
L19 – Memory Hierarchy 1 Comp 411 – Spring 2013 4/17/2013

Memory Hierarchy

 Are you dressed like
 the Easter Bunny?

It makes me look faster,
don’t you think?

• Memory Flavors
• Principle of Locality
• Program Traces
• Memory Hierarchies
• Associativity

(Study Chapter 5)

L19 – Memory Hierarchy 2 Comp 411 – Spring 2013 4/17/2013

What Do We Want in a Memory?
PC

INST

MADDR
MDATA

miniMIPS MEMORY

Capacity Latency Cost

Register 1000’s of bits 10 ps $$$$

SRAM 100’s Kbytes 0.2 ns $$$

DRAM 100’s Mbytes 5 ns $

Hard disk* 100’s Gbytes 10 ms ¢

Want?

* non-volatile

ADDR

DOUT

ADDR
DATA
R/W Wr

4 Gbyte 0.2 ns cheap

L19 – Memory Hierarchy 3 Comp 411 – Spring 2013 4/17/2013

Tricks for Increasing Throughput

Ro
w

A
dd

re
ss

 D
ec

od
er

Col.

1
Col.
2

Col.
3

Col.
2M

Row 1

Row 2

Row 2N

Column Multiplexer/Shifter
N

N

Multiplexed
 Address bit lines word lines

memory
cell

(one bit)

D t1 t2 t3 t4

The first thing that should
 pop into you mind when
 asked to speed up a
 digital design…

PIPELINING

Synchronous DRAM
(SDRAM)

($10 per Gbyte)

Clock

Data
out

Double Data Rate
Synchronous DRAM

(DDR)

L19 – Memory Hierarchy 4 Comp 411 – Spring 2013 4/17/2013

 Hard Disk Drives

Typical high-end drive:
•  Average latency = 4 ms (7200 rpm)
•  Average seek time = 8.5 ms
•  Transfer rate = 300 Mbytes/s (SATA)
•  Capacity = 1000 G byte
•  Cost = $100 (10¢ Gbyte)

 fig
ur

es
 fr

om
 w

ww
.p

ct
ec

hg
ui

de
.c

om

L19 – Memory Hierarchy 5 Comp 411 – Spring 2013 4/17/2013

Quantity vs Quality…

Memory systems can be either:
• BIG and SLOW... or
• SMALL and FAST.

10-8 10-3 100

.1

10

1000

100

1

10-6

DVD Burner (0.02$/GB, 120ms)

DISK (0.10$/GB, 10 mS)

DRAM (25$/GB, 5 ns)

SRAM (1000$/GB, 0.2 ns)

Access
Time

.01

$/GB

We’ve explored a range of
 device-design trade-offs.

Is there an
 ARCHITECTURAL
 solution to this DELIMA?

1

L19 – Memory Hierarchy 6 Comp 411 – Spring 2013 4/17/2013

Managing Memory via Programming
•  In reality, systems are built with a mixture of all these

 various memory types

•  How do we make the most effective use of each memory?
•  We could push all of these issues off to programmers

•  Keep most frequently used variables and stack in SRAM
•  Keep large data structures (arrays, lists, etc) in DRAM
•  Keep bigger data structures on disk (databases) on DISK

•  It is harder than you think… data usage evolves over a
 program’s execution

CPU

SRAM MAIN
MEM

L19 – Memory Hierarchy 7 Comp 411 – Spring 2013 4/17/2013

Best of Both Worlds
What we REALLY want: A BIG, FAST memory!

 (Keep everything within instant access)

We’d like to have a memory system that
• PERFORMS like 2 GBytes of SRAM; but
• COSTS like 512 MBytes of slow memory.

SURPRISE: We can (nearly) get our wish!

KEY: Use a hierarchy of memory technologies:

CPU

SRAM MAIN
MEM

L19 – Memory Hierarchy 8 Comp 411 – Spring 2013 4/17/2013

Key IDEA
• Keep the most often-used data in a small,

 fast SRAM (often “on” to CPU chip)

• Refer to Main Memory only rarely, for
 remaining data.

The reason this strategy works: LOCALITY

Locality of Reference:
Reference to location X at time t implies

 that reference to location X+ΔX at
 time t+Δt becomes more probable as
 ΔX and Δt approach zero.

L19 – Memory Hierarchy 9 Comp 411 – Spring 2013 4/17/2013

Typical Memory Reference Patterns

time

address

data

stack

program

MEMORY TRACE –
 A temporal sequence
 of memory references
 (addresses) from a
 real program.

TEMPORAL LOCALITY –
 If an item is referenced,
 it will tend to be
 referenced again soon

SPATIAL LOCALITY –
 If an item is referenced,
 nearby items will tend
 to be referenced soon.

L19 – Memory Hierarchy 10 Comp 411 – Spring 2013 4/17/2013

Working Set

time

address

data

stack

program

Δt

|S|

Δ t

S is the set of locations
 accessed during Δt.

