
L9 – Arithmetic Circuits 1 Comp 411 – Spring 2013 2/25/13

Arithmetic Circuits

01011
+00101
10000

Didn’t I learn how
to do addition in
the second grade?
UNC courses aren’t
what they used to
be...

Finally; time to
 build some

 serious
 functional

 blocks

The
imag
e
cann

The
image
cannot

The image
cannot be
displayed.
Your

The
image
cannot

The image
cannot be
displayed.

We’ll need
 a lot of
 boxes

Reading: Study Chapter 3.

L9 – Arithmetic Circuits 2 Comp 411 – Spring 2013 2/25/13

Review: 2’s Complement

20 21 22 23 … 2N-2 -2N-1 … …
N bits

8-bit 2’s complement example:
 11010110 = –27 + 26 + 24 + 22 + 21 = – 128 + 64 + 16 + 4 + 2 = – 42

If we use a two’s-complement representation for signed integers, the same
 binary addition procedure will work for adding both signed and unsigned
 numbers.

By moving the implicit “binary” point, we can represent fractions too:
 1101.0110 = –23 + 22 + 20 + 2-2 + 2-3 = – 8 + 4 + 1 + 0.25 + 0.125 = – 2.625

“sign bit” “binary” point
Range: – 2N-1 to 2N-1 – 1

L9 – Arithmetic Circuits 3 Comp 411 – Spring 2013 2/25/13

Binary Addition

Here’s an example of binary addition as one might do it by “hand”:

A: 1101
B:+ 0101

10010

1 0 1 1
Carries from

previous column
Adding two N-bit
 numbers produces
 an (N+1)-bit result

Then we can cascade them to add two numbers of any size…

 A B
CO CI
 S

FA
 A B
CO CI
 S

FA
 A B
CO CI
 S

FA
 A B
CO CI
 S

FA

A3 B3 A2 B2 A1 B1 A0 B0

S4 S3 S0 S1 S0

Let’s start by building a block that adds one column:

 A B
CO CI
 S

FA

L9 – Arithmetic Circuits 4 Comp 411 – Spring 2013 2/25/13

Designing a Full Adder: From Last Time

1)  Start with a truth table:

2) Write down eqns for the
“1” outputs

Co = CiAB + CiAB + CiAB + CiAB
S = CiAB + CiAB + CiAB + CiAB

3) Simplifing a bit

Co = Ci(A + B) + AB
S = Ci ⊕ A ⊕ B

Co = Ci(A ⊕ B) + AB
S = Ci ⊕ (A ⊕ B)

L9 – Arithmetic Circuits 5 Comp 411 – Spring 2013 2/25/13

For Those Who Prefer Logic Diagrams …

•  A little tricky, but only
5 gates/bit

CI

A B

S

CO

Co = Ci(A ⊕ B) + AB
S = Ci ⊕ (A ⊕ B)

“Sum”
Logic

“Carry”
Logic

L9 – Arithmetic Circuits 6 Comp 411 – Spring 2013 2/25/13

Subtraction: A-B = A + (-B)

Using 2’s complement representation: –B = ~B + 1

But what about
 the “+1”?

So let’s build an arithmetic unit that does both addition and subtraction.
 Operation selected by control input:

 A B
CO CI
 S

FA
 A B
CO CI
 S

FA
 A B
CO CI
 S

FA
 A B
CO CI
 S

FA

A3 A2 A1 A0

S4 S3 S0 S1 S0

 B3 B2 B1 B0
Subtract

~ = bit-wise complement

B
0

B B
1

B

L9 – Arithmetic Circuits 7 Comp 411 – Spring 2013 2/25/13

Condition Codes

Besides the sum, one often wants four other bits
 of information from an arithmetic unit:

To compare A and B,
 perform A–B and use
condition codes:

Signed comparison:
 LT N⊕V
 LE Z+(N⊕V)
 EQ Z
 NE ~Z
 GE ~(N⊕V)
 GT ~(Z+(N⊕V))

Unsigned comparison:
 LTU C
 LEU C+Z
 GEU ~C
 GTU ~(C+Z)

V (overflow): indicates that the answer has
 too many bits to be represented correctly by
 the result width, e.g., “(2i-1 - 1)+ (2i-1- 1)”

Z (zero): result is = 0 big NOR gate

N (negative): result is < 0 SN-1

C (carry): indicates that add in the most
 significant position produced a carry, e.g.,
“1 + (-1)” from last FA

€

V = Ai −1Bi −1N+A i −1B i −1N

€

V =COi −1⊕ CIi −1
-or-

L9 – Arithmetic Circuits 18 Comp 411 – Spring 2013 2/25/13

Shifting Logic
Shifting is a common operation that

 is applied to groups of bits. Shifting
 can be used for alignment, as well as
 for arithmetic operations.

