
L10 – Multiplication 1 Comp 411 – Spring 2012 2/22/12

Binary Multipliers

× 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 10 12 14 16 18

3 0 3 6 9 12 15 18 21 24 27

4 0 4 8 12 16 20 24 28 32 36

5 0 5 10 15 20 25 30 35 40 45

6 0 6 12 18 24 30 36 42 48 54

7 0 7 14 21 28 35 42 49 56 63

8 0 8 16 24 32 40 48 56 64 72

9 0 9 18 27 36 45 54 63 72 81

Reading: Study Chapter 3.

× 0 1

0 0 0

1 0 1

You’ve got to be
 kidding… It can’t
 be that easy

The key trick of multiplication is memorizing a digit-to-digit table…
 Everything else was just adding

L10 – Multiplication 2 Comp 411 – Spring 2012 2/22/12

Have We Forgotten Something?
Our ALU can add, subtract, shift,

and perform Boolean functions.
But, even rabbits know how to
multiply…

But, it is a huge step in terms of logic…
Including a multiplier unit in an ALU
doubles the number of gates used.

A good (compact and high performance) multiplier can also
 be tricky to design. Here we will give an overview of some
 of the tricks used.

L10 – Multiplication 3 Comp 411 – Spring 2012 2/22/12

Binary Multiplication

A0 A1 A2 A3
B0 B1 B2 B3

A0B0 A1B0 A2B0 A3B0

A0B1 A1B1 A2B1 A3B1

A0B2 A1B2 A2B2 A3B2

A0B3 A1B3 A2B3 A3B3

x

+

AjBi is a “partial product”

Multiplying N-digit number by M-digit number gives (N+M)-digit result

Easy part: forming partial products (just an AND gate since BI is either 0 or 1)
Hard part: adding M, N-bit partial products

1 0 1
0 0 0
1 0 X

The “Binary”
 Multiplication

 Table

Hey, that
 looks like an
 AND gate

Binary multiplication is implemented using
 the same basic longhand algorithm that
 you learned in grade school.

L10 – Multiplication 4 Comp 411 – Spring 2012 2/22/12

Sequential Multiplier

Assume the multiplicand (A) has N bits and the multiplier (B)
 has M bits. If we only want to invest in a single N-bit adder,
 we can build a sequential circuit that processes a single
 partial product at a time and then cycle the circuit M times:

A P B

+

SN

NC

N
xN

N

N+1

SN-1…S0
Init: P←0, load A&B

Repeat M times {
 P ←P + (BLSB==1 ? A : 0)
 shift P/B right one bit
}

Done: (N+M)-bit result in P/B

M bits

LSB

1

L10 – Multiplication 5 Comp 411 – Spring 2012 2/22/12

Simple Combinational Multiplier

tPD = 10 * tPD,FA

not 16

NB: this circuit only
 works for
 nonnegative
 operands

Components
N * HA

N(N-1) * FA

The Logic
of a
Half-
Adder

CO

A B

S

HA
 A
Co B
 S

HA
 A
Co B
 S

HA
 A
Co B
 S

HA
 A
Co B
 S

tPD = (2*(N-1) + N) * tPD,FA

L10 – Multiplication 6 Comp 411 – Spring 2012 2/22/12

Carry-Save Combinational Multiplier

tPD = 8 * tPD,FA

Components
N * HA
N2 * FA

Observation: Rather
 than propagating the
 sums across each row,
 the carries can instead
 be forwarded onto the
 next column of the
 following row

This small
 improvement
 in
 performance
 hardly
 seems worth
 the effort,
 however, this
 design is
 easier to
 pipeline.

These
 Adders
 can be
 removed,
 and the
 AND gate
 outputs
 tied
 directly to
 the Carry
 inputs of
 the next
 stage.

tPD = (N+N) * tPD,FA

L10 – Multiplication 7 Comp 411 – Spring 2012 2/22/12

Higher-Radix Multiplication

AN-1 AN-2 … A4 A3 A2 A1 A0
 BM-1 BM-2 … B3 B2 B1 B0 x

...