Working set: a set S
 which changes slowly
 w.r.t. access time.

 Working set size, |S|

L19 – Memory Hierarchy 11 Comp 411 – Spring 2013 4/17/2013

Exploiting the Memory Hierarchy
Approach 1 (Cray, others): Expose Hierarchy

 • Registers, Main Memory,
 Disk each available as
 storage alternatives;

• Tell programmers: “Use them cleverly”

Approach 2: Hide Hierarchy
• Programming model: SINGLE kind of memory, single address
 space.

• Machine AUTOMATICALLY assigns locations to fast or slow
 memory, depending on usage patterns.

CPU

SRAM
MAIN
MEM

CPU Small
Static

Dynamic
RAM

HARD
DISK

“MAIN MEMORY”

L19 – Memory Hierarchy 12 Comp 411 – Spring 2013 4/17/2013

Why We Care

CPU Small
Static

Dynamic
RAM

HARD
DISK

“MAIN MEMORY”

TRICK #1: How to make slow MAIN MEMORY appear faster than it is.

CPU performance is dominated by memory performance.
 More significant than:

 ISA, circuit optimization, pipelining, super-scalar, etc

TRICK #2: How to make a small MAIN MEMORY appear bigger than it is.

“VIRTUAL MEMORY”
“SWAP SPACE”

Technique: VIRTUAL MEMORY – Lecture after that

“CACHE”

Technique: CACHEING – Next 2 Lectures

L19 – Memory Hierarchy 13 Comp 411 – Spring 2013 4/17/2013

The Cache Idea:
Program-Transparent Memory Hierarchy

Cache contains TEMPORARY COPIES of selected
main memory locations... eg. Mem[100] = 37

GOALS:
1)  Improve the average access time

2)  Transparency (compatibility, programming ease)

1.0 (1.0-α)
CPU

"CACHE"

DYNAMIC
RAM

"MAIN
MEMORY"

100 37

α	

(1-α)

HIT RATIO: Fraction of refs found in CACHE.
MISS RATIO: Remaining references.

Challenge:
 To make the
 hit ratio as
 high as
 possible.

€

tave =αtc + (1−α)(tc + tm) = tc + (1−α)tm Why, on a miss, do I incur
 the access penalty for
 both main memory and
 cache?

L19 – Memory Hierarchy 14 Comp 411 – Spring 2013 4/17/2013

How High of a Hit Ratio?

 Suppose we can easily build an on-chip static memory
 with a 800 pS access time, but the fastest dynamic
 memories that we can buy for main memory have an
 average access time of 10 nS. How high of a hit rate do
 we need to sustain an average access time of 1 nS?

€

α = 1− tave − tc
tm

€

= 1− 1− 0.8
10

= 98%

WOW, a cache really needs to be good? €

Solve forα tave = tc + (1−α)tm

L19 – Memory Hierarchy 15 Comp 411 – Spring 2013 4/17/2013

The Cache Principle

Find “Hart, Lee”

5-Minute Access Time: 5-Second Access Time:

ALGORTHIM: Look on your desk for
 the requested information first, if
 its not there check secondary
 storage

L19 – Memory Hierarchy 16 Comp 411 – Spring 2013 4/17/2013

Basic Cache Algorithm

ON REFERENCE TO Mem[X]: Look for X among cache tags...

HIT: X = TAG(i) , for some cache line i
READ: return DATA(i)
WRITE: change DATA(i);

 Start Write to Mem(X)

MISS: X not found in TAG of any cache line

REPLACEMENT SELECTION:
Select some LINE k to hold Mem[X] (Allocation)

READ: Read Mem[X]
Set TAG(k)=X, DATA(K)=Mem[X]

WRITE: Start Write to Mem(X)
Set TAG(k)=X, DATA(K)= new Mem[X]

MAIN
MEMORY

CPU

(1-α)

Tag Data

A

B

Mem[A]

Mem[B]

“X” here is a
 memory
 address.

L19 – Memory Hierarchy 17 Comp 411 – Spring 2013 4/17/2013

Cache
Sits between CPU and main memory
Very fast memory that stores TAGs and DATA

TAG is the memory address (or part of it)
DATA is a copy of memory at the

 address given by TAG

1000 17
1040 1
1032 97
1008 11

1000 17

1004 23

1008 11

1012 5

1016 29

1020 38

1024 44

1028 99

1032 97

1036 25

1040 1

1044 4

Memory

Tag Data

Cache

Line 0

Line 1

Line 2

Line 3

L19 – Memory Hierarchy 18 Comp 411 – Spring 2013 4/17/2013

Cache Access
On load we compare TAG entries to the ADDRESS we’re loading

If Found  a HIT
return the DATA

If Not Found  a MISS
go to memory get the data

 decide where it goes in the cache,
put it and its address (TAG) in the cache

1000 17
1040 1
1032 97
1008 11

1000 17

1004 23

1008 11

1012 5

1016 29

1020 38

1024 44

1028 99

1032 97

1036 25

1040 1

1044 4

Memory

Tag Data

Cache

Line 0

Line 1

Line 2

Line 3

L19 – Memory Hierarchy 19 Comp 411 – Spring 2013 4/17/2013

How Many Words per Tag?
Caches usually get more data than requested (Why?)

