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Synchronous Logic 

These must be the
 “slings and arrows
 of outrageous
 fortune” 

1)  Sequential Logic 
2)  Synchronous Design 
3)  Synchronous Timing  

Analysis 
4)  Single Clock Design 
5)  Finite State Machines 
6) Turing Machines 
7)  What it means to be  

“Computable” 
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Road Traveled So Far… 

FETs & voltages 

Logic gates 

Combinational contract: 
   Voltage-based “bits” 
   1-bit per wire 
   Generate quality outputs, 
      tolerate inferior inputs 
   Combinational contract 
   Complete in/out/timing spec 

Combinational 
logic circuits 

Acyclic connections 
Composable blocks 
Design: 
  truth tables 
  sum-of-products 
  muxes 
  ROMs 

Sequential 
Logic 

Storage & state 
Dynamic discipline 
Finite-state machines 
Throughput & latency 
Pipelining 

Our motto: Sweat the details once, and then put a box around it! 

ALU, 
Mult, 
Etc. 
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Something We Can’t Build (Yet) 

What if you were given the following system design specification? 

When the button is pushed: 
1) Turn on the light if 

it is off 
2) Turn off the light if 

it is on 

The light should change 
state within a second 
of the button press 

button light 

What makes this System so different 
from those we’ve discussed before? 

 1. “State” – i.e. the circuit has memory 
2. The output was changed by a input 
     “event” (pushing a button) rather 
     than an input “value” 
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“Sequential” = Stateful 

Plan: Build a Sequential Circuit with stored digital STATE – 

•  MEMORY stores CURRENT state 

•  Combinational Logic computes 
•  the NEXT state (Based on inputs & current state) 
•  the OUTPUTs (Based on inputs and/or current state) 

•  State changes on LOAD control input 

Combinational 
Logic 

Current 
State 

New 
State 

Input Output 

Memory 
Device 

LOAD 

Didn’t we develop 
some memory 
devices last time? 
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G 

D Q 

G 

D Q D 

CLK 

Q 
master slave 

Review of Flip Flop Timing 

CLK 

D 

Q 
D Q D 

CLK 

Q 

<tPD 

tPD: maximum propagation delay, CLK →Q 
        How LONG after clock rises until outputs (Q) are valid  

>tCD 

tCD: minimum contamination delay, CLK →Q 
        How SOON after clock rises until outputs (Q) go invalid 

>tSETUP 

tSETUP: setup time 
How LONG data (D) input must be stable before clock’s rising edge 

>tHOLD 

tHOLD: hold time 
How LONG data (D) inputs must be held after clock’s rising edge 

We haven’t explicitly mentioned this
 timing attribute, but it must have
 existed even for combinational logic. We
 can always safely assume it is 0 (i.e. the
 outputs become invalid immediately)  
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“Synchronous” Timing Analysis 

CLK 

t1 

t1 = tCD,reg1 + tCD,L > tHOLD,reg2 

L D Q D Q 

CLK 

reg1 reg2 

Questions for register-based designs: 
 How much time for useful work 

 (i.e. for combinational logic
 delay)? 

 Does it help to guarantee a
 minimum tCD?  How ‘bout 
 designing registers so that 

tCD,reg > tHOLD,reg? 

 What happens if CLK signal
 doesn’t arrive at the two
 registers at exactly the
 same time (a phenomenon
 known as “clock skew”)?   

t2 

t2 = tPD,reg1 + tPD,L < tCLK - tSETUP,reg2 

Minimum Clock Period :  tCLK > tPD,reg1 + tPD,L + tSETUP,reg2 
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Example: Flip Flop Timing 

ROM 
64x4 

unlock 

Next state Current state 

“1” button 

“0” button 
“start” button 

3 3 

D Q 

tCD = ? 
tPD = 5ns 

tCD = 1ns 
tPD = 3ns 
tS = 2ns 
tH = 2ns 

Questions: 
1. tCD for the ROM? 

2. Min. clock period? 

3. Constraints on inputs? 

clock 

tCD,REG + tCD,ROM > tH,REG 
       1 ns   + tCD,ROM > 2 nS 

  tCD,ROM > 1 nS 

tCLK > tPD,REG + tPD,ROM +  tS,REG 
tCLK > 3 ns + 5 ns + 2 nS 
tCLK > 10 nS 

“start” , “0”, and “1” must be valid 
      tPD,ROM + tS,REG = 5 + 2 = 7 ns 
before the clock and held 
      tH,REG – tCD,ROM = 2 – 1 = 1 ns 
after it. 

