
L13 – Synchronous Logic 1 Comp 411 – Spring 2013 3/18/13

Synchronous Logic

These must be the
 “slings and arrows
 of outrageous
 fortune”

1)  Sequential Logic
2)  Synchronous Design
3)  Synchronous Timing

Analysis
4)  Single Clock Design
5)  Finite State Machines
6) Turing Machines
7)  What it means to be

“Computable”

L13 – Synchronous Logic 2 Comp 411 – Spring 2013 3/18/13

Road Traveled So Far…

FETs & voltages

Logic gates

Combinational contract:
 Voltage-based “bits”
 1-bit per wire
 Generate quality outputs,
 tolerate inferior inputs
 Combinational contract
 Complete in/out/timing spec

Combinational
logic circuits

Acyclic connections
Composable blocks
Design:
 truth tables
 sum-of-products
 muxes
 ROMs

Sequential
Logic

Storage & state
Dynamic discipline
Finite-state machines
Throughput & latency
Pipelining

Our motto: Sweat the details once, and then put a box around it!

ALU,
Mult,
Etc.

L13 – Synchronous Logic 3 Comp 411 – Spring 2013 3/18/13

Something We Can’t Build (Yet)

What if you were given the following system design specification?

When the button is pushed:
1) Turn on the light if

it is off
2) Turn off the light if

it is on

The light should change
state within a second
of the button press

button light

What makes this System so different
from those we’ve discussed before?

 1. “State” – i.e. the circuit has memory
2. The output was changed by a input
 “event” (pushing a button) rather
 than an input “value”

L13 – Synchronous Logic 4 Comp 411 – Spring 2013 3/18/13

“Sequential” = Stateful

Plan: Build a Sequential Circuit with stored digital STATE –

•  MEMORY stores CURRENT state

•  Combinational Logic computes
•  the NEXT state (Based on inputs & current state)
•  the OUTPUTs (Based on inputs and/or current state)

•  State changes on LOAD control input

Combinational
Logic

Current
State

New
State

Input Output

Memory
Device

LOAD

Didn’t we develop
some memory
devices last time?

L13 – Synchronous Logic 5 Comp 411 – Spring 2013 3/18/13

G

D Q

G

D Q D

CLK

Q
master slave

Review of Flip Flop Timing

CLK

D

Q
D Q D

CLK

Q

<tPD

tPD: maximum propagation delay, CLK →Q
 How LONG after clock rises until outputs (Q) are valid

>tCD

tCD: minimum contamination delay, CLK →Q
 How SOON after clock rises until outputs (Q) go invalid

>tSETUP

tSETUP: setup time
How LONG data (D) input must be stable before clock’s rising edge

>tHOLD

tHOLD: hold time
How LONG data (D) inputs must be held after clock’s rising edge

We haven’t explicitly mentioned this
 timing attribute, but it must have
 existed even for combinational logic. We
 can always safely assume it is 0 (i.e. the
 outputs become invalid immediately)

L13 – Synchronous Logic 6 Comp 411 – Spring 2013 3/18/13

“Synchronous” Timing Analysis

CLK

t1

t1 = tCD,reg1 + tCD,L > tHOLD,reg2

L D Q D Q

CLK

reg1 reg2

Questions for register-based designs:
 How much time for useful work

 (i.e. for combinational logic
 delay)?

 Does it help to guarantee a
 minimum tCD? How ‘bout
 designing registers so that

tCD,reg > tHOLD,reg?

 What happens if CLK signal
 doesn’t arrive at the two
 registers at exactly the
 same time (a phenomenon
 known as “clock skew”)?

t2

t2 = tPD,reg1 + tPD,L < tCLK - tSETUP,reg2

Minimum Clock Period : tCLK > tPD,reg1 + tPD,L + tSETUP,reg2

L13 – Synchronous Logic 7 Comp 411 – Spring 2013 3/18/13

Example: Flip Flop Timing

ROM
64x4

unlock

Next state Current state

“1” button

“0” button
“start” button

3 3

D Q

tCD = ?
tPD = 5ns

tCD = 1ns
tPD = 3ns
tS = 2ns
tH = 2ns

Questions:
1. tCD for the ROM?

2. Min. clock period?

3. Constraints on inputs?

clock

tCD,REG + tCD,ROM > tH,REG
 1 ns + tCD,ROM > 2 nS

 tCD,ROM > 1 nS

tCLK > tPD,REG + tPD,ROM + tS,REG
tCLK > 3 ns + 5 ns + 2 nS
tCLK > 10 nS

“start” , “0”, and “1” must be valid
 tPD,ROM + tS,REG = 5 + 2 = 7 ns
before the clock and held
 tH,REG – tCD,ROM = 2 – 1 = 1 ns
after it.

