
Cache Structure 1 Comp 411 – Spring 2013 4/22/2013

Cache Structure

•  Set-Associativity
•  Replacement policies

•  Overhead
•  Implementation

•  Handling writes
•  Cache simulations

 Study 5.3, 5.5

Cache Structure 2 Comp 411 – Spring 2013 4/22/2013

Fully Associative Cache
(from last Lecture)

TAG Data

= ?

TAG Data

= ?

TAG Data

= ?

Address
bits 31-2
from CPU

Miss

Data to CPU

…

0

1 Data from memory

READ HIT:
One of the cache tags matches
 the incoming address; the
 data associated with that tag
 is returned to CPU.
READ MISS:
None of the cache tags
 matched, so initiate access to
 main memory and stall CPU
 until complete. Update cache
 entry with new tag (address)
 and data.

One cache “LINE”

Each cache
“line” has is
associated
with a “tag”

Cache Structure 3 Comp 411 – Spring 2013 4/22/2013

Tags Are Expensive!
•  Tag comparison logic is LARGE
 An XOR gate is as large as a memory bit!
•  Tag comparison logic is SLOW
 High-Fan-In NOR gate
•  Tag storage overhead is high
 Rather store data, not Tags

e.g. For a Fully Associative Cache

Tag bits/cache entry = 30 bits
Data bits/cache entry = 32 bits

48% of cache’s memory is
devoted to tag storage!

.

.

.

Bn-1
An-1
Bn-2
An-2

B0
A0

B1
A1

B2
A2

B3
A3

A == B

Cache Structure 4 Comp 411 – Spring 2013 4/22/2013

Amortize Tag Costs: More Data/Tag

A31:4 Mem[A] Mem[A+4] Mem[A+8] Mem[A+12]

= ?

[3:2]

[31:4]
32 ADDR

DATA

HIT

•  Blocks of 2B words, on 2B word boundaries
•  always reads/writes a 2B word BLOCK from/to memory
•  exploits spatial locality: nearby words in block, likely to accessed
•  cost: some fetches of unaccessed words
•  BIG WIN if path to memory is wide, or sequential accesses are fast

BIG Cache Lines: Enlarge each line in fully-associative cache
TAG D0 D1 D2 D3

Tag bits/cache entry = (30 – 2) bits
Data bits/cache entry = 4*32 bits Only 18% of cache’s memory used for tags

Cache Structure 5 Comp 411 – Spring 2013 4/22/2013

Block Size vs. Miss Rate

•  spatial locality: larger blocks → reduce miss rate
•  fixed cache size: larger blocks

 → fewer lines in cache
 → higher miss rate, especially in small caches
 → fetches data that is never used

If the block size gets too big, we start fetching items that we
 never access, at the expense of other items we might actually
 need. Thus, the miss rate starts to go up again.

Cache Structure 6 Comp 411 – Spring 2013 4/22/2013

Direct-Mapped Cache (from last time)

= ?

[3:2]

[31:8]
32

ADDR

DATA

HIT

TAG D0 D1 D2 D3

[7:4]

Uses ordinary
 (fast) static
 RAM for tag
 and data
 storage

Only one comparator for entire cache!

0

15

16 cache lines
→ 4 bit index

0x12 M[0x1230] M[0x1234] M[0x1238] M[0x123C]
0x12 M[0x1240] M[0x1244] M[0x1248] M[0x124C]

Tag bits/
 cache entry =
 (30 - 2 - 4) bits

Data bits/
 cache entry =
 4*32 bits
16% of cache’s
 memory used
 for tags

4 Words = 16 bytes per line → 2 address bits

Cache Structure 7 Comp 411 – Spring 2013 4/22/2013

Fully-Assoc. vs. Direct-mapped
Fully-associative N-line cache:

•  N tag comparators, registers used
 for tag/data storage ($$$)

•  Location A can be stored in ANY
 of the N cache lines; no “collisions”

•  Replacement strategy (e.g., LRU)
 used to pick which line to use when
 loading new word(s) into cache

Direct-mapped N-line cache:

•  1 tag comparator, SRAM used for
 tag/data storage ($)

•  Location A is stored in a
 SPECIFIC line of the cache
 determined by its address;
 address “collisions” possible

•  Replacement strategy not needed:
 each word can only be cached in one
 specific cache line

COLLISIONs occur when there are
 multiple items that we’d like to
 keep cached, we have room, but
 our management policies only
 keeps a subset of them.

Is there something
in-between?

