

link 

mini 
MIPS 

L1$ 

link 

link 
mini 
MIPS 

L1$ 

link 

link 
mini 
MIPS 

L1$ 

link 

link 
mini 
MIPS 

L1$ 

link 

link 

Shared 
L2$ 

Shared 
Memory 
Interface 
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SMP – Symmetric Multiprocessors 
All processors are identical and share a common main memory 
Leverages existing CPU architectures / designs 
Easy to migrate “Processes” to “Processors” 
Share data and program 
Communicate through 

shared memory 
Easy upgrades (more CPUs) 
Problems: 

Scalability 
Synchronization 

mini 
MIPS 

mini 
MIPS 

mini 
MIPS 

mini 
MIPS 

M\mini 
MIPS 

MIMD Example - Shared memory 

$ $ $ $ $ 

Main Memory 
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Symmetric Multiprocessor Fantasies 
If one processor is good, N processors are GREAT: 

P1 P2 PN 

Shared Main Memory 

IDEA: 

• Run N processes, each on its OWN processor! 

• Processors compete for bus mastership, memory access 

• Bus SERIALIZES memory operations (via arbitration for mastership) 

PROBLEM: 

 The Bus quickly becomes the BOTTLENECK 
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Multiprocessor with Caches 
But, we’ve seen this problem before. The solution, add CACHES. 

P1 

$1:  x = 1 
      y = 2 

Shared Memory,  x = 1, y = 2 

P2 

$2:  x = 1 
      y = 2 

Program A 
x = 3; 
print(y); 

Program B 
y = 4; 
print(x); 

Consider the following trivial processes running on P1 and P2: 
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What are the Possible Outcomes? 

SEQUENCE            A prints   B prints 
x=3; print(y); y=4; print(x);   2   1 
x=3; y=4; print(y); print(x);   2   1 
x=3; y=4; print(x); print(y);   2   1 
y=4; x=3; print(x); print(y);   2   1 
y=4; x=3; print(y); print(x);   2   1 
y=4; print(x); x=3; print(y);   2   1 

All plausible interleaved execution sequences: 

Processor A 
x = 3; 
print(y); 

Processor B 
y = 4; 
print(x); 

$A:  x = 1 
      y = 2 

$B:  x = 1 
      y = 2 

Simulation of two processors, each with a write-back cache 

Modifications
 made by one
 CPU aren’t seen
 by the others
 until the
 corresponding
 cache line is
 replaced. 
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Compare to Uniprocessor Outcome 
But, what are the possible outcomes if we ran Process A and Process B

 on our single “timed-shared” processor from last lecture? 

SEQUENCE            A prints   B prints 
x=3; print(y); y=4; print(x);   2   3 
x=3; y=4; print(y); print(x);   4   3 
x=3; y=4; print(x); print(y);   4   3 
y=4; x=3; print(x); print(y);   4   3 
y=4; x=3; print(y); print(x);   4   3 
y=4; print(x); x=3; print(y);   4   1 

Plausible Uniprocessor execution sequences: 

“Process” A 
x = 3; 
print(y); 

“Process” B 
y = 4; 
print(x); 

Notice that the
 2 processor
 outcome “2, 1”
 does not even
 appear in our
 list! 
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Parallel Sequential Consistency 
Semantic constraint: 

Result of executing N parallel programs should correspond to some
 interleaved execution on a single processor.  

Possible printed values: 2, 3;   4, 3;   4, 1. 
(each corresponds to at least one interleaved execution) 

IMPOSSIBLE printed values:  2, 1 
(corresponds to NO valid interleaved execution). 

Process A 
x = 3; 
print(y); 

Process B 
y = 4; 
print(x); 

Shared Memory 
int x=1, y=2; 

Weren’t
 caches
 supposed
 to be
 invisible to
 programs? 
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Cache Incoherence 

PROBLEM:  “stale” values in cache ... 

Process B 
y = 4; 
print(x); 

Process A 
x = 3; 
print(y); 

Q: How does B know that A has changed the value of x? 

P1 

$1:  x=3 
        y=2 

Shared Memory 

P2 

$2:  x=1 
       y=4 

 x=3, y=4 

Does 
WRITE-THRU 

help? 
_______! NO 

 The problem is 
 not that 
 memory has 
 stale values, 
 but that other 
 caches may! 
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Cache Coherence Solutions 

Problem:  A writes data into shared memory;   
                B still sees “stale” cached value. 

Solutions: 
 1. Don’t cache shared Read/Write pages. 
  COST: Longer access time to shared memory. 

 2. Attach cache to shared memory, not to processors... 
  ... share the cache as well as the memory! 

   COSTS:  1.  ___________________ 

                   2. ___________________ 

 3. Make caches talk to each other, maintain a consistent story. 

Shared Memory 

P1 P2 

$ 

Adds Bus Contention 
Reduces Locality 
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“Snoopy” Caches 

P1 

$1:  x=1 
        y=2 

Shared Memory 

P2 

$2:  x=1 
        y=2 

 x=1,       y=2 

IDEA: 

• P1 writes 3 into x; write-thru cache causes bus transaction. 