Just how do I
 assure that?

L13 – Synchronous Logic 8 Comp 411 – Spring 2013 3/18/13

Single Synchronous Clock Design

However, Synchronous = A recipe for robust sequential circuits:
• No combinational cycles
 (other than those already built into the registers)

• Only cares about values of
 combinational circuits just
 before rising edge of clock
• Clock period greater than
 every combinational delay
• Changes state after all
 logic transitions have
 stopped!

Sequential ≠ Synchronous

L13 – Synchronous Logic 9 Comp 411 – Spring 2013 3/18/13

Designing Sequential Logic

Sequential logic is used when the solution to some design
 problem involves a sequence of steps:

 How to open digital combination lock w/ 3 buttons (“start”, “0” and “1”):

 Step 1: press “start” button
 Step 2: press “0” button
 Step 3: press “1” button
 Step 4: press “1” button
 Step 5: press “0” button

Information remembered
 between steps is called
 state. Might be just
 what step we’re on, or
 might include results
 from earlier steps we’ll
 need to complete a later
 step.

L13 – Synchronous Logic 10 Comp 411 – Spring 2013 3/18/13

Implementing a “State Machine”

Current state “start” “1” “0” Next state unlock

--- 1 --- --- start 0
start 0 0 1 digit1 0
start 0 1 0 error 0

error 0 --- --- error 0

start 0 0 0 start 0
digit1 0 1 0 digit2 0
digit1 0 0 1 error 0
digit1 0 0 0 digit1 0
digit2 0 1 0 digit3 0

digit3 0 0 1 unlock 0
…

…
unlock 0 1 0 error 1
unlock 0 0 1 error 1
unlock 0 0 0 unlock 1

6 different states → encode using 3 bits

000
000

001

010

011

100
100

101

001

000
001
101

101

011

100

101
101

101

010
000 000

001 001

100 100

This is
 starting to
 look like a
 PROGRAM

L13 – Synchronous Logic 11 Comp 411 – Spring 2013 3/18/13

Now Do It With Hardware!

ROM
64x4

unlock

Next state Current state

“1” button

“0” button

“start” button

Trigger update periodically (“clock”)

3 3

6 inputs →26 locations
each location supplies 4 bits

Q D

L13 – Synchronous Logic 12 Comp 411 – Spring 2013 3/18/13

Abstraction du jour:
Finite State Machines

A FINITE STATE MACHINE has

• m I N P U T S I 1 . . . I m
• n O U T P U T S O 1 . . . O n

• O u t p u t R u l e s O u t (S) f o r e a c h s t a t e S

• T r a n s i t i o n R u l e s S ' (S , i)
f o r e a c h s t a t e S a n d i n p u t i

• k S T A T E S S 1 . . . S k (one is "initial“ state)

Clocked
FSM

m n

L13 – Synchronous Logic 13 Comp 411 – Spring 2013 3/18/13

Discrete State, Time

Clock

STATE

NEXT
Clock
Period

1
Clock
Period

2
Clock
Period

3
Clock
Period

4
Clock
Period

5

ROM

NEXT STATE

inputs outputs

s s

s state bits → 2s possible states

Two design choices:
 (1) outputs *only* depend on state
 (2) outputs depend on inputs + state

 (Moore)
 (Mealy)

While a ROM is shown here
 in the feedback path any
 form of combinational logic
 can be used to construct a
 state machine.

L13 – Synchronous Logic 14 Comp 411 – Spring 2013 3/18/13

State Transition Diagrams

S
U=0

D1
U=0

D2
U=0

D3
U=0

U
U=1

E
U=0

0 1 1 0

1 0,1 0 0 1

S

S S S S

S

S

= no buttons pressed

A state transition
 diagram is an abstract
 “graph” representation
 of a state machine,
 where each state is
 represented as a node
 and each transition is
 represented as a as an
 arc. It represents the
 machine’s behavior not
 its implementation.

XXX
U=0

NAME
of state

OUTPUT when
in this state

(Moore)

0

INPUT
causing

transition

Heavy circle means
INITIAL state

L13 – Synchronous Logic 15 Comp 411 – Spring 2013 3/18/13

Valid State Diagrams

Arcs leaving a state must be:
 (1) mutually exclusive

 can only have one choice for any given input value
 (2) collectively exhaustive

 every state must specify what happens for each possible input
 combination. “Nothing happens” means arc back to itself.