Cache Structure 8 Comp 411 – Spring 2013 4/22/2013

N-Way Set-Associative Cache

k

HIT

DATA TO CPU

INCOMING ADDRESS

=?

t

MEM DATA

There are
N possible
 places
 that a
 given item
 could be
 stored in
 the cache

 TARGET INDEX “N direct-mapped caches”, each with 2t entries of N lines

=? =?

Li
ne

s
th

at
 s

ha
re

 a
 c

om
m

on
 in

de
x

ar
e

a
se

t

Cache Structure 9 Comp 411 – Spring 2013 4/22/2013

How Many Sets?

time

address

program
1 instructions

stack 2 stack

data 3 4 data (src, dest)

Cache Structure 10 Comp 411 – Spring 2013 4/22/2013

Associativity vs. Miss Rate

Miss
rate
(%)

Cache size (bytes)

Associativity

•  8-way is (almost) as effective as fully-associative
•  rule of thumb: N-byte M-way set assoc ≈ N/2-byte 2M-way set assoc.

Direct-mapped

Cache Structure 11 Comp 411 – Spring 2013 4/22/2013

N
address

N-way set associative

•  compares addr with N
 tags simultaneously
•  Data can be stored in
 any of the N cache lines
 belonging to a “set”
•  like N Direct-mapped
 caches

Continuum of Associativity

address

Fully associative

•  compares addr with
 all tags simultaneously
•  location A can be
 stored in any cache line

address

Direct-mapped

•  compare addr with
 only one tag
•  location A can be
 stored in exactly one
 cache line

Allocates a cache entry Allocates 1 of N lines in a set Only one place to put it

ON A MISS?

Cache Structure 12 Comp 411 – Spring 2013 4/22/2013

Basic Caching Algorithm
ON REFERENCE TO Mem[X]: Look for X among cache tags...

HIT: X = TAG(i) , for some cache line i
READ: return DATA(i)
WRITE: change DATA(i);

 Write to Mem[X]

MAIN
MEMORY

CPU

(1-α)

Tag Data

A

B

Mem[A]

Mem[B]

MISS: X not found in TAG of any cache line

REPLACEMENT ALGORITHM:
Select some LINE k to hold Mem[X] (Allocation)

READ: Read Mem[X]
Set TAG(k)=X, DATA(k)=Mem[X]

WRITE: Write to Mem[X]
Set TAG(k)=X, DATA(k)= write data

Our
next

focus

Cache Structure 13 Comp 411 – Spring 2013 4/22/2013

Three Replacement Strategies
LRU (Least-recently used)

•  replaces the item that has gone UNACCESSED the LONGEST
•  favors the most recently accessed data

FIFO/LRR (first-in, first-out/least-recently replaced)
•  replaces the OLDEST item in cache
•  favors recently loaded items over older STALE items

Random
•  replace some item at RANDOM
•  no favoritism – uniform distribution
•  no “pathological” reference streams causing worst-case results
•  use pseudo-random generator to get reproducible behavior

Cache Structure 14 Comp 411 – Spring 2013 4/22/2013

Keeping Track of LRU

•  Needs to keep ordered list of N items for an
N-way associative cache, that is updated on
 every access. Example for N = 4:

(0,1,2,3) Hit 2
Current Order Action Resulting Order

(2,0,1,3)
(2,0,1,3) Hit 1 (1,2,0,3)
(1,2,0,3) Miss, Replace 3 (3,1,2,0)
(3,1,2,0) Hit 3 (3,1,2,0)

•  N! possible orderings → log2N! bits per set
 approx O(N log2N) “LRU bits” + update logic

Cache Structure 15 Comp 411 – Spring 2013 4/22/2013

Example: LRU for 2-Way Sets
•  Bits needed?

•  LRU bit is selected using
 the same index as cache
(Part of same SRAM)

•  Bit keeps track of the last
 line accessed in set:
 (0), Hit 0 (0)
 (0), Hit 1 (1)
 (0), Miss, replace 1 (1)
 (1), Hit 0 (0)
 (1), Hit 1 (1)
 (1), Miss, replace 0 (0)

address

2-way set associative

=? =?

