
L18 – Pipeline Issues 1 Comp 411 – Spring 2013 415/13

CPU Pipelining Issues

Finishing up Chapter 4

This pipe stuff makes
my head hurt!

What have you been
 beating your head

 against?

L18 – Pipeline Issues 2 Comp 411 – Spring 2013 415/13

Structural Data Hazard

Consider LOADS:
 Can we fix this
 problem using bypass
 paths like before?

For a lw instruction fetched during clock I, data isn’t returned from
 memory until late into cycle I+3. Bypassing will fix xor but not add!

IF

RF

ALU

WB

i i+1 i+2 i+3 i+4 i+5 i+6
lw add xor

lw add xor

lw add xor

lw add xor

lw $t4,0($t1)
add $t5,$t1,$t4
xor $t6,$t3,$t4

Load data hazards
 are complicated by
 the fact that their
 result is resolved
 later than the ALU
 pipeline stage.

Source operands
 that reference

 the destination
 of a previous lw

 instruction

L18 – Pipeline Issues 3 Comp 411 – Spring 2013 415/13

Load Delays
Bypassing CAN’T fix the problem with
 add since the data simply isn’t
 available! In order to fix it we have to
 add pipeline interlock hardware to stall
 the add’s execution, or else program
 around it.

IF

RF

ALU

WB

i i+1 i+2 i+3 i+4 i+5 i+6
lw add xor

lw add xor

lw add xor

lw add xor

lw $t4,0($t1)
add $t5,$t1,$t4
xor $t6,$t3,$t4

xor

add

nop

nop

This requires inserting a MUX just before the instruction register of the ALU stage,
 IRALU, to annul the add (by inserting a NOP) as well as, clock enables on the PC and IR
 pipeline registers of earlier pipeline stages to stall the execution without annuling
 any instructions. This is how the simulator, SPIM works.

Adding stalls to
 the pipeline in
 order to assure
 proper operation
 is sometimes
 called inserting
 pipeline BUBBLES

L18 – Pipeline Issues 4 Comp 411 – Spring 2013 415/13

Punting on Load Interlock
Early versions of MIPS did not include a
 pipeline interlock, thus, requiring the
 compiler/programmer to work around it.

IF

RF

ALU

WB

i i+1 i+2 i+3 i+4 i+5 i+6
lw nop add

lw nop xor

lw add xor

lw add xor

lw $t4,0($t1)
nop
add $t5,$t1,$t4
xor $t6,$t3,$t4

xor

add

nop

nop

If compiler knows about load delay, it can often rearrange the code sequence
 to eliminate the hazard. Many compilers can provide implementation-specific
 instruction scheduling. This requires no additional H/W, but it leads to
 awkward instruction semantics. We’ll include interlocks in miniMIPS.

L18 – Pipeline Issues 5 Comp 411 – Spring 2013 415/13

Load Delays (cont’d)
But, but, what about FASTER processors?

FACT: Processors have been become very fast relative to memories!

Can we just stall the pipe longer? Add more NOPs?

ALTERNATIVE: Longer pipelines.

1. Add “MEMORY WAIT” stages between INITIATION of load operation
 and when it returns data.

2. Build pipelined memories, so that multiple (say, N) memory
 transactions can be in progress at once.

3. (Optional). Stall pipeline when the N limit is exceeded.

4-Stage pipeline requires READ access in LESS than one clock.

Sadly, this IS the
 bottleneck of
 most CPUs. If we
 want to go faster
 will have to
 surround it with
 pipeline stages

SOLUTION: A 5-Stage pipeline that allows nearly two clocks
 for data memory accesses...

L18 – Pipeline Issues 6 Comp 411 – Spring 2013 415/13

ALU A B
ALUFN

Data Memory
RD
WD R/W Adr Wr

WDSEL 0 1 2

PC+4

Z V N C

PC
+4

Instruction
Memory

A
D

00

BT

PC<31:29>:J<25:0>:00

JT

PCSEL 0 1 2 3 4 5 6
0x80000080
0x80000040
0x80000000

PCREG

00 IRREG

WA Register
File

RA1 RA2
RD1 RD2

J:<25:0>

Imm: <15:0>

+
x4

BT

JT

Rt: <20:16> Rs: <25:21>

ASEL 2 0 BSEL 0 1

SEXT SEXT
shamt:<10:6>

“16”
1

=
BZ

5-Stage miniMIPS

PCALU

00 IRALU

A

B

WDALU

PCMEM

00 IRMEM

YMEM

WDMEM

WA Register
File

WA WD
WE WERF

WASEL
Rd:<15:11>
Rt:<20:16>

“3
1”

