Arithmetic Circuits

Didn’t | learn how
to do addition in
the second grade?
UNC courses aren’t
what they used to

be... T~ ‘

Finally; time to

build some
serious
functional
We'll need
blocks
\ a lot of
boxes
e

Filimage
/10 De

Hishl

%

Reading: Study Chapter 3.

Comp 411 - Spring 2013 2/25N13 L9 — Arithmetic Circuits 1

Review: 2's Complement

A
\ 4

N bits

ON-A| ON-2 | eee | cce | cee | 53 | 22 | of 20

/ Range: — 2N to 2N1 -1 T
“sign bit” “binary” point

&-bit 2's complement example:
MO1IO1I0 =27 +26 + 24+ 224+ 21=-128 + 64 + 16 + 4 + 2 =— 42

If we use a two’s-complement representation for signed integers, the same
binary addition procedure will work for adding both signed and unsigned
numbers.

By moving the implicit “binary” point, we can represent fractions too:
MO1.ONMN0 =-2°4+22+20+224+2%°=-8 +4+1+0.25 + 0.125 = - 2.625

Comp 411 — Spring 2013 2/25/13 L9 — Arithmetic Circuits 2

Binary Addition

Here’s an example of binary addition as one might do it by “hand™

.— Carries from

1101 previous column

AddingtwoN-pit s 1101

numbers produces B+4+ (0101
an (N+1)-bit result™——_7 10010 \!/A‘ \|:3
(@)

Let’s start by building a block that adds one column:

Then we can cascade them to add two numbers of any size...

A|5 Bl.'.’) ATZ B|2 PT‘I |5i1 PTO BlO

B B B B

A A A A
coFA c co FA ci coFA ci co FA ci
|/ (o) S S S

| | | =
54 53 S0 S S0 -

Comp 411 - Spring 2013 2/25N13 L9 — Arithmetic Circuits 3

Designing a Full Adder: From Last Time

1) Start with a truth table: CGABC S
0000 O
2)Write down eqgns for the 0010 1
“1” outputs 0100 1
0111 O
C,=CAB+CAB+CAB+CAB | oo o o
S5=CAB +CAB + CAB + CAB 1101t o
1111 1
3)Simplifing a bit
C,=C(A+B)+ AB C,=C(A@B)+AB

S=CoAaob S=Ceo(AaB)

Comp 411 — Spring 2013 2/2513 L9 — Arithmetic Circuits 4

For Those Who Prefer Logic Diagrams ...

C,=C(A®B) +AB S0
S= Ci ® (A ® B) “Carry” /I /
Logic / [Jj VII
! o
o A little tricky, but only / - Cl
5 gates/bit - ,' | "
_____ /
“Sum”
S Logic

Comp 411 — Spring 2013 2/25/13 L9 - Arithmetic Circuits 5

Subtraction: A-B = A + (-B)

Using 2's complement representation: —-B = ~B + 1

~ = bit-wise complement
D 35D
0 1

So let’s build an arithmetic unit that does both addition and subtraction.
Operation selected by control input:

B3 B2 1 BO

B
Lo =
A

Subtract

ey e

| |
B A B A
o

|
B

A
coFA ¢ coFA c coFA c coFA ci

= L

54 53 S0 51 SO

Comp 411 — Spring 2013 2/25/13 L9 — Arithmetic Circuits 6

Condition Codes

Besides the sum, one often wants four other bits ﬁo compare A and B, \

of information from an arithmetic unit: perform A-B and use
Z (zero): result is = O big NOR gate condition codes:
, , Signed comparison:
N (negative): result is < O S LT NeV
C (carry): indicates that add in the most ;’E Z"' (NoV)
significant position produced a carry, e.g., Ng 7
“1+ (-1)” from last FA CE (NaV)
V (overflow): indicates that the answer has GT ~ (2+ (Nev))
too many bits to be represented correctly by . _
the result width, e.g., “(2"" - 1)+ (2"'- 1)” Unsigned comparison:
LTO C
V=A B N+A B N LEU Ctz
i-1i-1 i-1"i-1 GEU ~C
-or- KGTU ~ (C+Z) /
V=CO_ @& CI_

Comp 411 — Spring 2013 2/25/13 L9 — Arithmetic Circuits 7

Shifting Logic

7 N
] 0 I _R
Shl'f'bll’lg is a common operation that I 7
is applied to groups of bits. Shifting X o\\ R
can be used for alignment, as well as 1 6
for arithmetic operations. X5 o\\ R
1 5
X << 1 is approx the same as 2*X X4 i\
X >>1 can be the same as X/2 (1)/ Rs
Xs | =\
For example: Rs
X = 20,, = 00010100, % Lo\ .
Left Shift: « [i
(X << 1) = 00101000, = 40,, ‘ 011 R,
Right Shift: <
Xo |\
(X >>1) = 00001010, = 10,, - ‘13 Ro
Signed or “Arithmetic” Right Shift: /\
(-X >> 1) = (11101100, >> 1) = 11110110, = -10,, SHL1

Comp 411 — Spring 2013 2/25/13 L9 — Arithmetic Circuits 18

More Shifting

—57 Using the same o

basic idea we can X
build left shifters

of arbitrary sizes X
using muxes.

|
S/

!

l
S/

x

X 0//* 0//* 0//* 0//* °//
X

A 0//* 0//* 0//* 0//* °//

XS/
!

