Pipelined CPUs

Where are the
registers?

/

Study Chapter 4 of Text

Comp 411 - Spring 2012 312812 L17 - Pipelined CPU | 1

Review of CPU Performance

MIPS = Millions of Instructions/Second
MIPS = ——— Freq = Clock Frequency, MHz

CPIl = Clocks per Instruction

To Increase MIPS:
1. DECREASE CPIL.
- RISC simplicity reduces CPI to 1.0.
- CPI below 1.0? State-of-the-art multiple instruction issue
2. INCREASE Freq.
- Freq limited by delay along longest combinational path; hence

- PIPELINING is the key to improving performance.

Comp 411 - Spring 2012 312812 L17 - Pipelined CPU | 2

T miniMIPS Timing

The diagram on the left
illustrates the Data Flow

of miniMIPS

Wanted: longest path

— Read Regs Sign Extend
A\ 4

| +oFrseT ||| ASELmux | | BSEL mux |

Com plications:

*some apparent paths
ALU aren’t “possible”

efunctional units have
Fetch data variable execution times

(eg, ALU)

<

.
[PCSELmux][WAsELnum][wosa_mJﬁ

T~ ¥ . .
"R setup y Meom sotup | *time axis 15. hot to ?cale
v (eg. top mem I8 Very big!)

CLK?

Comp 411 - Spring 2012 312812 L17 - Pipelined CPU | 3

Where Are the Bottlenecks?

8:28888838 PC<3J] T:29>>:J<25:o>:oo
0x80000080 j BT l_
I J l Pl I. [J |.
PCSEL—\ 6 5 4 3 2 1 of IPC ll’lll‘lg goa o
- ch] Break LONG combinational paths
I Inﬁtruction‘ —> memories, ALU in separate stages
emory
[+4] ;
]Rs: <25:21>]R’r: <20:16>
WASEL
J:<25:0>€—
d: 1> o
\Soie LY | A Register 2
o=k P File "
¥ RDI RD2 WE f<— WERF
Imm: <15:0>
‘m@z NV e JTe—] SEXT—>f SEXT
‘L ‘1’ ‘1’ ‘l ‘l l shamt:i<10:6>
Control Logic + "
ASEL BSEL
_ PCSEL V \oj e/ 0/
N— WASEL BT
N— SEXT A \ B
N—> BSEL ALUFN—> ALU WD R/ Wr
N— WDSEL
N— ALUFN H ¢¢ Data Memory
N— Wr NVCZ Adr RD
N— WERF
N— ASEL
PC+4
!
\O ! 2/ wDSEL

Comp 411 - Spring 2012 312812 L17 - Pipelined CPU 1 4

Ultimate Goal: 5-Stage Pipeline

GOAL: Maintain (nearly) 1.0 CPI, but increase clock speed to
barely include slowest components (mems, regfile, ALU)

APPROACH: structure processor as 5-stage pipeline:

IF Instruction Fetch stage: Maintains PC, fetches
one instruction per cycle and passes it to
. Instruction Decode/Register File stage: Decode
ID/RF control lines and select source operands
. ALU stage: Performs specified operation,
ALU passes result to
Y Memory stage: If it’s a lw, use ALU result as an
MEM address, pass mem data (or ALU result if
! hot lw) to
WB Write-Back stage: writes result back into

register file.

Comp 411 - Spring 2012 312812 L17 — Pipelined CPU 1 5

miniMIPS Timing

Different instructions use various parts of the data path.

1instr every 14 nS, 14 nS, 20 nS, 9 nS, 19 nS
Program

exetion fime b e e b e ——
order
1§ |

CLK

add $4, $5, $6
beq $1, $2, 40

lw $3, 30($0)

jal 20000

sw $2, 20($4)

v

6 nS M Instruction Fetch This is an example of a “Asynchronous
2 ns [Instruction Decode Globally-Timed” control strategy (see
2 n5 L] Register Prop Delay Lecture 16). Such a system would vary the \‘

5 nS @ ALU Operation .) .
4 n& [Branch Target clock period based on the instruction

6 nS B Data Access being executed. This leads to complicated

1 nS M Register Setup timing generation, and, in the end, slower
systems, since it is not very compatible
with pipelining!

