Everything else was just adding

Binary Mulftipliers

The key trick of multiplication is memorizing a digit-to-digit table...

X (0] 1 2 3 4 5 (5} 7 & 9 X O 1
ololo]|lo]| o))))))

(0]) (0]
1lol1]| 2] 3 4 5 6 7 8 9
2lo|l2|4]| 6| 8| 10| 12| 14]16]18 1 () 1
3|lo0|3|6| 9| 12|15 18] 21| 24| 27

9
4|lo|la|le|12]| 16| 20| 24| 28| 32| 36 / You've gO‘b to be
. . 9
5|lo| 5|10l 15| 20| 256 | 30 | 35 | 40 | 45 klddll"lg. .. [t can’t
be that easy

6|lo|le|12|18]| 24 | 30| 26| 42 | 48 | 54
7lo0|7|14| 21| 28| 35| 42| 49 | 56 | 63
elo|e|16| 24| 32| 40| 48 | 56 | 64 | 72
9|l oo |18| 27| 26| 46 | 584 | 63 | 72 | et

Comp 411 - Spring 2012

Reading: Study Chapter 3.

2/22/12

L10 — Multiplication 1

Have We Forgotten Something?

Our ALU can add, subtract, shift,

and perForm Boolean functions.
But, even rabbits know how to

multiply...

0

=

But, it is a huge step in terms of logic...
Including a multiplier unit in an ALU
doubles the number of gates used.

A good (compact and high performance) multiplier can also
be tricky to design. Here we will give an overview of some
of the tricks used.

Comp 411 - Spring 2012 2/22/12 L10 — Multiplication 2

Binary Multiplication

The “Binary”
Multiplication
Table Binary multiplication is implemented using
> IxTols the same basic longhand algorithm that
Hey, that you learned in grade school.
looks like an — O O O
AND gate
1|01 As Az A Ao
X 55 Bz B1 BO
AJ.Bi is a “partial product” g A550 AZBo A1Bo AOBO

AsB, AB, AB; A.B
A:aBz A252 A152 AOBZ
+ AsBs; AB; ABs; Apbs

N—_ _
—

Multiplying N-digit number by M-digit humber gives (N+M)-digit result

Easy part: forming partial products (just an AND gate since B, is either O or 1)
Hard part: adding M, N-bit partial products

Comp 411 - Spring 2012 2/22/12 L10 — Multiplication 3

Sequential Multiplier

Assume the multiplicand (A) has N bits and the multiplier (B)
has M bits. If we only want to invest in a single N-bit adder,
we can build a sequential circuit that processes a single
partial product at a time and then cycle the circuit M times:

Sy S-S0 LSB
A
P B | PNe A

M bits
~N 1 TN

Comp 411 - Spring 2012 212212

Init: P<—0, load A&B

Repeat M times {
P<P+ (B gpg==1?2A:0)
shift P/B right one bit

}

Done: (N+M)-bit result in P/B

L10 — Multiplication 4

Simple Combinational Multiplier

tpp =10 ™ Tppea I

[1 1
4) O ij
co HA 8l—lco HA &l—{co B
0t 16 o A A

tep = (2*(N-1) + N) * Tep,ra

L '
Components URERURERYRI Y.
N * HA FA “" FA “ " Frmmpfd A —1
N(N"1) * FA A3 —J\‘ _Jm [] AQ N
I | 1 I 1 B
The Logic A \ _J) Ik)
of a j FA | FA - Rl g 1
HaI'F- \] — = =

Adder \J U I O I
o] |olo OO
A] NB: this circuit only

\u ! ! | i i works for

honnegative
operands

Comp 411 - Spring 2012 2/22/12 L10 — Multiplication 5

Carry-Save Combinational

Multiplier

ese

Adders
can be
Observation: Rather v ..-] Ny
[80 AND gate
than propagating the : % : d_j : ﬂ_ﬁ ! L ouzpft:
tie
sums across each row, § directiyto
0 o J—_ FA L FA ___LJ— FA L al the Carry
the carries can instead ——" 1= ——~ - inpute of
be forwarded onto the T i T T e
hext column of the T d d_j 6]
following row FA ~{— FA “f— FA < F
g [S Iy il)y W .
. A3] A | 0 / Emprovement
tPD = 8 tPD,FA = H / performance
T R hardly
- * seems worth
tep = (N+N) Tep e FA < FA - FA < et
1 I] _|—— - | however, this
Components design
M | pipeline.
e
FA |— FA = I—- FA
_j /
T F ; \\'
ot F —

