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Cache Structure 

•  Set-Associativity 
•  Replacement policies 

•  Overhead 
•  Implementation 

•  Handling writes 
•  Cache simulations 

      Study 5.3, 5.5 
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Fully Associative Cache  
(from last Lecture) 

TAG    Data     

= ? 

TAG    Data     

= ? 

TAG    Data     

= ? 

Address 
bits 31-2 
from CPU 

Miss 

Data to CPU 

… 

0 

1 Data from memory 

READ HIT: 
One of the cache tags matches
 the incoming address; the
 data associated with that tag
 is returned to CPU.   
READ MISS: 
None of the cache tags
 matched, so initiate access to
 main memory and stall CPU
 until complete.  Update cache
 entry with new tag (address)
 and data. 

One cache “LINE” 

Each cache 
“line” has is 
associated  
with a “tag” 
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Tags Are Expensive! 
•  Tag comparison logic is LARGE 
   An XOR gate is as large as a memory bit! 
•  Tag comparison logic is SLOW 
   High-Fan-In NOR gate 
•  Tag storage overhead is high 
   Rather store data, not Tags 

e.g. For a Fully Associative Cache 

Tag bits/cache entry = 30 bits 
Data bits/cache entry = 32 bits 

48% of cache’s memory is  
devoted to tag storage! 

. 

. 

. 

Bn-1 
An-1 
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Amortize Tag Costs: More Data/Tag 

A31:4 Mem[A] Mem[A+4] Mem[A+8] Mem[A+12] 

= ? 

[3:2] 

[31:4] 
32 ADDR 

DATA 

HIT 

•  Blocks of 2B words, on 2B word boundaries 
•  always reads/writes a 2B word BLOCK from/to memory 
•  exploits spatial locality: nearby words in block, likely to accessed 
•  cost: some fetches of unaccessed words 
•  BIG WIN if path to memory is wide, or sequential accesses are fast 

BIG Cache Lines: Enlarge each line in fully-associative cache 
TAG D0 D1 D2 D3 

Tag bits/cache entry = (30 – 2) bits 
Data bits/cache entry = 4*32 bits Only 18% of cache’s memory used for tags  
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Block Size vs. Miss Rate 

•  spatial locality: larger blocks → reduce miss rate  
•  fixed cache size: larger blocks 

 → fewer lines in cache 
 → higher miss rate, especially in small caches 
 → fetches data that is never used 

If the block size gets too big, we start fetching items that we
 never access, at the expense of other items we might actually
 need. Thus, the miss rate starts to go up again. 
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Direct-Mapped Cache (from last time) 

= ? 

[3:2] 

[31:8] 
32 

ADDR 

DATA 

HIT 

TAG D0 D1 D2 D3 

[7:4] 

Uses ordinary
 (fast) static
 RAM for tag
 and data
 storage 

Only one comparator for entire cache! 

0 

15 

16 cache lines  
→ 4 bit index 

0x12 M[0x1230] M[0x1234] M[0x1238] M[0x123C] 
0x12 M[0x1240] M[0x1244] M[0x1248] M[0x124C] 

Tag bits/ 
  cache entry =  
  (30 - 2 - 4) bits 

Data bits/ 
  cache entry =  
  4*32 bits 
16% of cache’s
 memory used
 for tags  

4 Words = 16 bytes per line → 2 address bits  



Cache Structure   7 Comp 411 – Spring 2013 4/22/2013 

Fully-Assoc. vs. Direct-mapped 
Fully-associative N-line cache: 

•  N tag comparators, registers used 
   for tag/data storage ($$$) 

•  Location A can be stored in ANY 
   of the N cache lines; no “collisions” 

•  Replacement strategy (e.g., LRU) 
   used to pick which line to use when 
   loading new word(s) into cache   

Direct-mapped N-line cache: 

•  1 tag comparator, SRAM used for 
   tag/data storage ($) 

•  Location A is stored in a 
   SPECIFIC line of the cache  
   determined by its address; 
   address “collisions” possible 

•  Replacement strategy not needed: 
   each word can only be cached in one 
   specific cache line 

COLLISIONs occur when there are
 multiple items that we’d like to
 keep cached, we have room, but
 our management policies only
 keeps a subset of them. 