“2
7”

0 1 2 3

Instruction
Fetch

Register
File

ALU

Write
Back

PCWB

00 IRWB

YWB
 Memory

Address is available
 right after
 instruction enters
 Memory stage

Data is needed just
 before rising clock
 edge at end of Write
 Back stage

almost 2 clock cycles

• Omits some details
• NO bypass or interlock logic

L18 – Pipeline Issues 7 Comp 411 – Spring 2013 415/13

One More Fly in the Ointment

There is one more structural hazard that we have not
 discussed. That is, the saving, and subsequent
 accesses, of the return address resulting from the
 jump-and-link, jal, instruction.

Moreover, given that we have bought into a single delay
-slot, which is always executed, we now need to store the
 address of the instruction FOLLOWING the delay slot
 instruction.

jal sqr # call procedure
addi $a0,$0,10 # set arg in delay slot
addi $t0,$v0,-1 # return address

We need to
 return here, to
 PC+8, not
 PC+4. Once
 more we need
 to rewrite the
 ISA spec!

L18 – Pipeline Issues 8 Comp 411 – Spring 2013 415/13

Return Address Register Writes
The code: Assume Reg[LP] = 100...

add $ra,$0,$0
jal f

 addi $ra,$ra,4 # In delay slot
...

f: xor $t0,$ra,$0
or $r1,$0,$ra
add $t2,$0,$ra

IF

RF

ALU

MEM

WB

i i+1 i+2 i+3 i+4 i+5 i+6

add jal addi xor or add
add jal addi xor or add

add jal addi xor or
add jal addi xor

add jal
BR Decision Time

ADDI reads
BR writes

addi

Can we make the
regfile accesses of
the 3 instructions

following the jal
work by bypassing?

Where do we get
the right return
address from?

L18 – Pipeline Issues 9 Comp 411 – Spring 2013 415/13

ALU A B
ALUFN

RD
WD R/W Adr Wr

WDSEL 0 1 2

PC+4

Z V N C

PC
+4

Instruction
Memory

A
D

00

BT

PC<31:29>:J<25:0>:00

JT

PCSEL 0 1 2 3 4 5 6
0x80000080
0x80000040
0x80000000

PCREG

00 IRREG

WA Register
File

RA1 RA2
RD1 RD2

J:<25:0>

Imm: <15:0>

+
x4

BT

Rt: <20:16> Rs: <25:21>

ASEL 2 0 BSEL 0 1

SEXT SEXT
shamt:<10:6>

“16”
1

JAL PC Bypasses

PCALU

00 IRALU

A

B

WDALU

PCMEM

00 IRMEM

YMEM

WDMEM

WA Register
File

WA WD
WE WERF

WASEL
Rd:<15:11>
Rt:<20:16>

“3
1”

“2
7”

0 1 2 3

Instruction
Fetch

Register
File

ALU

Write
Back

PCWB

00 IRWB

YWB
 Memory

jal f

addi $31,$31,4

On JALs, the
 register file saves
 the next address
 from the DELAY
 SLOT instruction
(often PC+8).

Note this bypass
 is routed from
 the PC pipeline
 not from the ALU
 output. Thus, we
 need to add
 bypass paths for
 PCMEM.

Data Memory
add $ra,$0,$0

JT =
BZ

A,B Bypass

(fetching xor at f)

L18 – Pipeline Issues 10 Comp 411 – Spring 2013 415/13

ALU A B
ALUFN

RD
WD R/W Adr Wr

WDSEL 0 1 2

PC+4

Z V N C

PC
+4

Instruction
Memory

A
D

00

BT

PC<31:29>:J<25:0>:00

JT

PCSEL 0 1 2 3 4 5 6
0x80000080
0x80000040
0x80000000

PCREG

00 IRREG

WA Register
File

RA1 RA2
RD1 RD2

J:<25:0>

Imm: <15:0>

+
x4

BT

Rt: <20:16> Rs: <25:21>

ASEL 2 0 BSEL 0 1

SEXT SEXT
shamt:<10:6>

“16”
1

JAL PC Bypasses

PCALU

00 IRALU

A

B

WDALU

PCMEM

00 IRMEM

YMEM

WDMEM

WA Register
File

WA WD
WE WERF

WASEL
Rd:<15:11>
Rt:<20:16>

“3
1”

“2
7”

0 1 2 3

Instruction
Fetch

Register
File

ALU

Write
Back

PCWB

00 IRWB

YWB
 Memory jal f

addi $31,$31,4

We need another
 PCALU bypass.