• P2, snooping, sees transaction on bus and either INVALIDATES or
 UPDATES its cached copy of  x. 

MUST WE use a write-thru strategy? (slows down everyone on writes) 

Presume 
WRITE-THRU 

caches! 
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Coherency w/ Write Back 
P1 

Shared Memory 

P2 

 x=1, y=2 

S addr data 

IDEA: 
• Various caches can have 

• Multiple SHARED read-only copies; OR 
• One UNSHARED exclusive-access read-write copy. 

• Keep STATE of each cache line in extra “tag-like” bits (i.e. Valid, Dirty) 
• Add bus protocols -- “messages”  -- to allow caches to maintain

 consistent state 

S addr  data 
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Coherent Cache States 
Two-bit STATE in cache line encodes one of M, E, S, I states (“MESI” cache): 

INVALID: cache line unused. 

SHARED ACCESS: read-only, valid, not dirty.  Shared with other read
-only copies elsewhere.  Must invalidate other copies before writing.  

EXCLUSIVE: exclusive copy, not dirty.  On write becomes modified. 

MODIFIED: exclusive access; read-write, valid, dirty.  Must be written
 back to memory eventually; meanwhile, can be written or read by local
 processor. 

4-state 
FSM for

 each 
cache line! 

(FREE!!: Can redefine
 VALID and DIRTY

 bits) 
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MESI Examples 

External Snoop READ hits cache line in Modified
 state: 

• Write back cache line 
• Change to Shared state 

Local WRITE request hits cache line in Shared state: 
• Send INVALIDATE message forcing other caches to I states 
• Change to Modified state, proceed with write. 

P1 

$1:  
    S/0xc411/1 

P2 

$2: 
   S/0xc411/1 M 

P1 

$1:  
    M/0xc411/3 

P2 

$2: 
   I/0xc411/1 

I 

Mem[0xc411] = 3 

Print(Mem[0xc411]) 

S 3 S 
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Sequential Inconsistency 

Plausible sequence of events: 
• A writes 3 into x, sends INVALIDATE message. 
• B writes 4 into y, sends INVALIDATE message. 
• A reads 2 from y, prints it... 
• B reads 1 from y, prints it... 
• A, B each receive respective INVALIDATE messages. 

FIX: Wait for INVALIDATE messages to be acknowledged before proceeding
 with a subsequent reads. 

COST: Loss of performance (writes stall reads)…  
must provide for fast invalidates 

Process A 
x = 3; 
print(y); 

Process B 
y = 4; 
print(x); 

Shared Memory 
int x=1, y=2; 
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Who Needs Parallel Sequential  
Consistency, Anyway? 

ALTERNATIVE MEMORY SEMANTICS: 
 “WEAK” consistency 

EASIER GOAL: Memory operations from each processor appear to be
 performed in order issued by that processor; 

Memory operations from different processors may overlap in arbitrary
 ways (not necessarily consistent with any interleaving). 

COMMON APPROACH: 
• Weak consistency, by default; 

• MEMORY BARRIER instructions: stalls processor until all previous
 memory operations have completed. 



L23 – Parallel Processing 27 Comp 411 – Spring 2012 4/23/12 

“Dusty Deck” Problem 
How do we make our old sequential programs run on parallel

 machines? After all, what’s easier, designing new H/W or
 rewriting all our S/W? 

Programs have inertia. Familiar languages, S/W engineering
 practice reinforce “Sequential Programming Semantics” 

By treating PROCESSES or THREADS as a programming
 constructs…  and by assigning each process to a
 separate processor… we can take advantage of some
 parallelism. 
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Programming the Beast 

Comp 411 (circa 2012): 

int factorial(int n) { 
   if (n > 0) 
      return n*fact(n-1); 
   else 
      return 1; 
} 

Calls factorial() only n times 

Runs in O(N) time 

After camping out in the rain Saturday
 night to get Obama tickets, then

 staying up all Sunday night to finish his
 last 411 problem set, Lee Hart fell into a

 deep sleep only to reawake 10 years
 later… Comp 411 (circa 2022): 

int factorial(int n) { 
   return facthelp(1, n); 
} 

parallel int facthelp(int from, int to) { 
   int mid; 
   if (from >= to) return from; 
   mid = (from + to)/2; 
   return (facthelp(from,mid)*facthelp(mid+1,to)); 
} 

 {1, 2, 3, 4, 5, 6, 7, 8} 

Calls facthelp() 2n – 1 times  
      (nodes in a binary tree with n leafs).  
Runs in O(log2(N)) time 
      (on N processors) 
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Parallel Processing Summary 
Prospects for future CPU architectures: 

 Pipelining - Well understood, but mined-out 
Superscalar - Nearing its practical limits 
SIMD - Limited use for special applications 
VLIW - Returns controls to S/W. The future? 

Prospects for future Computer System architectures: 
SMP - Limited scalability. Harder than it appears. 
MIMD/message-passing - It’s been the future for
  over 20 years now. How to program? 

WHAT ABOUT THE FUTURE? 
  New BOUNDARIES, New PROBLEMs 