MOORE Machine:
Outputs on States

MEALY Machine:
Outputs on Transitions

S0 S1

0

0

S2 0

1

1 1 0 0
1

S0 S1
0/0

0/0

S2 0/1

1/1

1/0
1/0

L13 – Synchronous Logic 16 Comp 411 – Spring 2013 3/18/13

Let’s Play State Machine

Let’s emulate the behavior specified by the state machine
shown below when processing the following string from
LSB to MSB.

 3910 = 01001112

 State Input Next Output
T=0 S0 1 S1 0
T=1 S1 1 S0 1
T=2 S0 1 S1 0
T=3 S1 0 S2 0
T=4 S2 0 S1 0
T=5 S1 1 S0 1
T=6 S0 0 S0 1

S0 S1

0

0

S2 0

1

1 1 0 0
1

It looks to me like this
machine outputs a 1
whenever the bit sequence
that it has seen thus far
is a multiple of 3.
(this might be useful
 for my problem set!)

L13 – Synchronous Logic 17 Comp 411 – Spring 2013 3/18/13

Busted Stuff
S1

S8 S3

S5

S7

0/0
1/0

-/0

-/1

S2

S9 S4

S6

0/0
1/0

-/0

1/0

0/0

1/0

1/1 0/0

1/0

1/0
1/1

in/out Can you spot
 the problems?

input/output
(Mealy)

CONVENIENT NOTATION:
 When a transition is made on the next input regardless
 of its value the arc can be labeled with an X or -

AMBIGOUS TRANSITIONS (Mutual Exclusive property violated):
 For each input there can only be one arc leaving a state

UNSPECIFIED TRANSITIONS (Collectively Exhaustive property violated):
 There must be an arc leaving a state for all valid inputs
 (It can, however, loop back to the same state)

L13 – Synchronous Logic 18 Comp 411 – Spring 2013 3/18/13

FSM Party Games

ROM

k k

1. What can you say about the

 number of states?

2. Same question: FSM1 m-states
FSM2
n-states

x y z

3. Here's an FSM. Can you
 discover its rules?

States ≤ 2k

States ≤ m × n

L13 – Synchronous Logic 19 Comp 411 – Spring 2013 3/18/13

What’s My Transition Diagram?

1

0

1

0
1

0
1 1

0
1
0

1
0 0

vs. 0=OFF,
1=ON?

"1111" =
Surprise!

• If you know NOTHING about the FSM, you’re never sure!

• If you have a BOUND on the number of states, you can
 discover its behavior:

 K-state FSM: Every (reachable) state can be
 reached in < 2i x k steps.

BUT ... states may be equivalent!

1

L13 – Synchronous Logic 20 Comp 411 – Spring 2013 3/18/13

FSM Equivalence

1 0
1
0

1 0
1 1

0
1
0

1
0 0

vs.

ARE THEY DIFFERENT?
NOT in any practical sense! They are EXTERNALLY
 INDISTINGUISHABLE, hence interchangeable.

FSMs are EQUIVALENT iff every input
 sequence yields identical output sequences.

ENGINEERING GOAL:
• HAVE an FSM which works...
• WANT simplest (ergo cheapest) equivalent FSM.

L13 – Synchronous Logic 21 Comp 411 – Spring 2013 3/18/13

Housekeeping issues…

ROM
or

gates
NEXT STATE

inputs outputs

s s

1. Initialization? Clear the memory?

2. Unused state encodings?
 - waste ROM (use PLA or gates)
 - meaning?

3. Synchronizing input changes with
 state update?

4. Choosing encoding for state? That symbol is
starting to

register

L13 – Synchronous Logic 22 Comp 411 – Spring 2013 3/18/13

2-Flavors of Processing Elements

Combinational Logic:
 Table look-up, ROM

Finite State Machines:
 ROM with State Memory

Thus far, we know of nothing more
 powerful than an FSM

Addr Data i o

Addr Data

i o

s

Fundamentally,
everything
that we’ve

learned so far
can be done
with a ROM
and registers

Recall that there are precisely

22, i-input combinational functions.
A single ROM can store ‘o’ of them.

i

L13 – Synchronous Logic 23 Comp 411 – Spring 2013 3/18/13

FSMs as Programmable Machines

ROM-based FSM sketch:

Given i, s, and o,
 we need a ROM organized as:

 2i+s words x (o+s) bits

So how many possible
 i-input,
 o-output,
 FSMs with
 s-state bits
 exist?

i

s

0...01
0...00 0...00 10110 011

o

2 i + s

sN+1 o sN i
inputs outputs

2 (o+s)2
i+s

(some may be
equivalent)

An FSM’s behavior is completely
 determined by its ROM contents.