In this case, the
 bypass path
 supplies the $31
 operand for the
XOR instruction.

Data Memory

add $ra,$0,$0

JT =
BZ

xor $8,$31,$0

A,B Bypass

(fetching or at f+4)

L18 – Pipeline Issues 11 Comp 411 – Spring 2013 415/13

ALU A B
ALUFN

RD
WD R/W Adr Wr

WDSEL 0 1 2

PC+4

Z V N C

PC
+4

Instruction
Memory

A
D

00

BT

PC<31:29>:J<25:0>:00

JT

PCSEL 0 1 2 3 4 5 6
0x80000080
0x80000040
0x80000000

PCREG

00 IRREG

WA Register
File

RA1 RA2
RD1 RD2

J:<25:0>

Imm: <15:0>

+
x4

BT

Rt: <20:16> Rs: <25:21>

ASEL 2 0 BSEL 0 1

SEXT SEXT
shamt:<10:6>

“16”
1

JAL PC Bypasses

PCALU

00 IRALU

A

B

WDALU

PCMEM

00 IRMEM

YMEM

WDMEM

WA Register
File

WA WD
WE WERF

WASEL
Rd:<15:11>
Rt:<20:16>

“3
1”

“2
7”

0 1 2 3

Instruction
Fetch

Register
File

ALU

Write
Back

PCWB

00 IRWB

YWB
 Memory

jal f

And, we need
 another PCMEM

 bypass.

In this case, the
 bypass path
 supplies the $31
 operand for the
OR instruction.

PCWB is already
 taken care of, for
 the following
 ADD, using the
 WB stage bypass
 at the output of
 the WDSEL mux.

Data Memory

JT =
BZ

xor $8,$31,$0

A,B Bypass

or $1,$0,$31

addi $31,$31,4

(fetching add at f+8)

L18 – Pipeline Issues 12 Comp 411 – Spring 2013 415/13

ALU A B
ALUFN

RD
WD R/W Adr Wr

WDSEL 0 1 2

PC+4

Z V N C

PC
+4

Instruction
Memory

A
D

00

BT

PC<31:29>:J<25:0>:00

JT

PCSEL 0 1 2 3 4 5 6
0x80000080
0x80000040
0x80000000

PCREG

00 IRREG

WA Register
File

RA1 RA2
RD1 RD2

J:<25:0>

Imm: <15:0>

+
x4

BT

JT

Rt: <20:16> Rs: <25:21>

ASEL 2 0 BSEL 0 1

SEXT SEXT
shamt:<10:6>

“16”
1

=
BZ

5-Stage miniMIPS

PCALU

00 IRALU

A

B

WDALU

PCMEM

00 IRMEM

YMEM

WDMEM

WA Register
File

WA WD
WE WERF

WASEL
Rd:<15:11>
Rt:<20:16>

 31 27

0 1 2 3

Instruction
Fetch

Register
File

ALU

Write
Back

PCWB

00 IRWB

YWB
 Memory

We wanted a simple, clean pipeline
 but…

• added CLK EN to
 freeze IF/RF
 stages so we can
 wait for lw to
 reach WB stage

NOP

Data Memory

• broke the
 sequential
 semantics of ISA
 by adding a branch
 delay-slot and
 early branch
 resolution logic

• added A/B bypass
 muxes to get data
 before it’s written
 to regfile

L18 – Pipeline Issues 13 Comp 411 – Spring 2013 415/13

Bypass MUX Details

RD1 RD2

Register File

A Bypass B Bypass

ASEL 0 2

AALU

BSEL 0 1

BALU

’16’ SEXT(imm)

To ALU To ALU

WDALU

To Mem

JT

from ALU/MEM/WB/PC from ALU/MEM/WB/PC

1

shamt =
BZ

The previous diagram was oversimplified. Really need for the bypass muxes
 to precede the A and B muxes to provide the correct values for the jump
 target (JT), write data, and early branch decision logic.