Comp 411 - Spring 2012 312812 L17 — Pipelined CPU 1 6

Uniform miniMIPS Timing

With a fixed clock period, we have to allow for the worse case.

1instr EVERY 20 nS
Program
exeoution fime b e b e e

order

CLK

ada 4,590 7

beq $1, $2, 40
lw $3, 30($0)
jal 20000

sw $2, 20($4)

v

6 nS M Instruction Fetch By accounting for the “worse case” path
2 nS [Instruction Decode (i e, allowing time for each possible

: pe
?, "2 g ii%‘?er P:;O'P Pelay combination of operations) we can _‘
n . ‘s ’
perarion implement a “Synchronous Globally \len't the
4 nS [Branch Target . . o . het effect
6 nS B Data Access -Timed” control strategy. This simplifies just
1 nS [Register Setup timing generation, enforces a uniform slower
: ?
processing order, and allows for cPu
pipelining!
Comp 411 - Spring 2012 312612

L17 — Pipelined CPU | 7

Step 1: A 2-Stage Pipeline
%Mu—

0x80000000

PCSEL—_6_5 4 3 2 1 _of IF
B> pc__ || v
Instruction
A
Memory EXE
+4 D
& pcee ool & IREXE
J:<25:05—] WASEL |Rs: <25:21> Ft: <20:16>
RA:<15:11> N
RI<2016> 0 Al Register 42
2 File
2 ->p/ b ROI RD2 __ WE[<— WERF
Imm: <15:0>
RESET
IR stands for JT— SEXT—)| SEXT |
“ ion Reai 2 RQZ NV C
T:strUCtlon . cjtg‘l‘sE‘l);(eEr;,. l l l l l shamt:<10:6>
e superscri . g
P p> Control Logic 16
denotes the pipeline +
. . \o 1 2 /<ASEL \ 1 0 /<— BSEL

stage, in which the PC N— PCSEL y
and IR are used. N> WASEL

N— SEXT AV

/ N\— BSEL ALUEN ALU WD R/W l—Wr
N— WDSEL
" N— ALUFN Data Memory

N— WI NVCZ Adr D

N WERF

N— ASEL

PC+4

Comp 411 - Spring 2012

\EI_Q/*— WDSEL

312812

L17 - Pipelined CPU 1 &

2-Stage Pipe Timing

Improves performance by increasing instruction throughput.
ldeal speedup is number of pipeline stages in the pipeline.

Program
exetion fime b e e b e ——
order
CLK

add $4, 95,96 [N /N

beq $1, $2, 40 /A

lw $3, 30($0) . . Hereesesssssnsenessssssesessssssssss . i-'

. During this, and all subsequent

jal 20000 clocks two instructions are in~ @ //A

sw $2, 20($4) various stages of execution :I:-]

v

6 nS M Instruction Fetch By partitioning each instruction cycle into

2 nS M Instruction Decode 5 “fetch” stage and an “execute” stage,
2 ns [Register Prop Delay

5nS [ALU Operation
4 ns [Branch Target

bo)
we get a simple pipeline. Why not include _‘
Latency?

the Instruction-Decode/Register-Access

2 Clock
[l [l) ? . _
6 nS Bl Data Access time with the Instruction Fetch? You Ze&o:;
1 nS [Register Setup could. But this partitioning allows for a Throughput?
useful variant with 2-cycle loads and instr
per
stores. 14 1S

Comp 411 - Spring 2012 312812 L17 — Pipelined CPU | 9

2-Stage w/2-Cycle Loads & Stores

Further improves performance, with slight increase in control complexity.
Some 1°* generation (pre-cache) RISC processors used this approach.

