
L16 – Pipelining 1 Comp 411 – Spring 2013 4/3/13

Pipelining

Less than a month left in the
 semester… maybe it’s time

 I finally did some laundry
Now that’s what I
call dirty laundry

Read Chapter 6.1

L16 – Pipelining 2 Comp 411 – Spring 2013 4/3/13

The Goal of Pipelining

•  Recall our measure of processor performance

•  How can we crank up the clock rate?

Millions of Instructions per Second Frequency in MHz

€

MIPS =
clocks sec

AVE(clocks instruction)

CPI (Average Clocks Per Instruction)

L16 – Pipelining 3 Comp 411 – Spring 2013 4/3/13

Forget 411… Let’s Solve a “Relevant Problem”

Device: Washer

Function: Fill, Agitate, Spin

WasherPD = 30 mins

Device: Dryer

Function: Heat, Spin

DryerPD = 60 mins

INPUT:
dirty laundry

OUTPUT:
4 more weeks

L16 – Pipelining 4 Comp 411 – Spring 2013 4/3/13

One Load at a Time
Everyone knows that the real
 reason that UNC students put
 off doing laundry so long is *not*
 because they procrastinate, are
 lazy, or even have better things to
 do.

The fact is, doing laundry one load
 at a time is not smart.

(Sorry Mom, but you were wrong
 about this one!)

Step 1:

Step 2:

Total = WasherPD + DryerPD

= _________ mins 90

L16 – Pipelining 5 Comp 411 – Spring 2013 4/3/13

Doing N Loads of Laundry
Here’s how they do laundry at
 Duke, the “combinational” way.

(Actually, this is just an urban
 legend. No one at Duke actually
 does laundry. The butler’s all
 arrive on Wednesday morning,
 pick up the dirty laundry and
 return it all pressed and
 starched by dinner)

Step 1:

Step 2:

Step 3:

Step 4:

Total = N*(WasherPD + DryerPD)

= ____________ mins N*90

…

L16 – Pipelining 6 Comp 411 – Spring 2013 4/3/13

Doing N Loads… the UNC way
UNC students “pipeline”
 the laundry process.

That’s why we wait!

Step 1:

Step 2:

Step 3:

Total = N * Max(WasherPD, DryerPD)

 = ____________ mins N*60

…
Actually, it’s more like N*60 +
 30 if we account for the startup
 transient correctly. When doing
 pipeline analysis, we’re mostly
 interested in the “steady state”
 where we assume we have an
 infinite supply of inputs.

L16 – Pipelining 7 Comp 411 – Spring 2013 4/3/13

Recall Our Performance Measures
Latency:

The delay from when an input is established until the
 output associated with that input becomes valid.

 (Duke Laundry = _________ mins)
 (UNC Laundry = _________ mins)

Throughput:
 The rate of which inputs or outputs are processed.

 (Duke Laundry = _________ outputs/min)
 (UNC Laundry = _________ outputs/min)

90
120

1/90
1/60

Assuming that the wash
 is started as soon as
 possible and waits
 (wet) in the washer until
 dryer is available.

Even though
we increase
latency, it
takes less
time per load

L16 – Pipelining 8 Comp 411 – Spring 2013 4/3/13

Okay, Back to Circuits…

F

G

H X P(X)

For combinational logic:
 latency = tPD,
 throughput = 1/tPD.
We can’t get the answer faster,
 but are we making effective use of
 our hardware at all times?

G(X)
F(X)

P(X)

X

F & G are “idle”, just holding their outputs
 stable while H performs its computation

L16 – Pipelining 9 Comp 411 – Spring 2013 4/3/13

Pipelined Circuits
use registers to hold H’s input stable!

F

G

H X P(X)
15

20

25

Now F & G can be working on input Xi+1
 while H is performing its computation
 on Xi. We’ve created a 2-stage pipeline :
if we have a valid input X during clock
 cycle j, P(X) is valid during clock j+2.

Suppose F, G, H have propagation delays of 15, 20, 25 ns and we
 are using ideal zero-delay registers (ts = 0, tpd = 0):

latency
45

throughput
1/45

unpipelined

2-stage pipeline 50
worse

1/25
better

Pipelining uses
 registers to
 improve the

 throughput of
 combinational

 circuits

L16 – Pipelining 10 Comp 411 – Spring 2013 4/3/13

Pipeline Diagrams

Input

F Reg

G Reg

H Reg

i i+1 i+2 i+3

Xi Xi+1

F(Xi)

G(Xi)

Xi+2

F(Xi+1)

G(Xi+1)

H(Xi)

Xi+3

F(Xi+2)

G(Xi+2)

H(Xi+1)

Clock cycle
Pi

pe
lin

e
st

ag
es

The results associated with a particular set of input
 data moves diagonally through the diagram,
 progressing through one pipeline stage each clock
 cycle.