Is there something  
in-between? 
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N-Way Set-Associative Cache 

k 

HIT 

DATA TO CPU 

INCOMING ADDRESS 

=? 

t 

MEM DATA 

There are  
N possible
 places
 that a
 given item
 could be
 stored in
 the cache 

    TARGET             INDEX “N direct-mapped caches”, each with 2t entries of N lines 
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How Many Sets? 

time 

address 

program 
1 instructions 

stack 2 stack 

data 3 4 data (src, dest) 
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Associativity vs. Miss Rate 

Miss  
rate 
(%) 

Cache size (bytes) 

Associativity 

•  8-way is (almost) as effective as fully-associative 
•  rule of thumb: N-byte M-way set assoc ≈ N/2-byte 2M-way set assoc. 

Direct-mapped 
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N 
address 

N-way set associative 

•  compares addr with N 
 tags simultaneously 
•  Data can be stored in
 any of the N cache lines
 belonging to a “set” 
•  like N Direct-mapped
 caches 

Continuum of Associativity 

address 

Fully associative 

•  compares addr with
 all tags simultaneously 
•  location A can be
 stored in any cache line 

address 

Direct-mapped 

•  compare addr with
 only one tag 
•  location A can be
 stored in exactly one
 cache line 

Allocates a cache entry Allocates 1 of N lines in a set Only one place to put it 

ON A MISS? 
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Basic Caching Algorithm 
ON REFERENCE TO Mem[X]: Look for X among cache tags... 

HIT: X = TAG(i) , for some cache line i 
READ:  return DATA(i) 
WRITE:  change DATA(i);  

  Write to Mem[X] 

MAIN  
MEMORY 

CPU 

(1-α) 

Tag Data 

A 

B 

Mem[A] 

Mem[B] 

MISS: X not found in TAG of any cache line 

REPLACEMENT ALGORITHM: 
Select some LINE k to hold Mem[X] (Allocation) 

READ:  Read Mem[X] 
Set TAG(k)=X, DATA(k)=Mem[X] 

WRITE:  Write to Mem[X] 
Set TAG(k)=X, DATA(k)= write data 

Our 
next 

focus 
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Three Replacement Strategies 
LRU (Least-recently used) 

•  replaces the item that has gone UNACCESSED the LONGEST 
•  favors the most recently accessed data 

FIFO/LRR (first-in, first-out/least-recently replaced) 
•  replaces the OLDEST item in cache 
•  favors recently loaded items over older STALE items 

Random 
•  replace some item at RANDOM 
•  no favoritism – uniform distribution 
•  no “pathological” reference streams causing worst-case results 
•  use pseudo-random generator to get reproducible behavior 
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Keeping Track of LRU 

•  Needs to keep ordered list of N items for an  
N-way associative cache, that is updated on
 every access. Example for N = 4: 

(0,1,2,3)          Hit 2 
Current Order    Action                     Resulting Order 

(2,0,1,3) 
(2,0,1,3)          Hit 1 (1,2,0,3) 
(1,2,0,3)          Miss, Replace 3 (3,1,2,0) 
(3,1,2,0)          Hit 3 (3,1,2,0) 

•   N! possible orderings → log2N! bits per set 
    approx O(N log2N) “LRU bits” + update logic 
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Example: LRU for 2-Way Sets 
•  Bits needed?  

•  LRU bit is selected using
 the same index as cache 
(Part of same SRAM) 

•  Bit keeps track of the last
 line accessed in set: 
  (0), Hit 0  (0) 
  (0), Hit 1   (1) 
  (0), Miss, replace 1  (1) 
  (1), Hit 0  (0) 
  (1), Hit 1  (1) 
  (1), Miss, replace 0  (0) 

address 

2-way set associative 

=? =? 

Logic 

Miss Data 

log22! = 1 bit per set 

LRU 
replacement

 “state” 
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Example: LRU for 4-Way Sets 

•  Bits needed?  
•  How? 
•  One Method:   

 “One-Out/Hidden Line” coding (and variants) 
 Directly encode the indices of the N-2 most recently accessed lines,
 plus one bit indicating if the smaller (0) or larger (1) of the
 remaining lines was most recently accessed 

   (2,0,1,3)    ->     10 00 0 
   (3,2,1,0)    ->     1 1  10  1 
   (3,2,0,1)    ->     1 1  10 0 

 Requires (N-2)*log2N + 1 bits 

–  8-Way sets? log28! = 16,  (8-2)*log28 + 1 = 19 

log2 4! = log2 24 = 5 per set Bottom line,
 LRU
 replacement
 requires
 considerable
 overhead as
 associativity
 increases 

Overhead is 
O(N log2N) 

bits/set 
optimal One-out/Hidden line 
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FIFO Replacement 

•  Each set keeps a modulo-N counter that points to victim
 line that will be replaced on the next miss 

•  Counter is only updated only on cache misses 

 Ex: for a 4-way set associative cache: 

(0)              Miss, Replace 0 
Next Victim    Action 

( 1)              Hit 1 
( 1)              Miss, Replace 1 
(2)              Miss, Replace 2 
(3)              Miss, Replace 3 
(0)              Miss, Replace 0 

Overhead is 
O(log2N) 
bits/set 
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Example: FIFO For 2-Way Sets 
•  Bits needed?  