Logic

Miss Data

log22! = 1 bit per set

LRU
replacement

 “state”

Cache Structure 16 Comp 411 – Spring 2013 4/22/2013

Example: LRU for 4-Way Sets

•  Bits needed?
•  How?
•  One Method:

 “One-Out/Hidden Line” coding (and variants)
 Directly encode the indices of the N-2 most recently accessed lines,
 plus one bit indicating if the smaller (0) or larger (1) of the
 remaining lines was most recently accessed

 (2,0,1,3) -> 10 00 0
 (3,2,1,0) -> 1 1 10 1
 (3,2,0,1) -> 1 1 10 0

 Requires (N-2)*log2N + 1 bits

–  8-Way sets? log28! = 16, (8-2)*log28 + 1 = 19

log2 4! = log2 24 = 5 per set Bottom line,
 LRU
 replacement
 requires
 considerable
 overhead as
 associativity
 increases

Overhead is
O(N log2N)

bits/set
optimal One-out/Hidden line

Cache Structure 17 Comp 411 – Spring 2013 4/22/2013

FIFO Replacement

•  Each set keeps a modulo-N counter that points to victim
 line that will be replaced on the next miss

•  Counter is only updated only on cache misses

 Ex: for a 4-way set associative cache:

(0) Miss, Replace 0
Next Victim Action

(1) Hit 1
(1) Miss, Replace 1
(2) Miss, Replace 2
(3) Miss, Replace 3
(0) Miss, Replace 0

Overhead is
O(log2N)
bits/set

Cache Structure 18 Comp 411 – Spring 2013 4/22/2013

Example: FIFO For 2-Way Sets
•  Bits needed?

•  FIFO bit is per cache line
and uses the same index
as cache
(Part of same SRAM)

•  Bit keeps track of the
oldest line in set

•  Same overhead as LRU!
•  LRU is generally has lower miss

 rates than FIFO, soooo….
 WHY BOTHER???

address

2-way set associative

=? =?

Logic

Miss Data

log22 = 1 per set

Cache Structure 19 Comp 411 – Spring 2013 4/22/2013

FIFO For 4-way Sets

•  Bits Needed?
•  Low-cost, easy to implement (no tricks here)
•  8-way?
•  16-way?
•  LRU 16-way?

•  FIFO summary
–  Easy to implement, scales well,

BUT CAN WE AFFORD IT?

log2 4 = 2 per set

log2 8 = 3 per set

I’m starting to
 buy into all
 that “big O”
 stuff!

log2 16 = 4 per set

log2 16! = 45 bits per set
14*log2 16 + 1 = 57 bits per set

Cache Structure 20 Comp 411 – Spring 2013 4/22/2013

Random Replacement

•  Build a single Pseudorandom Number generator for
 the WHOLE cache. On a miss, roll the dice and
 throw out a cache line at random.

•  Updates only on misses.
•  How do you build a random number

generator (easier than you might think).
11111 0x1F
01111 0x0F
00111 0x07
10011 0x13
11001 0x19
01100 0x0C
10110 0x16
01011 0x0B
00101 0x05
10010 0x12
01001 0x09
00100 0x04
00010 0x02
00001 0x01
10000 0x10

01000 0x08
10100 0x14
01010 0x0A
10101 0x15
11010 0x1A
11101 0x1D
01110 0x0E
10111 0x17
11011 0x1B
01101 0x0D
00110 0x06
00011 0x03
10001 0x11
11000 0x18
11100 0x1C
11110 0x1E

Counting Sequence

Pseudorandom Linear Feedback Shift Register

Overhead is
O(log2N)

bits/cache!

Cache Structure 21 Comp 411 – Spring 2013 4/22/2013

Replacement Strategy vs. Miss Rate

Size

Associativity

2-way 4-way 8-way

LRU Random LRU Random LRU Random

16KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%

64KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%

256KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

H&P: Figure 5.4

•  FIFO was reported to be worse than random or LRU
•  Little difference between random and LRU for larger-size caches

Cache Structure 22 Comp 411 – Spring 2013 4/22/2013

Valid Bits

MAIN
MEMORY CPU

TAG DATA

Problem:
Ignoring cache lines that don’t contain REAL or CORRECT values…

- on start-up
- “Back door” changes to memory (eg: loading program from disk)

Solution:
Extend each TAG with VALID bit.
• Valid bit must be set for cache line to HIT.
• On power-up / reset : clear all valid bits
• Set valid bit when cache line is FIRST replaced.
• Cache Control Feature: Flush cache by clearing all valid bits, Under

 program/external control.

? ???

? ???

? ???

A Mem[A]
? ???
? ???
B Mem[B]

V

0

0

0

1
0
0
1

Cache Structure 23 Comp 411 – Spring 2013 4/22/2013

Handling WRITES
Observation: Most (80+%) of memory accesses are READs,

but writes are essential. How should we handle writes?
Policies:

WRITE-THROUGH: CPU writes are cached, but also written to main memory
 (stalling the CPU until write is completed). Memory always holds “the
 truth”.

WRITE-BACK: CPU writes are cached, but not immediately written to main
 memory. Memory contents can become “stale”.

Additional Enhancements:

WRITE-BUFFERS: For either write-through or write-back, writes to main
 memory are buffered. CPU keeps executing while writes are completed (in
 order) in the background.