 X << 1 is approx the same as 2*X
 X >> 1 can be the same as X/2

For example:
 X = 2010 = 000101002

Left Shift:
 (X << 1) = 001010002 = 4010

Right Shift:
 (X >> 1) = 000010102 = 1010

Signed or “Arithmetic” Right Shift:
 (-X >> 1) = (111011002 >> 1) = 111101102 = -1010

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

R7

R6

R5

R4

R3

R2

R1

R0

X7

X6

X5

X4

X3

X2

X1

X0

“0”

SHL1

L9 – Arithmetic Circuits 19 Comp 411 – Spring 2013 2/25/13

More Shifting
0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

R7

R6

R5

R4

R3

R2

R1

R0

X7

X6

X5

X4

X3

X2

X1

X0

“0”

SHL1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

S7

S6

S5

S4

S3

S2

S1

S0

X7

X6

X5

X4

X3

X2

X1

X0

“0”

SHL2

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

S7

S6

S5

S4

S3

S2

S1

S0

X7

X6

X5

X4

X3

X2

X1

X0

“0”

SHL3

Using the same
 basic idea we can
 build left shifters
 of arbitrary sizes
 using muxes.

Each shift amount
 requires its own
 set of muxes.

Hum, maybe
 we could do
 something
 more clever.

L9 – Arithmetic Circuits 20 Comp 411 – Spring 2013 2/25/13

Barrel Shifting
0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

R7

R6

R5

R4

R3

R2

R1

R0

X7

X6

X5

X4

X3

X2

X1

X0

“0”

SHL1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

S7

S6

S5

S4

S3

S2

S1

S0
“0”

SHL2

If we connect our “shift-left
-two” shifter to the output
 of our “shift-left-one” we
 can shift by 0, 1, 2, or 3 bits.

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

T7

T6

T5

T4

T3

T2

T1

T0 “0”

SHL4

And, if we add one more
 “shift-left-4” shifter we can
 do any shift up to 7 bits!

So, let’s put a box around it
 and call it a new functional
 block.

Left
Barrel
Shifter

A

Y

S

N-bits

N-bits

log2(N)
bits

L9 – Arithmetic Circuits 21 Comp 411 – Spring 2013 2/25/13

A7-0

Barrel Shifting with a Twist
At this point it would be straightforward to construct a

 “Right barrel shifter” unit. However, a simple trick that
 enables a left shifter to do both.

A0 A7 A1 A6 A2 A5 A3 A4 A4 A3 A5 A2 A6 A1 A7 A0

RGT
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Left Barrel Shifter SHFT

Y7-0

Y0 Y7 Y1 Y6 Y2 Y5 Y3 Y4 Y4 Y3 Y5 Y2 Y6 Y1 Y7 Y0

RGT
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

L9 – Arithmetic Circuits 22 Comp 411 – Spring 2013 2/25/13

Boolean Operations
We also need to perform logical operations on groups of bits.

Which ones?

ANDing is useful for “masking” off groups of bits.
 ex. 10101110 & 00001111 = 00001110 (mask selects last 4 bits)
ANDing is also useful for “clearing” groups of bits.
 ex. 10101110 & 00001111 = 00001110 (0’s clear first 4 bits)
ORing is useful for “setting” groups of bits.
 ex. 10101110 | 00001111 = 10101111 (1’s set last 4 bits)

XORing is useful for “complementing” groups of bits.
 ex. 10101110 ^ 00001111 = 10100001 (1’s complement last 4 bits)
NORing is useful.. Uhm, because John Hennessy says it is!
 ex. ~(10101110 | 00001111) = 01010000 (0’s complement, 1’s clear)

L9 – Arithmetic Circuits 23 Comp 411 – Spring 2013 2/25/13

Boolean Unit (The book’s way)
It is simple to build up a Boolean unit using primitive gates

 and a mux to select the function.
Since there is no interconnection

between bits, this unit can
be simply replicated at each
position. The cost is about
7 gates per bit. One for
each primitive function,
and approx 3 for the
4-input mux.

This is a straightforward, but not too elegant of a design.

Ai Bi

Qi

Bool
00 01 10 11

This logic
 block is
 repeated
 for each bit
 (i.e. 32
 times)

L9 – Arithmetic Circuits 24 Comp 411 – Spring 2013 2/25/13

Cooler Bools
We can better leverage a mux’s capabilities in our Boolean

 unit design, by connecting the bits to the select lines.
Why is this better?

1)  While it might take a little
logic to decode the truth
table inputs, you only have
to do it once, independent
of the number of bits.

2)  It is trivial to extend this
module to support any 2-bit
logical function.
(How about NAND, John?
Actually A & /B might be more useful)

Qi

Ai , Bi

00 01 10 11

NOR
OR
XOR

AND
OR

OR
XOR

Boolean bool

A B

Q

I should pay
 more

 attention
 to those
 muxes

Which ever way
 makes the most
 sense to you. Let’s
 get a box around
 it!

L9 – Arithmetic Circuits 25 Comp 411 – Spring 2013 2/25/13

An ALU, at Last
We give the “Math Center” of a computer a special name--

 the Arithmetic Logic Unit. For us, it just a big box!

That’s
 a lot of
 stuff

Flags
V,C

A B

R

 Bidirectional
Barrel
Shifter

Boolean Add/Sub Sub

Bool

Shft

Math

1 0

1 0 …

N
Flag

Z
Flag

