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Arithmetic Circuits 

01011 
+00101 
10000 

Didn’t I learn how 
to do addition in 
the second grade? 
UNC courses aren’t 
what they used to 
be... 

Finally; time to
 build some

 serious
 functional

 blocks 
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displayed. 

We’ll need
 a lot of
 boxes 

Reading: Study Chapter 3. 
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Review: 2’s Complement 

20 21 22 23 … 2N-2 -2N-1 … … 
N bits 

8-bit 2’s complement example: 
    11010110 = –27 + 26 + 24 + 22 + 21 = – 128 + 64 + 16 + 4 + 2 = – 42 

If we use a two’s-complement representation for signed integers, the same
 binary addition procedure will work for adding both signed and unsigned
 numbers. 

By moving the implicit “binary” point, we can represent fractions too: 
     1101.0110 = –23 + 22 + 20 + 2-2 + 2-3 = – 8 + 4 + 1 + 0.25 + 0.125 = – 2.625 

“sign bit” “binary” point 
Range: – 2N-1  to  2N-1 – 1 
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Binary Addition 

Here’s an example of binary addition as one might do it by “hand”: 

A:  1101 
B:+ 0101 

10010 

1 0 1 1 
Carries from 

previous column 
Adding two N-bit
 numbers produces
 an (N+1)-bit result 

Then we can cascade them to add two numbers of any size… 

   A       B 
CO          CI 
        S 

FA 
   A       B 
CO          CI 
        S 

FA 
   A       B 
CO          CI 
        S 

FA 
   A       B 
CO          CI 
        S 

FA 

A3  B3          A2  B2         A1   B1          A0 B0 

S4       S3                 S0                S1                S0 

Let’s start by building a block that adds one column: 

   A       B 
CO          CI 
        S 

FA 
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Designing a Full Adder: From Last Time 

1)  Start with a truth table: 

2) Write down eqns for the 
“1” outputs 

Co = CiAB + CiAB + CiAB + CiAB 
S = CiAB + CiAB + CiAB + CiAB 

3) Simplifing a bit 

Co = Ci(A + B) + AB 
S = Ci ⊕ A ⊕ B 

Co = Ci(A ⊕ B) + AB 
S = Ci ⊕ (A ⊕ B) 
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For Those Who Prefer Logic Diagrams … 

•  A little tricky, but only  
5 gates/bit 

CI 

A B 

S 

CO 

Co = Ci(A ⊕ B) + AB 
S = Ci ⊕ (A ⊕ B) 

“Sum” 
Logic 

“Carry” 
Logic 
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Subtraction: A-B = A + (-B) 

Using 2’s complement representation: –B = ~B + 1 

But what about
 the “+1”? 

So let’s build an arithmetic unit that does both addition and subtraction. 
 Operation selected by control input: 

   A       B 
CO          CI 
        S 

FA 
   A       B 
CO          CI 
        S 

FA 
   A       B 
CO          CI 
        S 

FA 
   A       B 
CO          CI 
        S 

FA 

A3                 A2                A1                A0 

S4       S3                 S0                S1                S0 

 B3                 B2                B1                B0 
Subtract 

~ = bit-wise complement 

B 
0 

B B 
1 

B 
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Condition Codes 

Besides the sum, one often wants four other bits
 of information from an arithmetic unit: 

To compare A and B, 
 perform A–B and use 
condition codes: 

Signed comparison: 
 LT  N⊕V 
 LE  Z+(N⊕V) 
 EQ  Z 
 NE  ~Z 
 GE  ~(N⊕V) 
 GT  ~(Z+(N⊕V)) 

Unsigned comparison: 
 LTU  C 
 LEU  C+Z 
 GEU  ~C 
 GTU  ~(C+Z) 

V (overflow): indicates that the answer has
 too many bits to be represented correctly by
 the result width, e.g., “(2i-1 - 1)+ (2i-1- 1)” 

Z (zero): result is = 0                  big NOR gate 

N (negative): result is < 0          SN-1 

C (carry):  indicates that add in the most
 significant position produced a carry, e.g., 
“1 + (-1)”                                       from last FA 

€ 

V = Ai −1Bi −1N+A i −1B i −1N

€ 

V =COi −1⊕ CIi −1
-or- 
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Shifting Logic 
Shifting is a common operation that

 is applied to groups of bits. Shifting
 can be used for alignment, as well as
 for arithmetic operations. 