The number of “bits”
in the ROM

All possible
 settings of the

 ROM’s contents
 to: 1 or 0

Recall how we were able to “enumerate”
 or “name” every 2-input gate?
Can we do the same for FSMs?

How many state machines are there with
 1-input, 1-output, and 1 state bit?

2(1+1)4=28=256

L13 – Synchronous Logic 24 Comp 411 – Spring 2013 3/18/13

FSM Enumeration
GOAL: List all possible FSMs in some
 canonical order.
 • INFINITE list, but
 • Every FSM has an entry in
 and an associated index.

0...01
0...00 0...00 10110 011

sN+1 o sN i
inputs outputs

28
FSMs

264

Every possible FSM can be associated with a unique number.
 This requires a few wasteful simplifications. First, given an
 i-input, s-state-bit, and o-output FSM, we’ll replace it with
 its equivalent n-input, n-state-bit and n-output FSM, where
 n is the greatest of i, s, and o. We can always ignore the
 extra input-bits, and set the extra output bits to 0. This
 allows us to discuss the ith FSM

These are the FSMs with 1
 input and 1 output and 1
 state bit. They have 8-bits
 in their ROM.

18,446,744,073,709,551,872

3.9402 x 10115

L13 – Synchronous Logic 25 Comp 411 – Spring 2013 3/18/13

Some Perennial Favorites...
FSM837 modulo 3 state machine
FSM1077 4-bit counter
FSM1537 Combination lock
FSM89143 Cheap digital watch
FSM22698469884 Intel Pentium CPU – rev 1
FSM784362783 Intel Pentium CPU – rev 2
FSM784363783 Intel Pentium II CPU

L13 – Synchronous Logic 26 Comp 411 – Spring 2013 3/18/13

Can FSMs Compute Every Function?

Nope!
There exist many simple problems that cannot be computed by FSMs.
For instance:

Checking for balanced parenthesis
 (()(()())) - Okay
 (()())) - No good!

PROBLEM: Requires ARBITRARILY many states, depending on input.
 Must "COUNT" unmatched LEFT parens.

But, an FSM can only keep track of a finite number of objects.

Is there a machine that can solve this problem?

L13 – Synchronous Logic 27 Comp 411 – Spring 2013 3/18/13

Unbounded-Space Computation
DURING 1920s & 1930s, much of the

 “science” part of computer science
 was being developed (long before
 actual electronic computers existed).
 Many different

 “Models of Computation”
were proposed, and the classes of
 “functions” that each could compute
 were analyzed.

One of these models was the
 “TURING MACHINE”,
 named after Alan Turing.

A Turing Machine is just an FSM which
 receives its inputs and writes
 outputs onto an infinite tape...

This simple addition solves the FSMs
 can only keep track of a "FINITE
 number of events” problem.

Alan Turing

S1

1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0

S2

0,(1,R)

0,(1,L)

1,Halt

1,(1,L)

L13 – Synchronous Logic 28 Comp 411 – Spring 2013 3/18/13

A Turing Machine Example

Turing Machine Specification
• Doubly-infinite tape
• Discrete symbol positions
• Finite alphabet – say {0, 1}
• Control FSM

INPUTS:
 Current symbol on tape
OUTPUTS:

 write 0/1
 move Left/Right

• Initial Starting State {S0}
• Halt State {Halt}

A Turing machine, like an FSM,
can be specified with a truth
 table. The following Turing
 Machine implements a unary
 (base 1) incrementer.

0 0 0 0 1 1 1 1 0 0 1

L13 – Synchronous Logic 29 Comp 411 – Spring 2013 3/18/13

Turing Machine Tapes as Integers

Canonical names for bounded tape configurations:

FSM i

0 1 1 0 0 0 1 0 0

Look, it’s just FSM i
operating on tape j

b8 b6 b4 b2 b0 b1 b3 b5 b7

L13 – Synchronous Logic 30 Comp 411 – Spring 2013 3/18/13

TMs as Integer Functions

Turing Machine Ti operating on Tape x,
where x = …b8b7b6b5b4b3b2b1b0

I wonder if a TM can compute
EVERY integer function...

y = T [x] i
x: input tape configuration
y: output tape when TM halts

L13 – Synchronous Logic 31 Comp 411 – Spring 2013 3/18/13

Alternative Models of Computation

Turing Machines [Turing]

FSM i

0 1 1 0 0 0 1 0 0

Turing

Lambda calculus [Church, Curry, Rosser...]