Program

exetion fime b e e b e ——

order
ck o4 o+ -4 4+~ 4+ L4 4 4+ 4 I
add $4, $5, $6 - Extra cycleé Q pcoe oo LE REE |

beq $1, $2, 40 . forlw
Iw $3, 30($0) : Control Logic || |—
jal 20000 : F[. : _The inclusion of an

sw $2, 20($4) extra instruction

v

-Extra cyclei ‘

Y torew specific clock cycle
6 nS B Instruction Fetch ,)) within a normal
2 15 [Instruction Decode The clock rate of this variant is nearly pipeline is called
2 n5 [Register Prop Delay ~ twice that of our original design. Does inserting a bubble”.
5 nS @ ALU Operation that mean it is twice as fast? \/ Clock:
4 ns [Branch Target Not likely. In practice, as many as 30% of "y @nsl
6 nS Ml Data Access instructions access memory. Thus, the ¢
1 nS [Register Setup effective speed up is:
Sp eed up = new clzlccfccl;l:;'l;cllj(e(’;l.gil-Z*O.3)
= % =1.923
Comp 411 - Spring 2012 3128612

L17 - Pipelined CPU | 10

2-Stage Pipelined Operation

Consider a sequence

of instructions: 2ddi

$t2,58t1,1
Xor $t2,5tl,s$t2
sltiu $t3,5t2,1
srl S$t2,$t2,1
/Recall
L “Pipeline
. . Di ” f
Executed on our 2-stage pipeline: Looture 16,
TIME (cycles) > It can’t be
| | | | | | | | this
o [i+1 i+2 i+ i+4 i+5 +O /3agy|?
% IF | addi | xor sltiu| srl —‘
S
“l‘ EXE addi | xor sltiu| srl

Comp 411 - Spring 2012

312812

L17 — Pipelined CPU | 11

Pipeline Control Hazards

BUT consider instead: loop: add $t1,$tl,$t0
srl $t2,$t2,1
bne $t2,$0,loo0p
andi $t0,$t2,1

i i+1 i+2 i+3 i+4 i+5 i+6

IF | add | st bne || andi;

—————

EXE add | srl bne 2

This is the cycle where the branch decision

is made... but we've already fetched the
following instruction which should be executed
only if branch is not taken!

Pipelining HAZARDS are situations where the next instruction cannot

execute in the next clock cycle. There are two forms of hazards, CONTROL
and STRUCTURAL.

Comp 411 - Spring 2012 312812 L17 — Pipelined CPU | 12

Branch Delay Slots

PROBLEM: One (or more) instructions following a branch are
fetched before the branch decision is made (to take, or not to take).

POSSIBLE SOLUTIONS:

1. Make hardware “annul” the instructions following
Solution 2 taken branches, e.g., by disabling WERF and WR.

implies
breaking the

cequential 2 - Program around it”. Either

e o a) Follow each BNE/BEQ with a NOP instruction; or

Logically, the
branch takes

b) Make compiler clever enough to move USEFUL instructions

place after into the branch delay slots

instructions

in the DELAY i. Always execute instructions in delay slots

SLOTS are

executed. ii. Conditionally execute instructions in delay slots
/
L)

¢ Delay slots also apply to jump instructions: j, jal, and jr

Comp 411 - Spring 2012 312812 L17 — Pipelined CPU 1 13

Branch Solution 1

Make the hardware annul 1ocop: add $t1,s$t1,$t0

instructions in the zrl :Eg ,g§2i1
ne ’ , LOOP
branch delay slots of a andi $t0 2,1

taken branch.

i i+1 i+2 i+ i+4 i+5 i+6
IF | add | orl bne | andi | add | srl bne
EXE add |srl | bne | €L | add | erl

L_ HOP
Branch taken

Pros: Programs run identically on both unpipelined and pipelined hardware

Cons: in SPEC benchmarks 14% of instructions are taken branches —
14/114 = 12% of total cycles are annulled

Comp 411 - Spring 2012 312812 L17 — Pipelined CPU | 14

Branch Annulment Hardware
8:28888828%N:QJE?TQ%:»T_ Recall that a NOP in MIPS is:

PCSEL—\ 6 5 4 3 2 1 0o sll %0,%0,0 = 0Ox00000000
XY
Instruction
= pc [o] Memory
A D
NOP = OxO0000000
+4 \O0 1/<BTAKEN
& pcee ool & IREXE |
<50} WASEL |Rs: <25:21> Rt <20:16>
Rd:<15:11> o
(RE<20:i6> —° RAl Register "2
2=k File "
;% =3/ b RDI RD2 WE [<— WERF
Imm: <15:0>
] sl]
SEXT- SEXT
RQZ NV C !
\l ‘Ir ‘I/ l l shamt:<10:6>
H “16”
Control Logic + . l ¢/(_ i /(_
01 2 ASEL 1 0 BSEL
N— PCSEL
N— WASEL BT
N SEXT A \/ B
N—> BSEL ALUFN ALU WD E/W L—Wr
N—s WDSEL
N— ALUFN Data Memory
N—> Wr NVCZ Adr RD
N WERF
N ASEL
N\— BTAKEN
PC+4
\ﬁl_Qﬂ— WDSEL

Comp 411 - Spring 2012 312812 L17 — Pipelined CPU | 15

Branch Alternative 2a

Maybe | could
Always fill branch delay loop: add $tl,$tl,$t0 j::fjlogejzl;g
slots with NOP srl $t2,8t2,1 e
. . bne $t2,$0,loo0p .
Instructions. nop
Worse than H/W annulment. andi $t0,$t2,1
NOPs get executed whether =
branches are taken or not.
i i+1 i+2 i+3 i+4 i+D i+©
IF |add | srl bne | nop | add | srl bne
EXE add |cmp | bne | nop | add | cmp

T— Branch taken

Pros: Does not require H/W modifications, only compiler changes
Cons: NOPs make code longer; >12% of cycles spent executing NOPs

Comp 411 - Spring 2012 312812 L17 — Pipelined CPU 1 16

Branch Alternative 2b(i)

Put USEFUL instructions srl $t2,$t2,1
in the branch delay slots; 1oop: add Stl,5tl,5t0
ber th il b bne $t2,$0,loop
rememper ey wi e srl $t2,5t2,1 |
executed whether the y Effectively
. @ 2 NOP if the
branch is taken or not branch is not
taken.
| +1 42 i+3 4 i+5 +6 (if ($t2 == 0) then
$t2 >>1==0)
IF | or add | bne | srl add | bne st
However, finding
EXE srl |add | bne | srl | add | bne an instruction
that behaves

T_ like a NOP when
Branch taken hot taken can
be tricky,

Pros: only one “extra” instruction is executed (on last iteration)

Cons: finding “useful” instructions that should always be executed
is difficult; clever rewrite may be required. Program executes
differently on unpipelined implementation.

This is the standard approach for pipelined MIPS implementations

312812 L17 - Pipelined CPU | 17

Comp 411 - Spring 2012

Branch Alternative 2b(ii

Put USEFUL instructions add $tl,8$tl,$t0

in the branch delay slots; loop: srl $t2,5t2,1 The“t" suffix
bne.t $t2,$0,lo0p implies a hew

annul "ohem if branch add St1. St1 S0 Lr:::ar:gti;:amh
doesn’t behave as andi $t0,5t2,1 i\oicaual
PrediCted <. ~ while executing
Ul the delay slot
if taken.”
i i+1 i+2 i+3 i+4 i+5 i+6 i+7 Likewise, we
could add a “.n”
IF | add | srl bne.t | add | srl bne.t | add | andi variant for the
“execute if not
EXE add |srl |bnet |add | srl | bnet| 3 taken” case.
yy Y H/W annuls
hop the “opposite”
Branch taken Branch not taken ¢ase.

Pros: only one instruction is annulled (on last iteration); about 70%
of branch delay slots can be filled with useful instructions

Cons: Program executes differently on naive unpipelined implementation;
difficult to utilize with more than one delay slot.