Just how do I
 assure that? 
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Single Synchronous Clock Design 

However, Synchronous = A recipe for robust sequential circuits: 
• No combinational cycles 
     (other than those already built into the registers) 

• Only cares about values of 
   combinational circuits just 
   before rising edge of clock 
• Clock period greater than 
   every combinational delay 
• Changes state after all 
   logic transitions have 
   stopped! 

Sequential ≠ Synchronous 
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Designing Sequential Logic 

Sequential logic is used when the solution to some design
 problem involves a sequence of steps: 

    How to open digital combination lock w/ 3 buttons (“start”, “0” and “1”): 

     Step 1:  press “start” button 
     Step 2: press “0” button 
     Step 3: press “1” button 
     Step 4: press “1” button 
     Step 5: press “0” button 

Information remembered
 between steps is called
 state.  Might be just
 what step we’re on, or
 might include results
 from earlier steps we’ll
 need to complete a later
 step. 
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Implementing a “State Machine” 

Current state  “start”  “1”  “0”  Next state  unlock 

---   1  ---  ---  start   0 
start   0  0  1  digit1   0 
start   0  1  0  error   0 

error   0  ---  ---  error   0 

start   0  0  0  start   0 
digit1   0  1  0  digit2   0 
digit1   0  0  1  error   0 
digit1   0  0  0  digit1   0 
digit2   0  1  0  digit3   0 

digit3   0  0  1  unlock   0 
… 

… 
unlock   0  1  0  error   1 
unlock   0  0  1  error   1 
unlock   0  0  0  unlock   1 

6 different states → encode using 3 bits 

000 
000 

001 

010 

011 

100 
100 

101 

001 

000 
001 
101 

101 

011 

100 

101 
101 

101 

010 
000 000 

001 001 

100 100 

This is
 starting to
 look  like a
 PROGRAM 
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Now Do It With Hardware! 

ROM 
64x4 

unlock 

Next state Current state 

“1” button 

“0” button 

“start” button 

Trigger update periodically (“clock”) 

3 3 

6 inputs →26 locations 
each location supplies 4 bits 

Q     D 
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Abstraction du jour: 
Finite State Machines 

A FINITE STATE MACHINE has 

• m I N P U T S I 1 . . . I m 
• n O U T P U T S O 1 . . . O n 

• O u t p u t R u l e s O u t ( S ) f o r e a c h s t a t e S 

• T r a n s i t i o n R u l e s S ' ( S , i ) 
f o r e a c h s t a t e S a n d i n p u t i 

• k S T A T E S S 1 . . . S k (one is "initial“ state) 

Clocked  
FSM 

m n 
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Discrete State, Time 

Clock 

STATE 

NEXT 
Clock  
Period  

1 
Clock  
Period  

2 
Clock  
Period  

3 
Clock  
Period  

4 
Clock  
Period  

5 

ROM 

NEXT STATE 

inputs outputs 

s s 

s state bits → 2s possible states 

Two design choices: 
  (1) outputs *only* depend on state 
  (2) outputs depend on inputs + state 

    (Moore) 
         (Mealy) 

While a ROM is shown here
 in the feedback path any
 form of combinational logic
 can be used to construct a
 state machine.  
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State Transition Diagrams 

S 
U=0 

D1 
U=0 

D2 
U=0 

D3 
U=0 

U 
U=1 

E 
U=0 

0 1 1 0 

1 0,1 0 0 1 

S 

S S S S 

S 

S 

= no buttons pressed 

A state transition
 diagram is an abstract
 “graph” representation
 of a state machine,
 where each state is
 represented as a node
 and each transition is
 represented as a as an
 arc. It represents the
 machine’s behavior not
 its implementation. 

XXX 
U=0 

NAME 
of state 

OUTPUT when 
in this state 

(Moore) 

0 

INPUT 
causing 

transition 

Heavy circle means 
INITIAL state 
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Valid State Diagrams 

Arcs leaving a state must be: 
  (1) mutually exclusive 

 can only have one choice for any given input value 
  (2) collectively exhaustive 

 every state must specify what happens for each possible input
 combination.  “Nothing happens” means arc back to itself. 