λ x. λ y.xxy

(lambda(x)(lambda(y)(x (x y))))

Church

Recursive Functions [Kleene]

(define (fact n)
 (... (fact (- n 1)) ...)

Kleene

Production Systems [Post, Markov]

α → β
IF pulse=0 THEN
 patient=dead

Post

Hardware
head

Math
head

Theory
head

Language
head

L13 – Synchronous Logic 32 Comp 411 – Spring 2013 3/18/13

The 1st Computer Industry Shakeout

Here’s a TM that
computes SQUARE ROOT!

FSM

0 1 1 0 0 0 1 0 0

L13 – Synchronous Logic 33 Comp 411 – Spring 2013 3/18/13

And the Battles Raged

Here’s a Lambda Expression
that does the same thing...

... and here’s one that computes
the nth root for ANY n!

(λ(x))

(λ(x n))

L13 – Synchronous Logic 34 Comp 411 – Spring 2013 3/18/13

Fundamental Result: Computable Functions
Each model is capable of computing exactly the same set of integer

 functions!

 Proof Technique: Constructions that
 translate between
 models

 BIG IDEA: Computability,
 independent of
 computation scheme

 chosen

Church's Thesis:
Every discrete function computable

by ANY realizable machine is
computable by some Turing machine.

Does,this
mean that
we know of
no computer
that is more
“powerful”

than a
Turing

machine?

L13 – Synchronous Logic 35 Comp 411 – Spring 2013 3/18/13

Computable Functions

Representation tricks: to compute fk(x,y)
<x,y> ≡ integer whose even bits come from x, and whose odd bits come from y;

 whence

f12345(x,y) = x * y
f23456(x) = 1 iff x is prime, else 0

f(x) computable <=> for some k, all x:
 f(x) = TK[x] fK(x)

fK(x, y) TK[<x, y>]

L13 – Synchronous Logic 36 Comp 411 – Spring 2013 3/18/13

Enumeration of Computable functions
Conceptual table of TM behaviors...
 VERTICAL AXIS: Enumeration of TMs.
 HORIZONTAL AXIS: Enumeration of input tapes.

(j, k) entry = result of TMk[j] -- integer, or * if never halts.

fi

f0

f1

fk(j) fk

fi(0) fi(1) fi(2) fi(j) ••• •••

•••

•••

37 23

* 62
*

••• ••• •••

••• ••• ••• ••• •••

•••

•••

•••

•••

••• ••• ••• •••

Is every Integer
 function that I
 can precisely
 specify
 computable?

The Halting Problem: Given j, k: Does TMk Halt with input j?

 X 1 X 1 X0
 X 1 X0

L13 – Synchronous Logic 37 Comp 411 – Spring 2013 3/18/13

The Halting Problem
The Halting Function: TH[k, j] = 1 iff TMk[j] halts, else 0

Can a Turing machine compute this function?

k

j
TH

1 iff Tx[y] HALTS
0 otherwise

Suppose, for a moment, TH exists:

Then we can build a TNasty:

TH ?
LOOP

HALT

1

0
k

TNasty[k]
LOOP if Tk[k] = 1 (halts)
HALT if Tk[k] = 0 (loops)

If TH is
computable
then so is
 TNasty

N1

NH

1,(1,L)

0,(0,L)
N2

-,(0,R)

Replace the
Halt state
of TH with
this.

L13 – Synchronous Logic 38 Comp 411 – Spring 2013 3/18/13

What does TNasty[Nasty] do?
Answer:

 TNasty[Nasty] loops if TNasty[Nasty] halts
 TNasty[Nasty] halts if TNasty[Nasty] loops

That’s a contradiction.
 Thus, TH is uncomputable by a Turing Machine!

Net Result: There are some integer functions that Turing
 Machines simply cannot answer. Since, we know of no
 better model of computation than a Turing machine,
 this implies that there are some problems that defy
 computation.

L13 – Synchronous Logic 39 Comp 411 – Spring 2013 3/18/13

Reality: Limits of Turing Machines
A Turing machine is formal abstraction that addresses

• Fundamental Limits of Computability –
What is means to compute.
The existence of incomputable functions.