•  FIFO bit is per cache line  
and uses the same index  
as cache  
(Part of same SRAM) 

•  Bit keeps track of the  
oldest line in set 

•  Same overhead as LRU! 
•  LRU is generally has lower miss

 rates than FIFO, soooo…. 
     WHY BOTHER??? 
   

address 

2-way set associative 

=? =? 

Logic 

Miss Data 

log22 = 1 per set 
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FIFO For 4-way Sets 

•  Bits Needed? 
•  Low-cost, easy to implement (no tricks here) 
•  8-way? 
•  16-way? 
•  LRU 16-way? 

•  FIFO summary 
–  Easy to implement, scales well,  

BUT CAN WE AFFORD IT? 

log2 4 = 2 per set 

log2 8 = 3 per set 

I’m starting to
 buy into all
 that “big O”
 stuff! 

log2 16 = 4 per set 

log2 16! = 45 bits per set 
14*log2 16 + 1 = 57 bits per set 
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Random Replacement 

•  Build a single Pseudorandom Number generator for
 the WHOLE cache. On a miss, roll the dice and
 throw out a cache line at random. 

•  Updates only on misses. 
•  How do you build a random number  

generator (easier than you might think). 
11111   0x1F 
01111   0x0F 
00111   0x07 
10011   0x13 
11001   0x19 
01100   0x0C 
10110   0x16 
01011   0x0B 
00101   0x05 
10010   0x12 
01001   0x09 
00100   0x04 
00010   0x02 
00001   0x01 
10000   0x10 

01000   0x08 
10100   0x14 
01010   0x0A 
10101   0x15 
11010   0x1A 
11101   0x1D 
01110   0x0E 
10111   0x17 
11011   0x1B 
01101   0x0D 
00110   0x06 
00011   0x03 
10001   0x11 
11000   0x18 
11100   0x1C 
11110   0x1E 

Counting Sequence 

Pseudorandom Linear Feedback Shift Register 

Overhead is 
O(log2N) 

bits/cache! 
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Replacement Strategy vs. Miss Rate 

Size 

Associativity 

2-way 4-way 8-way 

LRU Random LRU Random LRU Random 

16KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96% 

64KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53% 

256KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12% 

H&P: Figure 5.4 

•  FIFO was reported to be worse than random or LRU 
•  Little difference between random and LRU for larger-size caches 



Cache Structure   22 Comp 411 – Spring 2013 4/22/2013 

Valid Bits 

MAIN  
MEMORY CPU 

TAG DATA 

Problem: 
Ignoring cache lines that don’t contain REAL or CORRECT values… 

- on start-up 
- “Back door” changes to memory (eg: loading program from disk) 

Solution:  
Extend each TAG with VALID bit. 
• Valid bit must be set for cache line to HIT. 
• On power-up / reset : clear all valid bits 
• Set valid bit when cache line is FIRST replaced. 
• Cache Control Feature:  Flush cache by clearing all valid bits, Under

 program/external control. 

? ??? 

? ??? 

? ??? 

A Mem[A] 
? ??? 
? ??? 
B Mem[B] 

V 

0 

0 

0 

1 
0 
0 
1 
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Handling WRITES 
Observation: Most (80+%) of memory accesses are READs,  

but writes are essential. How should we handle writes?   
Policies: 

WRITE-THROUGH: CPU writes are cached, but also written to main memory
 (stalling the CPU until write is completed). Memory always holds “the
 truth”. 

WRITE-BACK: CPU writes are cached, but not immediately written to main
 memory.  Memory contents can become “stale”. 

Additional Enhancements: 

WRITE-BUFFERS:  For either write-through or write-back, writes to main
 memory are buffered.  CPU keeps executing while writes are completed (in
 order) in the background. 

What combination has the highest performance? 
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Write-Through 
ON REFERENCE TO Mem[X]: Look for X among tags... 