2 M/2

BK+1,K*A = 0*A  0
 = 1*A  A
 = 2*A  2A or 4A – 2A
 = 3*A  4A – A!

Idea: If we could use, say, 2 bits of the multiplier in generating each partial
 product we would halve the number of columns and halve the latency of the
 multiplier!

Booth’s insight: rewrite 2*A
 and 3*A cases, leave 4A for
 next partial product to do!

L10 – Multiplication 8 Comp 411 – Spring 2012 2/22/12

Booth Recoding

B2K+1

0
0
0
0
1
1
1
1

B2K

0
0
1
1
0
0
1
1

B2K-1

0
1
0
1
0
1
0
1

action

add 0
add A
add A

add 2*A
sub 2*A
sub A
sub A
add 0

A “1” in this bit means the previous stage needed
 to add 4*A. Since this stage is shifted by 2
 bits with respect to the previous stage, adding
 4*A in the previous stage is like adding A in this
 stage!

-2*A+A

-A+A

from previous bit pair current bit pair
Each bit can be
 considered to
 have the following
 weights:

W(B2K+1) = -2
W(B2K) = 1
W(B2K-1) = 1

-89 = 1 0 1 0 0 1 1 1 .0
= -1 * 20 (-1)
+ 2 * 22 (8)

+ (-2) * 24 (-32)

+ (-1) * 26 (-64)

Hey, isn’t
 that a

 negative
 number?

-89

L10 – Multiplication 9 Comp 411 – Spring 2012 2/22/12

Booth Recoding

 A B
CO CI
 S

FA

0 1 x2
Sub

Zero

Ai Ai-1
Logic surrounding

 each basic adder:

 - Control lines (x2, Sub, Zero) are
 shared across each row
 - Must handle the “+1” when Sub is 1
 (extra half adders in a carry save
 array)

NOTE:
 - Booth recoding can be used to
 implement signed multiplications

B2K+1 B2K B2K-1 x2 Sub Zero

0 0 0 X X 1
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 1 1 0
1 0 1 0 1 0
1 1 0 1 1 0
1 1 1 X X 1

L10 – Multiplication 10 Comp 411 – Spring 2012 2/22/12

Bigger Multipliers

•  Using the approaches described we can construct
 multipliers of arbitrary sizes, by considering every adder
 at the “bit” level

•  We can also, build bigger multipliers using smaller ones

•  Considering this problem at a higher-level leads to more
 “non-obvious” optimizations

×

A
 4

B
 4

 4

PHI

 4

PLO

L10 – Multiplication 11 Comp 411 – Spring 2012 2/22/12

Can We Multiply With Less?

•  How many operations are needed to multiply 2, 2-digit
 numbers?

•  4 multipliers
4 Adders

•  This technique generalizes
–  You can build an 8-bit multiplier using

4 4-bit multipliers and 4 8-bit adders
–  O(N2 + N) = O(N2)

 A B
 X C D
 DB
 DA
 C B
 CA

+
+

+
+

L10 – Multiplication 12 Comp 411 – Spring 2012 2/22/12

An O(N2) Multiplier In Logic

The functional blocks would look like

Mult Mult Mult Mult

B C A D B

Add Add

Add Add HA

Product bits

 A B
 X C D
 DB
 DA
 C B
 CA

L10 – Multiplication 13 Comp 411 – Spring 2012 2/22/12

A Trick

•  The two middle partial products can be computed using
 a single multiplier and other partial products

•  DA + CB = (C + D)(A + B) – (CA + DB)
•  3 multipliers

8 adders
•  This can be applied recursively

(i.e. applied within each partial product)
•  Leads to O(N1.58) adders
•  This trick is becoming more popular

as N grows. However, it is less regular,
and the overhead of the extra adders
is high for small N