S I N)
<)

Each shift amount
requires its own X5
set of muxes.

Hum, maybe

we could do

something)(1
more clever.

AN
5o L %o

i
p

Y/
N
Y/
o

P

/e
070

SHL1 SHL2 SHL3

Comp 411 - Spring 2013 2/25N13 L9 — Arithmetic Circuits 19

Barrel Shifting

SHL1

/* 0//* 0//* 0//* 0//* 0//* 0//* 0//* S/

Comp 411 - Spring 2013

S
: ?\\ = ;i\ T
- ?i\ % ;i\ T6
R, ?i\ 5, ;i\ :
- ?i\ = ;i\ T4
: ?i\ = ;i\ T5
: ?i\ 2 ;i\ T2
|
fg» E\ 530,, i\ T
SHLZ—\ SHL4 A\

2/25N13

If we connect our “shift-left
-two” shifter to the output
of our “shift-left-one” we
can shift by O, 1, 2, or 3 bits.

And, if we add one more

“shift-left-4” shifter we can
do any shift up to 7 bits!

So, let’s put a box around it
and call it a new functional
block.

N bits

]0@2(N) Left
blts
Barrel
Shlﬁzer

N bits

L9 — Arithmetic Circuits 20

Barrel Shifting with a Twist

At this point it would be straightforward to construct a
“Right barrel shifter” unit. However, a simple trick that
enables a left shifter to do both.

AA71AAA A A1

o SIT T XI5

5HFT77/ Left Barrel Shifter /

Yolr YiYe YoYs YaXe YaYs Yoo YoXi YrYo

ket AT 1/)_1)_1)_1)_)\Lyu)

Z, Z, Zy Z, Z, Z, Z, = Z,

Comp 411 - Spring 2013 2/2513 L9 — Arithmetic Circuits

21

Boolean Operations

We also need to perform logical operations on groups of bits.
Which ones?

ANDing is useful for “masking” off groups of bits.
ex. 10101110 & 00001111 = OO001M10 (mask selects last 4 bits)

ANDing is also useful for “clearing” groups of bits.
ex. 10101110 & 00001111 = 000010 (O’s clear first 4 bits)

ORing is useful for “setting” groups of bits.
ex. 10101110 | 00001111 = 1010111 (1’s set last 4 bits)

XORing is useful for “complementing” groups of bits.
ex. 10101110 * 00001111 = 10100001 (1's complement last 4 bits)

NORing is useful.. Uhm, because John Hennessy says it is!
ex. ~(10101110 | OO0O01111) = 01010000 (O’s complement, 1's clear)

Comp 411 — Spring 2013 2/25/13 L9 — Arithmetic Circuits 22

Boolean Unit (The book’s way)

It is simple to build up a Boolean unit using primitive gates
and a mux to select the function.

Since there is no interconnection A B.
between bits, this unit can This logic

be simply replicated at each '::;‘;';Zd
position. The cost is about LHEQU[Q ‘Elf’;e;‘;h biv
7 gates per bit. One for tnmes)
each primitive function,

and approx 3 for the Bool ‘A /\\'
4-input mux. &

This is a straightforward, but not too elegant of a deengn.

Comp 411 - Spring 2013 2/25N13 L9 — Arithmetic Circuits 23

Cooler Bools

We can better leverage a mux’s capabilities in our Boolean

uhit desigh, by connecting the bits to the select lines.
I should pay

Why is this better? OR OR AND _more

NOR XOR XOR OR /
T | T | to those
muxes
1) While it might take a little oo o1 10 1 ,;

logic to decode the truth A, B,
table inputs, you only have
to do it once, independent |

of the humber of bits. Q,
A B
2) Itis trivial to extend this * *
module to support any 2-bit bool
—>
logical function. Which Boolean
Icn ever wa
(How about NAND, John? makes the mgst
Actually A & /B might be more useful) sense toyou.Let's
get a box around
it!
2/2513 L9 - Arithmetic Circuits 24

Comp 411 - Spring 2013

An ALU, at Last

We give the “Math Center” of a computer a special name--
the Arithmetic Logic Unit. For us, it just a big box!

A
\ 4 \ 4 A /v/ /v/

Sub Bidirectional

\<\dd/5U|/ 4>/ Barrel 7* Boolean

Shifter
Bool ; 4 P e /"/
/ v

Shft \ —

Vool l

Flags N R Z
V,C Flag Flag

Comp 411 — Spring 2013 2/25/13 L9 — Arithmetic Circuits 25