MOORE Machine: 
Outputs on States 

MEALY Machine: 
Outputs on Transitions 

S0 S1 

0 

0 

S2 0 

1 

1 1 0 0 
1 

S0 S1 
0/0 

0/0 

S2 0/1 

1/1 

1/0 
1/0 
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Let’s Play State Machine 

Let’s emulate the behavior specified by the state machine 
shown below when processing the following string from  
LSB to MSB. 

    3910 = 01001112 

            State  Input  Next  Output 
T=0  S0  1  S1  0 
T=1  S1  1  S0  1 
T=2  S0  1  S1  0 
T=3  S1  0  S2  0 
T=4  S2  0  S1  0 
T=5  S1  1  S0  1 
T=6  S0  0  S0  1 

S0 S1 

0 

0 

S2 0 

1 

1 1 0 0 
1 

It looks to me like this 
machine outputs a 1 
whenever the bit sequence 
that it has seen thus far 
is a multiple of 3. 
(this might be useful 
 for my problem set!) 
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Busted Stuff 
S1 

S8 S3 

S5 

S7 

0/0 
1/0 

-/0 

-/1 

S2 

S9 S4 

S6 

0/0 
1/0 

-/0 

1/0 

0/0 

1/0 

1/1 0/0 

1/0 

1/0 
1/1 

in/out Can you spot
 the problems? 

input/output 
(Mealy) 

CONVENIENT NOTATION:  
 When a transition is made on the next input regardless 
 of its value the arc can be labeled with an X or - 

AMBIGOUS TRANSITIONS (Mutual Exclusive property violated):  
 For each input there can only be one arc leaving a state 

UNSPECIFIED TRANSITIONS (Collectively Exhaustive property violated):  
 There must be an arc leaving a state for all valid inputs 
 (It can, however, loop back to the same state) 
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FSM Party Games 

ROM 

k k 

1.  What can you say about the

 number of states? 

2.  Same question: FSM1 m-states 
FSM2  
n-states 

x y z 

3. Here's  an  FSM.  Can you
 discover  its  rules? 

States ≤ 2k 

States ≤ m × n 



L13 – Synchronous Logic   19 Comp 411 – Spring 2013 3/18/13 

What’s My Transition Diagram? 

1 

0 

1 

0 
1 

0 
1 1 

0 
1 
0 

1 
0 0 

vs. 0=OFF, 
1=ON? 

"1111" = 
Surprise! 

• If you know NOTHING about the FSM,  you’re never sure! 

• If you have a BOUND on the number of states, you can
 discover its behavior: 

               K-state FSM: Every (reachable) state can be 
          reached in < 2i x k steps. 

BUT ... states may be equivalent! 

1 
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FSM Equivalence 

1 0 
1 
0 

1 0 
1 1 

0 
1 
0 

1 
0 0 

vs. 

ARE  THEY  DIFFERENT? 
NOT in any practical sense! They are EXTERNALLY
 INDISTINGUISHABLE, hence interchangeable. 

FSMs  are EQUIVALENT  iff every input
 sequence yields identical output sequences. 

ENGINEERING  GOAL: 
• HAVE an FSM which  works... 
• WANT  simplest  (ergo cheapest) equivalent  FSM. 
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Housekeeping issues… 

ROM 
or  

gates 
NEXT STATE 

inputs outputs 

s s 

1. Initialization?  Clear the memory? 

2. Unused state encodings? 
        - waste ROM (use PLA or gates) 
        - meaning? 

3. Synchronizing input changes with 
     state update? 

4. Choosing encoding for state? That symbol is 
starting to 

register 
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2-Flavors of Processing Elements 

Combinational Logic: 
      Table look-up, ROM 

Finite State Machines: 
      ROM with State Memory 

Thus far, we know of nothing more
 powerful than an FSM 

Addr   Data i o 

Addr   Data 

i o 

s 

Fundamentally, 
everything 
that we’ve 

learned so far 
can be done 
with a ROM 
and registers 

Recall that there are precisely  

22,  i-input combinational functions. 
A single ROM can store ‘o’ of them. 

i 
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FSMs as Programmable Machines 

ROM-based FSM sketch: 

Given i, s, and o,  
      we need a ROM organized as: 

   2i+s words x (o+s) bits 

So how many possible 
   i-input, 
   o-output, 
   FSMs with 
   s-state bits 
   exist? 

i 

s 

0...01 
0...00 0...00 10110 011 

o 

2 i + s 

sN+1 o sN i 
inputs outputs 

2 (o+s)2
i+s 

(some may be 
equivalent) 

An FSM’s behavior is completely
 determined by its ROM contents. 