What combination has the highest performance?

Cache Structure 24 Comp 411 – Spring 2013 4/22/2013

Write-Through
ON REFERENCE TO Mem[X]: Look for X among tags...

HIT: X == TAG(i) , for some cache line i

READ: return DATA[i]
WRITE: change DATA[i]; Start Write to Mem[X]

MISS: X not found in TAG of any cache line

REPLACEMENT SELECTION:
Select some line k to hold Mem[X]

READ: Read Mem[X]
Set TAG[k] = X, DATA[k] = Mem[X]

WRITE: Start Write to Mem[X]
Set TAG[k] = X, DATA[k] = new Mem[X]

Cache Structure 25 Comp 411 – Spring 2013 4/22/2013

Write-Back
ON REFERENCE TO Mem[X]: Look for X among tags...

HIT: X = TAG(i) , for some cache line I

READ: return DATA(i)
WRITE: change DATA(i); Start Write to Mem[X]

MISS: X not found in TAG of any cache line

REPLACEMENT SELECTION:
Select some line k to hold Mem[X]
Write Back: Write Data(k) to Mem[Tag[k]]

READ: Read Mem[X]
Set TAG[k] = X, DATA[k] = Mem[X]

WRITE: Start Write to Mem[X]
Set TAG[k] = X, DATA[k] = new Mem[X]

Costly if
 contents
 of cache
 are not
 modified

Cache Structure 26 Comp 411 – Spring 2013 4/22/2013

Write-Back w/ “Dirty” bits

ON REFERENCE TO Mem[X]: Look for X among tags...

HIT: X = TAG(i) , for some cache line I
READ: return DATA(i)
WRITE: change DATA(i); Start Write to Mem[X] D[i]=1

MISS: X not found in TAG of any cache line
REPLACEMENT SELECTION:

Select some line k to hold Mem[X]
If D[k] == 1 (Write Back) Write Data(k) to Mem[Tag[k]]

READ: Read Mem[X]; Set TAG[k] = X, DATA[k] = Mem[X], D[k]=0
WRITE: Start Write to Mem[X] D[k]=1

Set TAG[k] = X, DATA[k] = new Mem[X]

MAIN
MEMORY CPU A Mem[A]

B Mem[B]

TAG DATA V

1

1

0
0
0
0
0

D

1

0

Dirty and
 Valid bits
 are per line
 not per set

What if the cache
 has a block-size
 larger than one?

A) If only one
 word in the line
 is modified, we
 end up writing
 back ALL words

B) On a MISS, we
 need to READ the
 line BEFORE we
 WRITE it.

, Read Mem[X]

Cache Structure 27 Comp 411 – Spring 2013 4/22/2013

Write Buffers
•  Write data is stored in a special H/W

 queue called a “Write Buffer” where it is
 POSTED until the write completes

•  Usually at least the size of a cache block.
•  On a subsequent cache MISSes

–  you may still need to stall any subsequent
 reads until outstanding (POSTED) writes
 are completed

–  the you can check to see if the missed
 address matches one in the write buffer.

•  Takes advantage of “sequential writes”
•  Prevailing wisdom:

–  Write-Back is better than Write-Through,
 less memory traffic

–  Always use Write-buffering

address

Hit

Miss/Dirty

CPU

Main Memory

•  Avoids the overhead of waiting for writes to complete
data in

data out

“Write buffer”

Cache Structure 28 Comp 411 – Spring 2013 4/22/2013

Cache Benchmarking
Suppose this loop is entered with $t3 = 4000:

ADR: Instruction I D .
400: lw $t0,0($t3) 400 4000+...
404: addi $t3,$t3,4 404
408: bne $t0,$0,400 408

GOAL: Given some cache design, simulate (by hand or machine) execution
 well enough to estimate hit ratio.

1.  Observe that the sequence of memory locations referenced is
 400, 4000, 404, 408, 400, 4004, ...

 We can use this simpler reference string/memory trace, rather than the
 program, to simulate cache behavior.