H(Xi+2)

…

…

F

G

H X P(X)

15

20

25

This is an example
of parallelism. At
any instant we are
busy computing
2 results.

L16 – Pipelining 11 Comp 411 – Spring 2013 4/3/13

Pipeline Conventions
DEFINITION:

a K-Stage Pipeline (“K-pipeline”) is an acyclic circuit having exactly K
 registers on every path from an input to an output.

a COMBINATIONAL CIRCUIT is thus a 0-stage pipeline.

CONVENTION:
Every pipeline stage, hence every K-Stage pipeline, has a register on its
 OUTPUT (not on its input).

ALWAYS:
The CLOCK common to all registers *must* have a period sufficient to
 allow for the propagation delays of all combinational paths
PLUS (input) register tPD PLUS (output) register tSETUP.

The LATENCY of a K-pipeline is K times the
 period of the clock common to all registers.

The THROUGHPUT of a K-pipeline is the
 frequency of the clock.

L16 – Pipelining 12 Comp 411 – Spring 2013 4/3/13

Ill-Formed Pipelines

B

C X

Y

A

Problem:

Successive inputs get mixed: e.g., B(A(Xi+1), Yi). This
 happened because some paths from inputs to
 outputs had 2 registers, and some had only 1!

Can this happen on a well-formed K pipeline?

none For what value of K is the following circuit a K-Pipeline? ANS: ____________

Consider a BAD job of pipelining:

L16 – Pipelining 13 Comp 411 – Spring 2013 4/3/13

A Pipelining Methodology
Step 1:
 Draw a line that crosses every
 output in the circuit, and select one
 endpoint as an origin.

Step 2:
 Continue to draw new lines from the
 origin across various circuit
 connections such that these new
 lines partition the inputs from the
 outputs.

Adding a pipeline register at every
 point where a separating line crosses
 a connection will always generate a
 valid pipeline.

STRATEGY:
 Focus your attention on placing
 pipelining registers around the
 slowest circuit elements
 (BOTTLENECKS).

A
4 nS

B
3 nS

C
8 nS

D
4 nS

E
2 nS

F
5 nS

T = 1/8ns
L = 24ns

In these
 examples

 we assume
 “idealized”

 pipeline
 registers,

 with
tpd = 0

and
ts = 0.

L16 – Pipelining 14 Comp 411 – Spring 2013 4/3/13

Extreme Pipelining

A

B

C X

Y

2

1

1

0-pipe:

1-pipe:

2-pipe:

3-pipe:

LATENCY THROUGHPUT

4 1/4

OBSERVATIONS:

• 1-pipeline improves
 neither L or T.

• T improved by breaking
 long combinational
 paths, allowing faster
 clock.

• Too many stages increase
 L, and don’t improve T.

• Back-to-back registers
 are sometimes required
 to keep a pipeline
 well-formed.

4 1/4

1

4 1/2

2

1/2 6

3

back-to-back
pipline registers

L16 – Pipelining 15 Comp 411 – Spring 2013 4/3/13

Pipelining Summary
Advantages:

–  Higher throughput than combinational system
–  Different parts of the logic work on different parts of the

 problem…

Disadvantages:
–  Generally, increases latency
–  Only as good as the *weakest* link

(often called the pipeline’s BOTTLENECK)

Isn’t there a way around this “weak link” problem?

This bottleneck
is the only
problem

L16 – Pipelining 16 Comp 411 – Spring 2013 4/3/13

How do UNC students REALLY do Laundry?

They work around the bottleneck.
 First, they find a place with
 twice as many dryers as
 washers.

Throughput = ______ loads
/min

 Latency = ______ mins/load

Step 1:

Step 2:

Step 3:

Step 4:

1/30

90

L16 – Pipelining 17 Comp 411 – Spring 2013 4/3/13

Circuit Interleaving
One way to overcome a pipeline
 bottleneck is to replicate the
 critical element as many times as
 needed and alternate inputs
 between the various copies.