• We know of no machine more powerful than a Turing
 machine in terms of the functions that it can compute.

But they ignore

• Practical coding of programs

• Performance

• Implementability

• Programmability

... these latter issues are the primary focus of contemporary
 computer science (Remainder of Comp 411)

L13 – Synchronous Logic 40 Comp 411 – Spring 2013 3/18/13

S1

1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0

S2

0,(1,R)

0,(1,L)

1,Halt

1,(1,L)

Computability vs. Programmability
Recall Church’s thesis:

 “Any discrete function computable by
 ANY realizable machine is computable by
 some Turing Machine”

An Thusly, we’ve defined what it means to
 COMPUTE (whatever a TM can compute)

A Turing machine is nothing more that an
 FSM that receives inputs from, and
 outputs onto, an infinite tape.

Thus far, we’ve been designing a new Turing
 machine FSM for each new function that
 we encounter.

Wouldn’t it be nice if we could design a more
 general purpose computing machine? Alan Turing

L13 – Synchronous Logic 41 Comp 411 – Spring 2013 3/18/13

Too many Turing machines!

FSM

0 1 1 0 0 0 1 0 0

Multiplication

FSM

0 1 1 0 0 0 1 0 0

Sorting

FSM

0 1 1 0 0 0 1 0 0

Factorization FSM

0 1 1 0 0 0 1 0 0

Primality Test

Is there an
alternative to
ad-hoc
Turing Machines?

L13 – Synchronous Logic 42 Comp 411 – Spring 2013 3/18/13

Programs as Data
What if we encoded the description of the FSM on our tape, and
then wrote a general purpose FSM to read the tape and EMULATE
the behavior of the encoded machine? Since the FSM is just a
look-up table, and our machine can make reference to it as often
as it likes, it seems possible that such a machine could be built.

x

y
U Tx[y]

L13 – Synchronous Logic 43 Comp 411 – Spring 2013 3/18/13

Fundamental Result: Universality

Define "Universal Function“: U(x,y) = TX(y) for every x, y …
Surprise! U(x,y) IS COMPUTABLE,

 hence U(x,y) = TU(<x,y>) for some U.

Universal Turing Machine (UTM):

"program"
"data"

"interpreter"
 PARADIGM for General-Purpose Computer!

TU [<y, z>] = TY[z]

INFINITELY many UTMs ...
 Any one of them can
 evaluate any computable
 function by simulating/
 emulating/interpreting
 the actions of Turing
 machine given to it
 as an input.

UNIVERSALITY:
 Basic requirement
 for a general purpose
 computer

L13 – Synchronous Logic 44 Comp 411 – Spring 2013 3/18/13

Demonstrating Universality

Suppose you've designed Turing Machine TK and want to show that its universal.

APPROACH:
 1. Find some known universal machine, say TU.
 2. Devise a program, P, to simulate TU on TK:

 TK[<P,x>] = TU[x] for all x.
 3. Since TU[<y,z>] = TY[z], it follows that, for all y and z.

CONCLUSION: Armed with program P, machine TK can mimic the behavior
 of an arbitrary machine TY operating on an arbitrary input tape z.

HENCE TK can compute any function that can be computed by any Turing
 Machine.

TK [<P,<y,z>>] = TU[<y,z>] = TY[z]

L13 – Synchronous Logic 45 Comp 411 – Spring 2013 3/18/13

Interpretive Layers: What’s going on?

Multiple levels of interpretation:
 Ty[z] Application (Desired user function)
 TU[<y,z>] Portable Language / Virtual Machine
 TK[<P,<y,z>>] Computing Hardware / Bare Metal

Benefits of Interpretation:
 BOOTSTRAP high-level functionality on very simple hardware.

 Deal with “IDEAL” machines rather than real machines.

 REAL MACHINES are built this way - several interpretive layers.

TK [<P,<y,z>>] = TU[<y,z>] = TY[z]

L13 – Synchronous Logic 46 Comp 411 – Spring 2013 3/18/13

Power of Interpretation
BIG IDEA: Manipulate coded representations of computing

 machines, rather than the machines themselves.

• PROGRAM as a behavioral description
• SOFTWARE vs. HARDWARE
• INTERPRETER as machine which takes program and

 mimics behavior it describes
• LANGUAGE as interface between interpreter and

 program
• COMPILER as translator between languages:

INTELLECTUAL BENEFITS:
• Programs as data -- mathematical objects
• Combination, composition, generation,
 parameterization, etc.