The number of “bits”  
in the ROM 

All possible
 settings of the

 ROM’s contents 
 to: 1 or 0 

Recall how we were able to “enumerate”
 or “name” every 2-input gate?  
Can we do the same for FSMs? 

How many state machines are there with
 1-input, 1-output, and 1 state bit? 

2(1+1)4=28=256 
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FSM Enumeration 
GOAL: List all possible FSMs in some
 canonical order. 
    • INFINITE list, but 
    • Every FSM has an entry in 
       and an associated index. 

0...01 
0...00 0...00 10110 011 

sN+1 o sN i 
inputs outputs 

28 
FSMs 

264 

Every possible FSM can be associated with a unique number.
 This requires a few wasteful simplifications. First, given an
 i-input, s-state-bit, and o-output FSM, we’ll replace it with
 its equivalent n-input, n-state-bit and n-output FSM, where
 n is the greatest of i, s, and o. We can always ignore the
 extra input-bits, and set the extra output bits to 0. This
 allows us to discuss the ith FSM 

These are the FSMs with 1
 input and 1 output and 1
 state bit. They have 8-bits
 in their ROM. 

18,446,744,073,709,551,872 

3.9402 x 10115 
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Some Perennial Favorites... 
FSM837   modulo 3 state machine 
FSM1077   4-bit counter 
FSM1537   Combination lock 
FSM89143   Cheap digital watch 
FSM22698469884  Intel Pentium CPU – rev 1 
FSM784362783   Intel Pentium CPU – rev 2 
FSM784363783   Intel Pentium II CPU 
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Can FSMs Compute Every Function? 

Nope!  
There exist many simple problems that cannot be computed by FSMs.  
For instance: 

Checking for balanced parenthesis 
 (()(()()))  - Okay  
 (()()))  - No good! 

PROBLEM: Requires ARBITRARILY many states, depending on input.  
 Must "COUNT" unmatched LEFT parens. 

But, an FSM can only keep track of a finite number of objects. 

Is there a machine that can solve this problem? 
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Unbounded-Space Computation 
DURING 1920s & 1930s, much of the

 “science” part of computer science
 was being developed (long before
 actual electronic computers existed).
 Many different  

 “Models of Computation” 
were proposed, and the classes of
 “functions” that each could compute
 were analyzed. 

One of these models was the  
  “TURING MACHINE”,  
 named after Alan Turing. 

A Turing Machine is just an FSM which
 receives its inputs and writes
 outputs onto an infinite tape...  

This simple addition solves the FSMs
 can only keep track of a "FINITE
 number of events” problem. 

Alan Turing 

S1 

1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 

S2 

0,(1,R) 

0,(1,L) 

1,Halt 

1,(1,L) 
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A Turing Machine Example 

Turing Machine Specification 
• Doubly-infinite tape 
• Discrete symbol positions 
• Finite alphabet – say {0, 1} 
• Control FSM 

INPUTS: 
           Current symbol on tape 
OUTPUTS: 

 write 0/1 
 move Left/Right 

• Initial Starting State {S0} 
• Halt State {Halt} 

A Turing machine, like an FSM, 
can be specified with a truth
 table.  The following Turing
 Machine implements a unary
 (base 1) incrementer. 

0 0 0 0 1 1 1 1 0 0 1 
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Turing Machine Tapes as Integers 

Canonical names for bounded tape configurations: 

FSM  i 

0 1 1 0 0 0 1 0 0 

Look, it’s just FSM i 
operating on tape j 

b8    b6     b4     b2     b0     b1     b3     b5     b7   



L13 – Synchronous Logic   30 Comp 411 – Spring 2013 3/18/13 

TMs as Integer Functions 

Turing Machine Ti operating on Tape x, 
where x = …b8b7b6b5b4b3b2b1b0 

I wonder if a TM can compute 
EVERY integer function... 

y   =   T  [x] i 
x:  input tape configuration  
y: output tape when TM halts 
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Alternative Models of Computation 

Turing Machines [Turing] 

FSM  i 

0 1 1 0 0 0 1 0 0 

Turing 

Lambda calculus [Church, Curry, Rosser...] 