Comp 411 - Spring 2012 312812 L17 — Pipelined CPU 1 1&

Architectural Issue:
Branch Decision Timing

The number of branch delay slots is
determined by \.N|"'|6I"6. in the pipelin.e Instruction
the branch decision is made relative Feten

to where the next instruction is L
fetChed. and Register File f—{g?—b (read)
Consider the 5-stage miniMIPS pipeline
shown on the right. AL y ¥
, .. ALU
Where is the branch decision resolved? !
Memory |:Y:|
beq rs,rt,offset %
if (Reg[rs] == Reg[rt]) v
. instruction Y
PC < PC + 4 + 4*SEXT(offset) il W
The decision is based on the ALU’s t % .
Z-flag, which is determined at the (wrive)
very end of the ALU stage, nearly 2 \' —
Cl00k5 aﬁ:er the instruction fetCh‘ Is there any way miniMIPS’ could make its
Therefore’ a naive miniMIPS branch decision sooner? We only need to
. . support BNE and BEQ, since we choose to
lmplementatlon has at least TWO trap and emulate the more complicated

branch delay slots. branch instructions.
Comp 411 - Spring 2012 312812 L17 - Pipelined CPU | 19

Early Branch Decision Hardware

0x80000000

0x80000040 PC<31:29>:J<25:0>:00
0><80000080_J u JJT l T .
PCSEL=N o 5 4 5 2 1 o/ Luckily, the Instruction Decode and
Register Access stage is one of o
- B Instruction faster paths. The logic for testing
FC Memory for the equality of two inputs is
A D called a comparator.
NOP
+4 \O___1/<—ANNULF
& pcee ool & IREXE |
1:<25:0—| WASEL __ |Rs: <25:21> Ri: <20:16> B, -
NRA:<15:11> . A,
(RE<20:i6> —° RAl Register "2 1
S File " Brs
2=/ b ROl RD2 WE|<— WERF Anz
JT <—
RESET mm: <1502 4’@‘*
SEXT—> SEXT
IRQZ N V i BZ Bz
l’ l l l ‘|’ shamt:<10:6> Bs
Control Logic + l‘f ho
\o 1 2 /<ASEL \ 1 0 /<— BSEL iz
N— PCSEL H 2
N— WASEL BT B,
N— SEXT N h
N— BSEL ALUFN ALU WD E/W <_Wr io
N— WDSEL 0
N— ALUFN Data Memory
N— Wr NVCZ Adr RD
N WERF
N— ASEL
PC+4
\ul_zﬂ— WDSEL

Comp 411 - Spring 2012 312812 L17 — Pipelined CPU 1 20

0x80000000
0x80000040

TR Step 2: 4-Stage miniMIPS

PC<31:29>:J<25:0>:00

|> PC |00| Instruction
Memory
Instruction ~ [+4 : Treats register file
Fetch
E o= ol B as "cwo separate
devices:
J:<25:0><—o]Rs: <25:21> lRt: <20:16>
RAI Register RA2 combmatlonal
. File . READ, clocked
Imm: <15:0> JT«@— WRITE at ehd O'F
: sipe,
shamt:<10:6>
+ hﬁ What other
Register) D /A A1 o/ B information do we
Fil
e B> pcrv_Joo] 5 R e A & f & WDAL have to pass down
| Heline?
" % . plpelme.
ALUFN ALU PC
(return addresses)
ALU AMASY: instruction fields
e =t = I = T) I " (decoding)
PC+4 Adr wp R
o Data Memory
NERIE o What sort of
4 v improvement
WASEL 0 2 3 012 WDSEL .
ir/ _|_ﬂ— should expect in
Back WENSN AS ABOVE)
>

Comp 411 - Spring 2012 312812 L17 — Pipelined CPU 1 21

4-Stage miniMIPS Operation

Consider a sequence

of instructions:

addi $t0,$t0,1
sll S$tl,$tl,2
andi $t2,$t2,15
sub $t3,$0,$t3

Executed on our 4-stage pipeline:

TIME (cycles) >
i i+1 i+2 i+3 i+4 i+5 i+6
| IF| addi | sll | andi| sub
QO
= RF addi | sll | andi| sub
X
‘1: ALY addi sl andi | sub
we addi sll | andi| sub

Comp 411 - Spring 2012

312812

L17 — Pipelined CPU 1 22

Pipeline “"Structural Hazard”

One of our source

operandsis the gy £t like this
destination of

the previous ~ Never happened

;a&l $t0 | $t0 , 1 instruction when we did

-9 pipelining
sll 35tl 'ﬂ]' 2 before. Why
andi $t2 ’ $t2 ’ 15 now?