Each LINE typically stores more than 1 word,
16-64 bytes (4-16 Words) per line is common

A bigger LINE means:
 1) fewer misses because of spatial locality

 2) fewer TAG bits per DATA bits
but bigger LINE means longer time on miss

1000 17 23
1040 1 4
1032 97 25
1008 11 5

1000 17

1004 23

1008 11

1012 5

1016 29

1020 38

1024 44

1028 99

1032 97

1036 25

1040 1

1044 4

Memory

Tag Data

Cache

Line 0

Line 1

Line 2

Line 3

L19 – Memory Hierarchy 20 Comp 411 – Spring 2013 4/17/2013

How do we Search the Cache TAGs?

Nope, “Smith”

Nope, “Jones”

Nope, “LeVile”

HERE IT IS!

Find “Hart, Lee” Associativity:
 The degree of
 parallelism used in
 the lookup of Tags

L19 – Memory Hierarchy 21 Comp 411 – Spring 2013 4/17/2013

Fully-Associative Cache

TAG Data

= ?

TAG Data

= ?

TAG Data

= ?

Incoming
Address

HIT

Data
 Out

The extreme in associatively:
 All TAGS are searched
 in parallel

Data items from *any*
 address can be located in
 any cache line

L19 – Memory Hierarchy 22 Comp 411 – Spring 2013 4/17/2013

Direct-Mapped Cache
 (non-associative)

NO Parallelism:

Look in JUST ONE place,
 determined by
 parameters of incoming
 request (address bits)

... can use ordinary RAM as
 table

A

Find “Hart, Lee”

Y Z

B
H

L19 – Memory Hierarchy 23 Comp 411 – Spring 2013 4/17/2013

Direct-Map Example

1024 44 99
1000 17 23
1040 1 4
1016 29 38

Tag Data

1000 17

1004 23

1008 11

1012 5

1016 29

1020 38

1024 44

1028 99

1032 97

1036 25

1040 1

1044 4

Memory

With 8 byte lines, 3 low-order bits determine the byte within the line

With 4 cache lines, the next 2 bits determine which line to use
1024d = 100000000002  line = 002 = 010

1000d = 011111010002  line = 012 = 110

1040d = 100000100002  line = 102 = 210

Line 0

Line 1

Line 2

Line 3

Cache

L19 – Memory Hierarchy 24 Comp 411 – Spring 2013 4/17/2013

Direct Mapping Miss

1024 44 99
1000 17 23
1040 1 4
1016 29 38

Tag Data

What happens when we now ask for address 1008?
 100810 = 011111100002  line = 102 = 210

but earlier we put 1040 there...
 104010 = 100000100002  line = 102 = 210

1008 11 5

Line 0

Line 1

Line 2

Line 3

Cache

1000 17

1004 23

1008 11

1012 5

1016 29

1020 38

1024 44

1028 99

1032 97

1036 25

1040 1

1044 4

Memory

L19 – Memory Hierarchy 25 Comp 411 – Spring 2013 4/17/2013

Direct Mapped Cache
LOW-COST Leader:

Requires only a single comparator and
use ordinary (fast) static RAM for cache tags & data:

Incoming Address
K T

= ?

HIT Data Out

DISADVANTAGE:

COLLISIONS

QUESTION: Why not use HIGH-order
 bits as the Cache Index?

K-bit Cache Index

D-bit data word
T Upper-address bits

Tag Data

K x (T + D)-bit static RAM

L19 – Memory Hierarchy 26 Comp 411 – Spring 2013 4/17/2013

A Problem with Collisions

Find “Heel, Art”
Find “Here, Al T.”

Find “Hart, Lee” Nope, I’ve got
“Heel”

under “H”

PROBLEM:
 Contention among H’s....

- CAN’T cache both
 “Hart” & “Heel”

... Suppose H’s tend
 to come at once?

==> BETTER IDEA:
 File by LAST letter!

Y Z

B
H

L19 – Memory Hierarchy 27 Comp 411 – Spring 2013 4/17/2013

Cache Questions = Cash Questions
What lies between Fully Associate and Direct-Mapped?
When I put something new into the cache, what data gets

 thrown out?
How many processor words should there be per tag?
When I write to cache, should I also write to memory?
What do I do when a write misses cache, should space in

 cache be allocated for the written address.
What if I have INPUT/OUTPUT devices located at certain

 memory addresses, do we cache them?