Comp 411 - Spring 2012

2/22/12

L10 — Multiplication 6

Higher-Radix Multiplication

ldea: If we could use, say, 2 bits of the multiplier in generating each partial
product we would halve the number of columns and halve the latency of the

multiplier!
Aus Aup oo A, Ay A, A A,
x Pwi Byp ... By By By By

/

Be. . kK"A=0*A=> 0
Booth’s insight: rewrite 2*A S Ao A

and 3*A cases, leave 4A for'\ = 2*A © 2A or 4A - 2A
next partial product to do! =3*A= 4A-A

Comp 411 — Spring 2012 2122112 L10 — Multiplication 7

Booth Recoding

current bit pair R /from previous bit pair Each bit can be
. considered to
B2K+1 BZK BZK'1 action have the following
so=(1ofjddMio) O O O | addo weighte:
_ .1*00 - O 0 1 add A
2% 24 (- 0O 1 1 |add2*A W(By) =1
+(-2) * 2% (-32) * W(B):1
cne2e (o) 1 O O |sub2'A 2K-1
1 O 1 sub A < -2*A+A
Hey, isn’t ’ -89 1 1 O QUb A
s — 11 1| addo —-ma
humber? 'T

A “1” in this bit means the previous stage needed
to add 4*A. Since this stage is shifted by 2
bits with respect to the previous stage, adding
4*A in the previous stage is like adding A in this
stagel

Comp 411 - Spring 2012 2/22/12 L10 — Multiplication &

Booth Recoding

A B
Logic surrounding —)
X
each basic adder: Sub
- Control lines (x2, Sub, Zero) are Zero
shared across each row
- Must handle the “+1” when Sub is 1 |
(extra half adders in a carry save A
—{coFA ci|—
array) r
Box.1 Box Boxa| X2 Sub Zero
O O O|X X 1
NOTE: 0 o 1|0 oo
. 0O 1 0|0 O O
- Booth recoding can be used to o 1 1|1 00
. . SR T . 1 O O 1 1 0O
implement signed multiplications i o 1lo1 o
1 1 O 1 1 O
1 1 1 X X 1

Comp 411 - Spring 2012 212212 L10 — Multiplication 9

Bigger Multipliers

* Using the approaches described we can construct
multipliers of arbitrary sizes, by considering every adder
at the “bit” level

* We can also, build bigger multipliers using smaller ones

Lo 3
poi)

FA FA FA
'f < X
. :
= J‘ﬁ“

* Considering this problem at a higher-level leads to more
“non-obvious™ optimizations

Comp 411 - Spring 2012 2/22/12 L10 — Multiplication 10

Can We Multiply With Less?

* How many operations are needed to multiply 2, 2-digit
humbers?

o 4 multipliers
4 Adders

* This technique generalizes

— You can build an &-bit multiplier using
4 4-bit multipliers and 4 &-bit adders

— O(N2 + N) = O(N2)

Comp 411 - Spring 2012 2/22/12 L10 — Multiplication 11

An O(N?) Multiplier In Logic

The functional blocks would look like

r C A D B
Mult Mult Mult Mult
Add Add
HA Add |—— Add
rTr |

Product bits

Comp 411 - Spring 2012 212212

AB
X CD
DB
DA
CB
CA

L10 — Multiplication 12

A Trick

* The two middle partial products can be computed using
a single multiplier and other partial products

e DA+CB=(C+D)(A+B)—-(CA+DB) A B
e 3 multipliers X CD
& adders DB
* This can be applied recursively DA
(i.e. applied within each partial product) CB
e Leads to O(N'°°) adders CA