L18 – Pipeline Issues 14 Comp 411 – Spring 2013 415/13

Bypass Logic

rs

rt or rd (WB)*

rt or rd (MEM)*

rt or rd (ALU)*

“0” Select “0”

ALU bypass

MEM bypass

WB bypass

Regfile (no bypass)

miniMIPS A bypass logic
(need another copy for B bypass that compares to rt rather than rs):

5-bit
 compare

* If instruction is a sw (doesn’t write into regfile), set rt for ALU/MEM/WB to $0

Source Operand of
 Instr in RF stage

Dest of Instr
 in WB stage

Dest of Instr in
 MEM stage

Dest of Instr in
 ALU stage

L18 – Pipeline Issues 15 Comp 411 – Spring 2013 415/13

ALU A B
ALUFN

RD
WD R/W Adr Wr

WDSEL 0 1 2

PC+4

Z V N C

PC
+4

Instruction
Memory

A
D

00

BT

PC<31:29>:J<25:0>:00

JT

PCSEL 0 1 2 3 4 5 6
0x80000080
0x80000040
0x80000000

PCREG

00 IRREG

WA Register
File

RA1 RA2
RD1 RD2

J:<25:0>

Imm: <15:0>

+
x4

BT

JT

Rt: <20:16> Rs: <25:21>

ASEL 2 0 BSEL 0 1

SEXT SEXT
shamt:<10:6>

“16”
1

=
BZ

Final 5-Stage miniMIPS

PCALU

00 IRALU

A

B

WDALU

PCMEM

00 IRMEM

YMEM

WDMEM

WA Register
File

WA WD
WE WERF

WASEL
Rd:<15:11>
Rt:<20:16>

31 27

0 1 2 3

Instruction
Fetch

Register
File

ALU

Write
Back

PCWB

00 IRWB

YWB
 Memory Data Memory

NOP

•Added branch
 delay slot and
 early branch
 resolution logic to
 fix a CONTROL
 hazard

• Added lots of
 bypass paths and
 detection logic to
 fix various
 STRUCTURAL
 hazards

• Added pipeline
 interlocks to fix
 load delay
 STRUCTURAL
 hazard

NOP

L18 – Pipeline Issues 16 Comp 411 – Spring 2013 415/13

Pipeline Summary (I)

• Started with unpipelined implementation
– direct execute, 1 cycle/instruction
– it had a long cycle time: Instr mem + regs + alu + Data mem + wb

• We ended up with a 5-stage pipelined implementation
– increase throughput (3x???)
– delayed branch decision (1 cycle)

Chose to execute instruction after branch
– delayed register writeback (3 cycles)

Add bypass paths (6 x 2 = 12) to forward correct values
– memory data available only in WB stage

Introduce NOPs at IRALU, to stall IF and RF stages
until LD result was ready

L18 – Pipeline Issues 17 Comp 411 – Spring 2013 415/13

Pipeline Summary (II)

Fallacy #1: Pipelining is easy
 Smart people get it wrong all of the time! Costs?
Re-spins of the design. Force S/W folks to devise
program/compiler workarounds.

Fallacy #2: Pipelining is independent of ISA
 Many ISA decisions impact how easy/costly it is to
 implement pipelining (i.e. branch semantics, addressing
 modes). Bad decisions impact future implementations.
 (delay slot vs. annul?, load interlocks?) and break
 otherwise clean semantics. For performance,
 S/W must be aware!

Fallacy #3: Increasing Pipeline stages improves performance
 Diminishing returns. Increasing complexity. Can introduce
 unusable delay slots, long interlock stalls.

L18 – Pipeline Issues 18 Comp 411 – Spring 2013 415/13

RISC = Simplicity???

Generalization of
 registers and

 operand coding

Complex instructions,
 addressing modes

Addressing
features, eg

index registers

RISCs

Primitive Machines
 with direct

 implementations

VLIWs,
Super-Scalars ?

Pipelines, Bypasses,
Annulment, …, ...

“The P.T. Barnum World’s Tallest Dwarf Competition”
World’s Most Complex RISC?

•  RISC was conceived to be SIMPLE
•  SIMPLE -> FAST
•  MORE SPEED -> Pipelining
•  Pipelining -> Complexity
•  Complexity increases
 delays in
 worse-case
 paths