HIT:   X == TAG(i) , for some cache line i 

READ:  return DATA[i] 
WRITE:  change DATA[i]; Start Write to Mem[X] 

MISS: X not found in TAG of any cache line 

REPLACEMENT SELECTION: 
Select some line k to hold Mem[X] 

READ:  Read Mem[X] 
Set TAG[k] = X, DATA[k] = Mem[X] 

WRITE:  Start Write to Mem[X] 
Set TAG[k] = X, DATA[k] = new Mem[X] 
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Write-Back 
ON REFERENCE TO Mem[X]: Look for X among tags... 

HIT:   X = TAG(i) , for some cache line I 

READ:  return DATA(i) 
WRITE:  change DATA(i); Start Write to Mem[X] 

MISS: X not found in TAG of any cache line 

REPLACEMENT SELECTION: 
Select some line k to hold Mem[X] 
Write Back: Write Data(k) to Mem[Tag[k]] 

READ:  Read Mem[X] 
Set TAG[k] = X, DATA[k] = Mem[X] 

WRITE:  Start Write to Mem[X] 
Set TAG[k] = X, DATA[k] = new Mem[X] 

Costly if
 contents
 of cache
 are not
 modified 



Cache Structure   26 Comp 411 – Spring 2013 4/22/2013 

Write-Back w/ “Dirty” bits 

ON REFERENCE TO Mem[X]: Look for X among tags... 

HIT:   X = TAG(i) , for some cache line I 
READ:  return DATA(i) 
WRITE:  change DATA(i); Start Write to Mem[X] D[i]=1 

MISS: X not found in TAG of any cache line 
REPLACEMENT SELECTION: 

Select some line k to hold Mem[X] 
If D[k] == 1 (Write Back) Write Data(k) to Mem[Tag[k]] 

READ:  Read Mem[X]; Set TAG[k] = X, DATA[k] = Mem[X], D[k]=0 
WRITE:  Start Write to Mem[X] D[k]=1 

Set TAG[k] = X, DATA[k] = new Mem[X] 

MAIN  
MEMORY CPU A Mem[A] 

B Mem[B] 

TAG DATA V 

1 

1 

0 
0 
0 
0 
0 

D 

1 

0 

Dirty and
 Valid bits
 are per line
 not per set 

What if the cache
 has a block-size
 larger than one? 

A) If only one
 word in the line
 is modified, we
 end up writing
 back ALL words 

B) On a MISS, we
 need to READ the
 line BEFORE we
 WRITE it. 

, Read Mem[X] 
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Write Buffers 
•  Write data is stored in a special H/W

 queue called a “Write Buffer” where it is
 POSTED until the write completes 

•  Usually at least the size of a cache block. 
•  On a subsequent cache MISSes  

–  you may still need to stall any subsequent
 reads until outstanding (POSTED) writes
 are completed 

–  the you can check to see if the missed
 address matches one in the write buffer. 

•  Takes advantage of “sequential writes” 
•  Prevailing wisdom: 

–   Write-Back is better than Write-Through,
 less memory traffic 

–  Always use Write-buffering 

address 

Hit 

Miss/Dirty 

CPU 

Main Memory 

•     Avoids the overhead of waiting for writes to complete  
data in 

data out 

“Write buffer” 
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Cache Benchmarking 
Suppose this loop is entered with $t3 = 4000: 

ADR:         Instruction       I  D       .   
400:    lw   $t0,0($t3)   400   4000+... 
404:    addi $t3,$t3,4    404 
408:    bne  $t0,$0,400   408 

GOAL: Given some cache design, simulate (by hand or machine) execution
 well enough to estimate hit ratio. 

1.  Observe that the sequence of memory locations referenced is 
    400, 4000, 404, 408, 400, 4004, ... 

   We can use this simpler reference string/memory trace, rather than the
 program, to simulate cache behavior. 

2. We can make our life even easier by converting to word addresses:   
  100, 1000, 101, 102, 100, 1001, ... 

(Word Addr = (Byte Addr)/4) 
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Simple Cache Simulation 

Addr   Line#   Miss? 
 100     0       M 
1000     1       M 
 101     2       M 
 102     3       M 
 100     0 
1001     1       M 
 101     2 
 102     3 
 100     0 
1002     1       M 
 101     2 
 102     3 
 100     0 
1003     1       M 
 101     2 
 102     3 

4-line Fully-associative/LRU 

1/4 miss 

Addr   Line#   Miss? 
 100     0       M 
1000     0       M 
 101     1       M 
 102     2       M 
 100     0       M 
1001     1       M 
 101     1       M 
 102     2 
 100     0 
1002     2       M 
 101     1 
 102     2       M 
 100     0 
1003     3       M 
 101     1 
 102     2 