2. We can make our life even easier by converting to word addresses:
 100, 1000, 101, 102, 100, 1001, ...

(Word Addr = (Byte Addr)/4)

Cache Structure 29 Comp 411 – Spring 2013 4/22/2013

Simple Cache Simulation

Addr Line# Miss?
 100 0 M
1000 1 M
 101 2 M
 102 3 M
 100 0
1001 1 M
 101 2
 102 3
 100 0
1002 1 M
 101 2
 102 3
 100 0
1003 1 M
 101 2
 102 3

4-line Fully-associative/LRU

1/4 miss

Addr Line# Miss?
 100 0 M
1000 0 M
 101 1 M
 102 2 M
 100 0 M
1001 1 M
 101 1 M
 102 2
 100 0
1002 2 M
 101 1
 102 2 M
 100 0
1003 3 M
 101 1
 102 2

4-line Direct-mapped

7/16 miss

Compulsory
Misses

Capacity
Miss

Collision
Miss

tag data
tag data
tag data
tag data

tag data tag data tag data tag data

Cache Structure 30 Comp 411 – Spring 2013 4/22/2013

Cache Simulation: Bout 2

Addr Line# Miss?
 100 0 M
1000 1 M
 101 2 M
 102 3 M
 100 0
1001 4 M
 101 2
 102 3
 100 0
1002 5 M
 101 2
 102 3
 100 0
1003 6 M
 101 2
 102 3

8-line Fully-associative, LRU

1/4 miss

Addr Line/N Miss?
 100 0,0 M
1000 0,1 M
 101 1,0 M
 102 2,0 M
 100 0,0
1001 1,1 M
 101 1,0
 102 2,0
 100 0,0
1002 2,1 M
 101 1,0
 102 2,0
 100 0,0
1003 3,0 M
 101 1,0
 102 2,0

2-way, 8-line total, LRU

1/4 miss

tag data
tag data
tag data
tag data

tag data
tag data
tag data
tag data

tag data tag data tag data tag data tag data tag data tag data tag data

Cache Structure 31 Comp 411 – Spring 2013 4/22/2013

Cache Simulation: Bout 3

1/4 miss

Addr Line/N Miss?
 100 0,0
1004 0,0 M
 101 1,0
 102 2,0
 100 0,1 M
1005 1,0 M
 101 1,1 M
 102 2,0
 100 0,0
1006 2,0 M
 101 1,0
 102 2,1 M
 100 0,0
1007 3,1 M
 101 1,0
 102 2,0

2-way, 8-line total, FIFO

7/16 miss

Addr Line/N Miss?
 100 0,0
1004 0,1 M
 101 1,0
 102 2,0
 100 0,0
1005 1,1 M
 101 1,0
 102 2,0
 100 0,0
1006 2,1 M
 101 1,0
 102 2,0
 100 0,0
1007 3,1 M
 101 1,0
 102 2,0

2-way, 8-line total, LRU

tag data
tag data
tag data
tag data

tag data
tag data
tag data
tag data

tag data
tag data
tag data
tag data

tag data
tag data
tag data
tag data

The first 16
 cycles of both
 caches are
 identical (Same
 as 2-way on
 previous slide).
So we jump
to round 2.

Cache Structure 32 Comp 411 – Spring 2013 4/22/2013

Cache Simulation: Bout 4

1/4 miss

Addr Line/N Miss?
 100/1 0,0 M
1000/1 0,1 M
 101 0,0
 102/3 1,0 M
 100 0,0
1001 0,1
 101 0,0
 102 1,0
 100 0,0
1002/3 1,1 M
 101 0,0
 102 1,0
 100 0,0
1003 1,1
 101 0,0
 102 1,0

2-way, 4-line, 2 word blk, LRU

1/8 miss

Addr Line/N Miss?
 100 0,0 M
1000 0,1 M
 101 1,0 M
 102 2,0 M
 100 0,0
1001 1,1 M
 101 1,0
 102 2,0
 100 0,0
1002 2,1 M
 101 1,0
 102 2,0
 100 0,0
1003 3,0 M
 101 1,0
 102 2,0

2-way, 8-line total, LRU
tag data
tag data
tag data
tag data

tag data
tag data
tag data
tag data

data
data

tag data
tag data

data
data

tag data
tag data

Cache Structure 33 Comp 411 – Spring 2013 4/22/2013

Cache Design Summary
•  Various design decisions the affect cache performance

–  Block size, exploits spatial locality, saves tag H/W, but, if blocks
 are too large you can load unneeded items at the expense of
 needed ones

–  Replacement strategy, attempts to exploit temporal locality to
 keep frequently referenced items in cache

•  LRU – Best performance/Highest cost
•  FIFO – Low performance/Economical
•  RANDOM – Medium performance/Lowest cost, avoids pathological

 sequences, but performance can vary
–  Write policies

•  Write-through – Keeps memory and cache consistent, but high
 memory traffic

•  Write-back – allows memory to become STALE, but reduces memory
 traffic

•  Write-buffer – queue that allows processor to continue while
 waiting for writes to finish, reduces stalls

•  No simple answers, in the real-world cache designs are based
 on simulations using memory traces.