BUT consider instead:

sub §$t3,$0,$t3 Before, we
forbade
feedback. Can’t
i i+1 i+2 i+3 i+4 i+5 i+6 do that with a
useful CPU.

IF| addi| sll andi | sub

How do we fix

RF addi| sll | andi | sub this one?
ALY addi| sll | andi | sub /.f”
wB addi | sll andi | sub ‘

Oops! sllis trying to read Reg[&] ($t0)
during cycle 142 but addi doesn’t write its
result into Reg[&] until the end of cycle 1+3!

Comp 411 - Spring 2012 312812 L17 — Pipelined CPU 1 23

Data Hazard Solution 1

“Program around it”

... document weirdo semantics, declare it a software problem.

- Breaks sequential semantics!
(Order of instruction execution is not obvious)

- Costs code efficiency.
EXAMPLE: Rewrite

addi $t0,$t0,1 addi $t0,$t0,1

sll $tl1,$t0,2 as andi $t2,$t2,15

andi $t2,$t2,15 sub §$t3,$0,$t3

sub $t3,$0,$t3 sll S$tl1,$t0,2

HOW Often can we dO this? i i+1 i+2 i+3 i+4 i+5 i+6 |
IF| addi| andi| sub | sll
Not Very. RF addi| andi| sub | sl
ALY addil andi| sub | sl
wB il andil sub | sll
Comp 411 - Spring 2012 3/28/12

L17 — Pipelined CPU | 24

Data Hazard Solution 2

Stall the pipeline
(add bubbles/disable update to IR*s and PC*s):

Freeze IF, RF stages for 2 cycles, inserting NOPs
into ALU-stage instruction register

i+1

i+2 i+3 i+4 i+5 i+6
IF| addi | sll | andi | andi | andi | sub
RF addi | sll sli sll | andi | sub
ALV addi | NOP J Nor | sll | andi
we addi'| Nop | NOP | sl
|

Drawback: Added NOPs “waste” cycles. Lot’s of wasted cycles.

(A large percentage of instructions depend on results from the
immediately preceding instruction)

Comp 411 - Spring 2012 312612

L17 - Pipelined CPU | 25

Data Hazard Solution 3

Bypass (aka forwarding) Paths:

Add extra data paths & control logic to re-route
data in problem cases.

i+1

i+2

i+3

i+4

i+5

i+6

IF| addi | sll | andi | sub

RF addi | sll 4 andi | sub

ALV addil sll | andi | sub

we addi | sll | andi | sub

|[dea: The result from the addi, which will be written into the register file at
the end of cycle |+3, is actually available at output of the ALU during cycle
|+2 — just in time for it to be input into the ALU of the s11 in the RF

stagel Thus, using it before it is actually written into the register!

Comp 411 - Spring 2012

312812

L17 - Pipelined CPU | 26

Bypass Paths (I)

|
> I |
T Tr— SELECT this BYPASS path if
egister
sll $9/$812 RD1 File RD2
' E 5 Op®F = reads Rs and
ass
| anlzxes ((Op*Y = R-type and RsRF = RdAM)
> IR '\ & A &> B I
or
YA OpAtY = Ixtype and RsRF = RtALY
addi $8,%8,1 \. ALU (Op M .yp :)
A Y i.e., instructions that update
registers with ALU results
N o and RsRF 1= O
A~ \
¢ 4
WA Register P '
File e pe—
Comp 411 - Spring 2012 312612

L17 - Pipelined CPU 1 27

|

Bypass Paths (IT)

B o

sub $3,[51] 82

RD1

File

RAT Reglster RA2

RD2

b RV

addi $5,$4,87

B IRVE

| =

xor [51] $2, 56

Comp 411 - Spring 2012

|

WA Register

File

WD

Bypass
muxes

312812

SELECT this BYPASS path if

Op®F uses Rs®F as a source
and RsRF 1= 0

and not using ALU bypass
and WERF =1

and RsRF = WA

Why not get it from the
register file? It’s being
written this cycle!

)

L17 — Pipelined CPU 1 28

Next Time

Comp 411 - Spring 2012 312812 L17 - Pipelined CPU 1 29