λ x. λ y.xxy 

(lambda(x)(lambda(y)(x (x y)))) 

Church 

Recursive Functions [Kleene] 

(define (fact n) 
             (... (fact (- n 1)) ...) 

Kleene 

Production Systems [Post, Markov] 

α → β 
IF pulse=0 THEN 
   patient=dead 

Post 

Hardware 
head 

Math 
head 

Theory 
head 

Language 
head 
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The 1st Computer Industry Shakeout 

Here’s a TM that 
computes SQUARE ROOT! 

FSM 

0 1 1 0 0 0 1 0 0 
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And the Battles Raged 

Here’s a Lambda Expression 
that does the same thing... 

... and here’s one that computes 
the nth root for ANY n! 

(λ(x) .....) 

(λ(x n) .....) 
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Fundamental Result: Computable Functions 
Each model is capable of computing exactly the same set of integer

 functions! 

  Proof Technique:  Constructions that 
     translate between 
     models 

  BIG IDEA:   Computability, 
     independent of 
     computation scheme 

              chosen 

Church's Thesis: 
Every discrete function computable 

by ANY realizable machine is 
computable by some Turing machine. 

Does,this 
mean that 
we know of 
no computer 
that is more 
“powerful” 

than a 
Turing 

machine? 
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Computable Functions 

Representation tricks: to compute fk(x,y) 
<x,y>  ≡ integer whose even  bits come from x, and whose odd  bits come from y;

 whence 

f12345(x,y) = x * y 
f23456(x) = 1 iff x is prime, else 0 

f(x) computable <=> for some k, all x: 
              f(x) = TK[x]      fK(x) 

fK(x, y)    TK[<x, y>] 
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Enumeration of Computable functions 
Conceptual table of TM behaviors...  
   VERTICAL AXIS: Enumeration of TMs. 
   HORIZONTAL AXIS: Enumeration of input tapes. 

(j, k) entry = result of TMk[j] -- integer, or * if never halts. 

fi 

f0 

f1 

fk(j) fk 

fi(0) fi(1) fi(2) fi(j) ••• ••• 

••• 

••• 

37 23 

* 62 
* 

••• ••• ••• 

••• ••• ••• ••• ••• 

••• 

••• 

••• 

••• 

••• ••• ••• ••• 

Is every Integer
 function that I
 can precisely
 specify
 computable? 

The Halting Problem: Given j, k: Does TMk Halt with input j? 

  X 1     X 1     X0  
  X 1     X0 
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The Halting Problem 
The Halting Function: TH[k, j] = 1 iff TMk[j] halts, else 0 

Can a Turing machine compute this function? 

k 

j 
TH 

1 iff Tx[y] HALTS 
0 otherwise 

Suppose, for a moment, TH  exists: 

Then we can build a TNasty: 

TH ? 
LOOP 

HALT 

1 

0 
k 

TNasty[k]  
LOOP if Tk[k] = 1 (halts) 
HALT if Tk[k] = 0 (loops) 

If TH is 
computable 
then so is
 TNasty 

N1 

NH 

1,(1,L) 

0,(0,L) 
N2 

-,(0,R) 

Replace the 
Halt state 
of TH with 
this. 
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What does TNasty[Nasty] do? 
Answer:  

 TNasty[Nasty] loops if TNasty[Nasty] halts 
 TNasty[Nasty] halts if TNasty[Nasty] loops 

That’s a contradiction.  
 Thus, TH is uncomputable by a Turing Machine! 

Net Result: There are some integer functions that Turing
 Machines simply cannot answer. Since, we know of no
 better model of computation than a Turing machine,
 this implies that there are some problems that defy
 computation. 
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Reality: Limits of Turing Machines 
A Turing machine is formal abstraction that addresses 

•   Fundamental Limits of Computability – 
What is means to compute. 
The existence of incomputable functions. 