4-line Direct-mapped 

7/16 miss 

Compulsory 
Misses 

Capacity 
Miss 

Collision 
Miss 

tag data 
tag data 
tag data 
tag data 

tag data tag data tag data tag data 
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Cache Simulation: Bout 2 

Addr   Line#   Miss? 
 100     0       M 
1000     1       M 
 101     2       M 
 102     3       M 
 100     0 
1001     4       M 
 101     2 
 102     3 
 100     0 
1002     5       M 
 101     2 
 102     3 
 100     0 
1003     6       M 
 101     2 
 102     3 

8-line Fully-associative, LRU 

1/4 miss 

Addr  Line/N   Miss? 
 100    0,0      M 
1000    0,1      M 
 101    1,0      M 
 102    2,0      M 
 100    0,0 
1001    1,1      M 
 101    1,0 
 102    2,0 
 100    0,0 
1002    2,1      M 
 101    1,0 
 102    2,0 
 100    0,0 
1003    3,0      M 
 101    1,0 
 102    2,0 

2-way, 8-line total, LRU 

1/4 miss 

tag data 
tag data 
tag data 
tag data 

tag data 
tag data 
tag data 
tag data 

tag data tag data tag data tag data tag data tag data tag data tag data 
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Cache Simulation: Bout 3 

1/4 miss 

Addr  Line/N   Miss? 
 100    0,0 
1004    0,0      M 
 101    1,0 
 102    2,0 
 100    0,1      M 
1005    1,0      M 
 101    1,1      M 
 102    2,0 
 100    0,0 
1006    2,0      M 
 101    1,0 
 102    2,1      M 
 100    0,0 
1007    3,1      M 
 101    1,0 
 102    2,0 

2-way, 8-line total, FIFO 

7/16 miss 

Addr  Line/N   Miss? 
 100    0,0 
1004    0,1      M 
 101    1,0 
 102    2,0 
 100    0,0 
1005    1,1      M 
 101    1,0 
 102    2,0 
 100    0,0 
1006    2,1      M 
 101    1,0 
 102    2,0 
 100    0,0 
1007    3,1      M 
 101    1,0 
 102    2,0 

2-way, 8-line total, LRU 

tag data 
tag data 
tag data 
tag data 

tag data 
tag data 
tag data 
tag data 

tag data 
tag data 
tag data 
tag data 

tag data 
tag data 
tag data 
tag data 

The first 16
 cycles of both
 caches are
 identical (Same
 as 2-way on
 previous slide). 
So we jump 
to round 2. 
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Cache Simulation: Bout 4 

1/4 miss 

Addr  Line/N   Miss? 
 100/1  0,0      M 
1000/1  0,1      M 
 101    0,0 
 102/3  1,0      M 
 100    0,0 
1001    0,1 
 101    0,0 
 102    1,0 
 100    0,0 
1002/3  1,1      M 
 101    0,0 
 102    1,0 
 100    0,0 
1003    1,1 
 101    0,0 
 102    1,0 

2-way, 4-line, 2 word blk, LRU 

1/8 miss 

Addr  Line/N   Miss? 
 100    0,0      M 
1000    0,1      M 
 101    1,0      M 
 102    2,0      M 
 100    0,0 
1001    1,1      M 
 101    1,0 
 102    2,0 
 100    0,0 
1002    2,1      M 
 101    1,0 
 102    2,0 
 100    0,0 
1003    3,0      M 
 101    1,0 
 102    2,0 

2-way, 8-line total, LRU 
tag data 
tag data 
tag data 
tag data 

tag data 
tag data 
tag data 
tag data 

data 
data 

tag data 
tag data 

data 
data 

tag data 
tag data 
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Cache Design Summary 
•  Various design decisions the affect cache performance 

–  Block size, exploits spatial locality, saves tag H/W, but, if blocks
 are too large you can load unneeded items at the expense of
 needed ones 

–  Replacement strategy, attempts to exploit temporal locality to
 keep frequently referenced items in cache 

•  LRU – Best performance/Highest cost 
•  FIFO – Low performance/Economical 
•  RANDOM – Medium performance/Lowest cost, avoids pathological

 sequences, but performance can vary 
–  Write policies 

•  Write-through – Keeps memory and cache consistent, but high
 memory traffic 

•  Write-back – allows memory to become STALE, but reduces memory
 traffic 

•  Write-buffer – queue that allows processor to continue while
 waiting for writes to finish, reduces stalls 

•  No simple answers, in the real-world cache designs are based
 on simulations using memory traces. 