 X << 1   is approx the same as  2*X 
 X >> 1   can be the same as  X/2 

For example:   
  X = 2010 = 000101002 

Left Shift: 
    (X << 1) = 001010002 = 4010 

Right Shift: 
    (X >> 1) = 000010102 = 1010 

Signed or “Arithmetic” Right Shift: 
    (-X >> 1) = (111011002 >> 1) = 111101102 = -1010 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

R7 

R6 

R5 

R4 

R3 

R2 

R1 

R0 

X7 

X6 

X5 

X4 

X3 

X2 

X1 

X0 

“0” 

SHL1 
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More Shifting 
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R1 

R0 

X7 

X6 

X5 

X4 

X3 

X2 

X1 

X0 
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Using the same
 basic idea we can
 build left shifters
 of arbitrary sizes
 using muxes. 

Each shift amount
 requires its own
 set of muxes. 

Hum, maybe
 we could do
 something
 more clever. 
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Barrel Shifting 
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S7 

S6 

S5 
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If we connect our “shift-left
-two” shifter to the output
 of our “shift-left-one” we
 can shift by 0, 1, 2, or 3 bits. 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

T7 

T6 

T5 

T4 

T3 

T2 

T1 

T0 “0” 

SHL4 

And, if we add one more
 “shift-left-4” shifter we can
 do any shift up to 7 bits! 

So, let’s put a box around it
 and call it a new functional
 block. 

Left 
Barrel 
Shifter 

A 

Y 

S 

N-bits 

N-bits 

log2(N) 
bits 
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A7-0 

Barrel Shifting with a Twist 
At this point it would be straightforward to construct a

 “Right barrel shifter” unit. However, a simple trick that
 enables a left shifter to do both. 

A0 A7   A1   A6  A2 A5   A3 A4   A4 A3   A5 A2   A6 A1    A7 A0 

RGT 
1    0 1    0 1    0 1    0 1    0 1    0 1    0 1    0 

Left Barrel Shifter SHFT 

Y7-0 

Y0 Y7    Y1   Y6   Y2 Y5    Y3 Y4   Y4 Y3    Y5 Y2   Y6 Y1    Y7 Y0 

RGT 
1    0 1    0 1    0 1    0 1    0 1    0 1    0 1    0 

  Z7          Z6        Z5        Z4         Z3        Z2         Z1         Z0 
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Boolean Operations 
We also need to perform logical operations on groups of bits.  

Which ones? 

ANDing is useful for “masking” off groups of bits. 
    ex.  10101110 & 00001111 = 00001110  (mask selects last 4 bits) 
ANDing is also useful for “clearing” groups of bits. 
    ex.  10101110 & 00001111 = 00001110  (0’s clear first 4 bits) 
ORing is useful for “setting” groups of bits. 
    ex.  10101110 | 00001111 = 10101111  (1’s set last 4 bits) 

XORing is useful for “complementing” groups of bits. 
    ex.  10101110 ^ 00001111 = 10100001  (1’s complement last 4 bits) 
NORing is useful.. Uhm, because John Hennessy says it is! 
    ex.  ~(10101110 | 00001111) = 01010000  (0’s complement, 1’s clear) 
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Boolean Unit (The book’s way) 
It is simple to build up a Boolean unit using primitive gates

 and a mux to select the function. 
Since there is no interconnection 

between bits, this unit can 
be simply replicated at each 
position. The cost is about 
7 gates per bit. One for  
each primitive function, 
and approx 3 for the  
4-input mux. 

This is a straightforward, but not too elegant of a design. 

Ai Bi 

Qi 

Bool 
00      01       10       11 

This logic
 block is
 repeated
 for each bit
 (i.e. 32
 times) 
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Cooler Bools 
We can better leverage a mux’s capabilities in our Boolean

 unit design, by connecting the bits to the select lines. 
Why is this better? 

1)  While it might take a little 
logic to decode the truth 
table inputs, you only have 
to do it once, independent 
of the number of bits. 

2)  It is trivial to extend this 
module to support any 2-bit 
logical function.  
(How about NAND, John?  
Actually A & /B might be more useful) 

Qi 

Ai , Bi 

00      01       10       11 

NOR 
OR 
XOR 

AND 
OR 

OR 
XOR 

Boolean bool 

A B 

Q 

I should pay
 more

 attention
 to those
 muxes 

Which ever way
 makes the most
 sense to you. Let’s
 get a box around
 it! 
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An ALU, at Last 
We give the “Math Center” of a computer a special name-- 

 the Arithmetic Logic Unit. For us, it just a big box! 

That’s
 a lot of
 stuff 

Flags 
V,C 

A B 

R 

     Bidirectional 
Barrel 
Shifter 

Boolean Add/Sub Sub 

Bool 

Shft 

Math 

1     0 

1     0 …
 

N 
Flag 

Z 
Flag 