* This trick is becoming more popular
as N grows. However, it is less regular,
and the overhead of the extra adders
is high for small N

Comp 411 - Spring 2012 2/22/12 L10 — Multiplication 13

Let's Try it By Hand

1) Choose 2, 2 digit numbers to multiply ab x cd

42x 57 42x57=??
2) Multiply py=axc, p,=bxd, ps=(c+d)(a+Db)
P1=4X5=12,P2=2)(7=14’

05 = (4+2)(3+7) = 60
3) Find partial subtracted sum, S5 = p; — (p; + p,)
56 = 60 — (12 + 14) = 34
4) Add to find product, p = 100*p, + 10*SS + p,
p = 1200 + 340 + 14 = 1554 = 42 x 37

Comp 411 - Spring 2012 2/22/12 L10 — Multiplication 14

An O(N!-58) Multiplier In Logic

The functional blocks would look like

e A
A B Mult Add | | Add | | Mult
x_co T
DB Mult Add H Add
55 \
CA Add
_IQ
Where HA [—| Add -
55 = (C+D)(A+B) - (CA+DB) | | \

~
Product bits

Comp 411 - Spring 2012 2/22/12 L10 — Multiplication 15

Binary Division

* Division merely reverses the process

— Rather than adding successively larger partial products,
subtract successively smaller divisors

— When multiplying, we knew which partial products to actually add
(based on the whether the corresponding bit was a O or a 1)

— In division, we have to try *both ways™

PPPPPPPP

- DDDD Q; =0or 1?

- DDDD Q, =0 or 1?

- DDDD Q =0or 1?

- - DDDD Q=0 or 1?
TS RRRR

Multiplication
Upside-down

Comp 411 - Spring 2012 2/22/12 L10 — Multiplication 16

[J ® [J ®
Restoring Division
@ Aligh MSBs of Divisor and Remainder, K = number of bits shifted, Quotie@

[
»

Subtract Divisor from the
Remainder leave the result
in the Remainder

=0 <0

Test Remainder

Restore Remainder by adding Divisor
Shift Quotient left one bit
set rightmost bit = O

Shift Quotient left one bit
set rightmost bit =1

Shift Divisor right one bit

Repeat K+1
times

Comp 411 - Spring 2012 2/22/12 L10 — Multiplication 17

Division Example

Step 1: Step 2:
R D Q R D Q
42 = 7 = 6 G 42 + 7 = 6 d. Quotient = 0
Start:
Q = 0 = 00000000 Q = 0 =..00000000
R= 42 = 00101010 R= 42 = 00101010
D = (7%8) = 00111000 D = (7%4) = 00011100 7]
nder by adding Divieor
Note: K = 3, s0 repeat 4 times :;::::om
Subtract: Subtract: -
R = 42 = 00101010 R = 42 = 00101010
D = -(7%8) = 00111000 D = -(7*4) = 00011100
~14 = 11110001 R = 14 =.00001110
Restore:
R = 42 = 00101010
Shifts:
Shifts: Q = 00000001
Q = 00000000 D = 00001110
D = 00011100

Comp 411 - Spring 2012 2/2212 L10 — Multiplication 18

Division Example (cont)

Step 3:
R D Q
42 -~ 7 = 6
Q = 1 = 00000001
R = 14 = 00001110
D = (7%¥2) = 00001110
Subtract:
R = 14 = 00001110
D = -(7%2) = 00001110
0 = 00000000
No Restore
Shifts:
Q = 00000011
D = 00000111

Comp 411 - Spring 2012

2/22/12

Step 4:
R D Q
@ 42 =~ 7 = 6 o
Q = 3. ..=. 00000011
R = 0 = 00000000
D = 7 =-00000111
o o
——"Subtract: =
R = 0 =-00000000
D = -7 = 00000111
-7Z...=-11111001
Restore:
R = 0 = 00000000
Shifts:
Q = 00000110
D = 00000011
R = 00000000

L10 — Multiplication 19

Next Time

e We dive into floating point arithmetic
[

Y %

a7 —

—~

Comp 411 — Spring 2012 2122112 L10 — Multiplication 20