N-way interleaving is equivalent to
 how many pipeline Stages? ____

C C

D Q

EN EN

C’

0 1

Latency = 2 clocks

N-way
interleave

N-1 registers

…

N
But with a
 register

 constrained
 to be on the

 inputs

L16 – Pipelining 18 Comp 411 – Spring 2013 4/3/13

Combining Techniques

We can combine interleaving and
 pipelining. Here, C’ interleaves two
 C elements with a propagation
 delay of 8 nS. The resulting C’
 circuit has a throughput of 4 nS,
 and latency of 8 nS. This can be
 considered as an extra pipelining
 stage that passes through the
 middle of the C’ module. One of our
 separation lines must pass
 through this pipeline stage.

A
4 nS

B
3 nS

C’
4-4nS

D
4 nS

E
2 nS

F
5 nS

By combining interleaving with
 pipelining we move the
 bottleneck from the C element
 to the F element.

T = 1/5ns
L = 25ns

L16 – Pipelining 19 Comp 411 – Spring 2013 4/3/13

Step 5:

Better Yet… Parallelism

Step 1:

Step 2:

Step 3:

Step 4:

We can combine interleaving
and pipelining with parallelism.

Throughput =
 _______ load/min

Latency = _______ min

2/30 = 1/15

90

L16 – Pipelining 20 Comp 411 – Spring 2013 4/3/13

Other Control Structure Approaches

RIGID

Laid
Back

ALL computation “events”
 occur at active edges of a
 periodic clock: time is
 divided into fixed-size
 discrete intervals.

Synchronous

Events – e.g. the loading of
 a register -- can happen at
 at arbitrary times.

Asynchronous

Timing dictated by
 centralized FSM according
 to a fixed schedule.

Globally Timed

Each module takes a
 START signal, generates a
 FINISHED signal. Timing is
 dynamic, data dependent.

Locally Timed

L16 – Pipelining 21 Comp 411 – Spring 2013 4/3/13

“Classroom Computer”

Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Psets in

There are lots of problem sets to grade, each with six problems.
 Students in Row 1 grade Problem 1 and then hand it back to Row 2
 for grading Problem 2, and so on… Assuming we want to pipeline
 the grading, how do we time the passing of papers between rows?

L16 – Pipelining 22 Comp 411 – Spring 2013 4/3/13

Controls for “Classroom Computer”

Synchronous Asynchronous

Globally
Timed

Locally
Timed

Teacher picks time interval
 long enough for worst-case
 student to grade toughest
 problem. Everyone passes
 psets at end of interval.

Teacher picks variable time
 interval long enough for
 current students to grade
 current mix of problems.
 Everyone passes psets at end
 of interval.

Students raise hands when
 they finish grading current
 problem. Teacher checks
 every 10 secs, when all hands
 are raised, everyone passes
 psets to the row behind.
 Variant: students can pass
 when all students in a
 “column” have hands raised.

Students grade current
 problem, wait for student
 in next row to be free, and
 then pass the pset back.

L16 – Pipelining 23 Comp 411 – Spring 2013 4/3/13

Control Structure Taxonomy

Synchronous Asynchronous

Globally
Timed

Locally
Timed

Centralized clocked
 FSM generates all
 control signals.

Central control unit tailors
 current time slice to
 current tasks.

Start and Finish signals
 generated by each
 major subsystem,
 synchronously with
 global clock.

Each subsystem takes
 asynchronous Start,
 generates asynchronous
 Finish (perhaps using local
 clock).

Easy to design but fixed-sized
 interval can be wasteful (no
 data-dependencies in timing)

Large systems lead to very
 complicated timing
 generators… just say no!

The best way to build large
 systems that have independent
 components.

The “next big idea” for the last
 several decades: a lot of design
 work to do in general, but extra
 work is worth it in special cases

L16 – Pipelining 24 Comp 411 – Spring 2013 4/3/13

Summary
•  Latency (L) = time it takes for the results from a given

 input to arrive at outputs

•  Throughput (T) = rate at each new outputs appear

•  For combinational circuits: L = tPD of circuit, T = 1/L

•  For K-pipelines (K > 0):
•  always have register on output(s)
•  K registers on every path from input to output
•  T = 1/(tPD,REG + tPD of slowest pipeline stage + tSETUP)

–  more throughput → split slowest pipeline stage(s)
–  use replication/interleaving if no further splits possible

•  L = K / T
–  pipelined latency ≥ combinational latency

 Next Time: Let’s Pipeline our MIPS CPU