 A B
 X C D
 DB
 DA
 C B
 CA

L10 – Multiplication 14 Comp 411 – Spring 2012 2/22/12

Let’s Try it By Hand

1)  Choose 2, 2 digit numbers to multiply ab × cd

 42 x 37
2)  Multiply p1 = a x c, p2 = b x d, p3 = (c + d)(a + b)

p1 = 4 x 3 = 12, p2 = 2 x 7 = 14,
p3 = (4+2)(3+7) = 60

3)  Find partial subtracted sum, SS = p3 – (p1 + p2)
 SS = 60 – (12 + 14) = 34

4)  Add to find product, p = 100*p1 + 10*SS + p2

 p = 1200 + 340 + 14 = 1554 = 42 x 37

42 x 37 = ?

L10 – Multiplication 15 Comp 411 – Spring 2012 2/22/12

An O(N1.58) Multiplier In Logic

The functional blocks would look like

Mult

Mult

Mult

C A D B

Add Add

Add Add

HA

Product bits

Add Add

Add Add

 A B
 X C D
 DB
 SS
 CA

Where
 SS = (C+D)(A+B) – (CA+DB)

SS

L10 – Multiplication 16 Comp 411 – Spring 2012 2/22/12

Binary Division

•  Division merely reverses the process
–  Rather than adding successively larger partial products,

 subtract successively smaller divisors
–  When multiplying, we knew which partial products to actually add

 (based on the whether the corresponding bit was a 0 or a 1)
–  In division, we have to try *both ways*

Multiplication
 Upside-down

 P P P P P P P P
- D D D D Q3 = 0 or 1?
- D D D D Q2 = 0 or 1?
- D D D D Q1 = 0 or 1?
- D D D D Q0 = 0 or 1?
 R R R R

L10 – Multiplication 17 Comp 411 – Spring 2012 2/22/12

Restoring Division
Start: Align MSBs of Divisor and Remainder, K = number of bits shifted, Quotient = 0

Subtract Divisor from the
Remainder leave the result

in the Remainder

Test Remainder

Shift Quotient left one bit
set rightmost bit = 1

Restore Remainder by adding Divisor
Shift Quotient left one bit

set rightmost bit = 0

Shift Divisor right one bit

Repeat K+1
times

≥ 0 < 0

L10 – Multiplication 18 Comp 411 – Spring 2012 2/22/12

Division Example
Step 1:
 R D Q
42 ÷ 7 = 6

Start:
Q = 0 = 00000000
R = 42 = 00101010
D = (7*8) = 00111000

Subtract:
R = 42 = 00101010
D = -(7*8) = 00111000
 -14 = 11110001
Restore:
R = 42 = 00101010

Shifts:
 Q = 00000000
 D = 00011100

Step 2:
 R D Q
42 ÷ 7 = 6

Q = 0 = 00000000
R = 42 = 00101010
D = (7*4) = 00011100

Subtract:
R = 42 = 00101010
D = -(7*4) = 00011100
R = 14 = 00001110

Shifts:
 Q = 00000001
 D = 00001110

Note: K = 3, so repeat 4 times

L10 – Multiplication 19 Comp 411 – Spring 2012 2/22/12

Division Example (cont)
Step 3:
 R D Q
42 ÷ 7 = 6

Q = 1 = 00000001
R = 14 = 00001110
D = (7*2) = 00001110

Subtract:
R = 14 = 00001110
D = -(7*2) = 00001110
 0 = 00000000

No Restore
Shifts:
 Q = 00000011
 D = 00000111

Step 4:
 R D Q
42 ÷ 7 = 6

Q = 3 = 00000011
R = 0 = 00000000
D = 7 = 00000111

Subtract:
R = 0 = 00000000
D = -7 = 00000111
 -7 = 11111001
Restore:
R = 0 = 00000000
Shifts:
 Q = 00000110
 D = 00000011
 R = 00000000

L10 – Multiplication 20 Comp 411 – Spring 2012 2/22/12

Next Time

•  We dive into floating point arithmetic