•   We know of no machine more powerful than a Turing
 machine in terms of the functions that it can compute.  

But they ignore 

• Practical coding of programs 

• Performance 

• Implementability 

• Programmability 

... these latter issues are the primary focus of contemporary
 computer science  (Remainder of Comp 411) 
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S1 

1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 

S2 

0,(1,R) 

0,(1,L) 

1,Halt 

1,(1,L) 

Computability vs. Programmability 
Recall Church’s thesis: 

 “Any discrete function computable by
 ANY realizable machine is computable by
 some Turing Machine” 

An Thusly, we’ve defined what it means to
 COMPUTE (whatever a TM can compute) 

A Turing machine is nothing more that an
 FSM that receives inputs from, and
 outputs onto, an infinite tape. 

Thus far, we’ve been designing a new Turing
 machine FSM for each new function that
 we encounter. 

Wouldn’t it be nice if we could design a more
 general purpose computing machine? Alan Turing 
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Too many Turing machines! 

FSM 

0 1 1 0 0 0 1 0 0 

Multiplication 

FSM 

0 1 1 0 0 0 1 0 0 

Sorting 

FSM 

0 1 1 0 0 0 1 0 0 

Factorization FSM 

0 1 1 0 0 0 1 0 0 

Primality Test 

Is there an 
alternative to 
ad-hoc 
Turing Machines? 
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Programs as Data 
What if we encoded the description of the FSM on our tape, and 
then wrote a general purpose FSM to read the tape and EMULATE 
the behavior of the encoded machine? Since the FSM is just a 
look-up table, and our machine can make reference to it as often  
as it likes, it seems possible that such a machine could be built. 

x 

y 
U Tx[y] 



L13 – Synchronous Logic   43 Comp 411 – Spring 2013 3/18/13 

Fundamental Result: Universality 

Define "Universal Function“: U(x,y) = TX(y) for every x, y … 
Surprise! U(x,y) IS COMPUTABLE, 

 hence U(x,y) = TU(<x,y>) for some U. 

Universal Turing Machine (UTM): 

"program" 
"data" 

"interpreter" 
   PARADIGM  for General-Purpose Computer! 

TU [<y,  z>] = TY[z] 

INFINITELY many UTMs ...  
      Any one of them can 
      evaluate any computable 
      function by simulating/ 
      emulating/interpreting 
      the actions of Turing 
      machine given to it 
      as an input. 

UNIVERSALITY: 
      Basic requirement 
      for a general purpose 
      computer 
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Demonstrating Universality 

Suppose you've designed Turing Machine TK and want to show that its universal. 

APPROACH: 
 1. Find some known universal machine, say TU. 
 2. Devise a program, P, to simulate TU on TK: 

 TK[<P,x>] = TU[x] for all x. 
 3. Since TU[<y,z>] = TY[z], it follows that, for all y and z. 

CONCLUSION:  Armed with program P, machine TK can mimic the behavior
 of an arbitrary machine TY operating on an arbitrary input tape z. 

HENCE TK can compute any function that can be computed by any Turing
 Machine. 

TK [<P,<y,z>>]  =  TU[<y,z>]  =  TY[z] 
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Interpretive Layers: What’s going on? 

Multiple levels of interpretation: 
 Ty[z]    Application (Desired user function) 
 TU[<y,z>]   Portable Language / Virtual Machine 
 TK[<P,<y,z>>]   Computing Hardware / Bare Metal 

Benefits of Interpretation: 
 BOOTSTRAP  high-level functionality on very simple hardware. 

 Deal with “IDEAL”  machines rather than real machines. 

 REAL MACHINES  are built this way  -  several interpretive layers. 

TK [<P,<y,z>>]  =  TU[<y,z>]  =  TY[z] 
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Power of Interpretation 
BIG IDEA: Manipulate coded representations  of computing

 machines, rather than the machines themselves. 

• PROGRAM as a behavioral description 
• SOFTWARE vs. HARDWARE 
• INTERPRETER as machine which takes program and

 mimics behavior it describes 
• LANGUAGE as interface between interpreter and

 program 
• COMPILER as translator between languages: 

INTELLECTUAL BENEFITS: 
• Programs as data -- mathematical objects 
• Combination, composition, generation, 
   parameterization, etc. 


