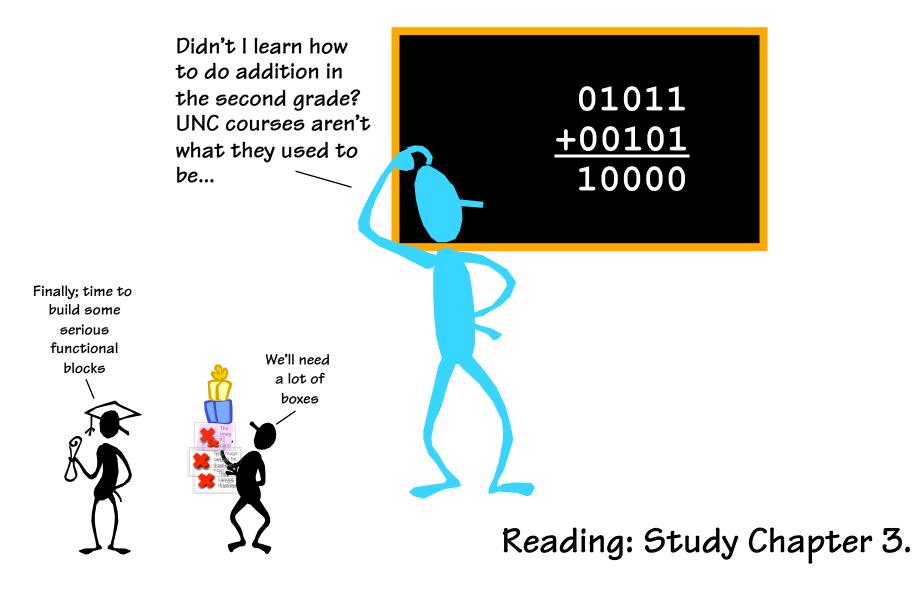
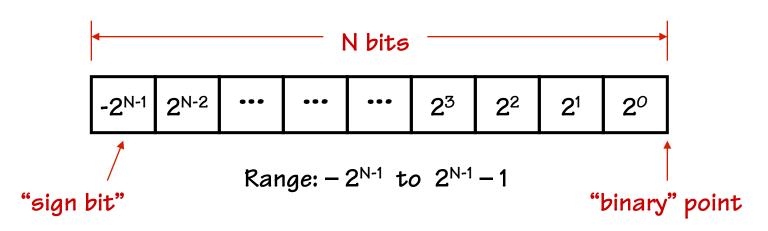
Arithmetic Circuits



Review: 2's Complement



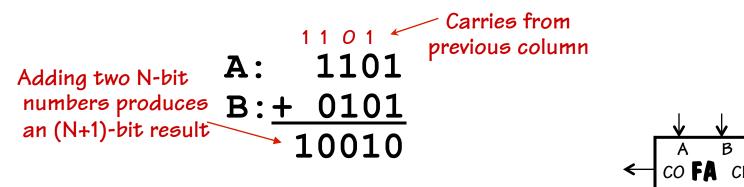
8-bit 2's complement example: $11010110 = -2^7 + 2^6 + 2^4 + 2^2 + 2^1 = -128 + 64 + 16 + 4 + 2 = -42$

If we use a two's-complement representation for signed integers, the same binary addition procedure will work for adding both signed and unsigned numbers.

By moving the implicit "binary" point, we can represent fractions too: $1101.0110 = -2^3 + 2^2 + 2^0 + 2^{-2} + 2^{-3} = -8 + 4 + 1 + 0.25 + 0.125 = -2.625$

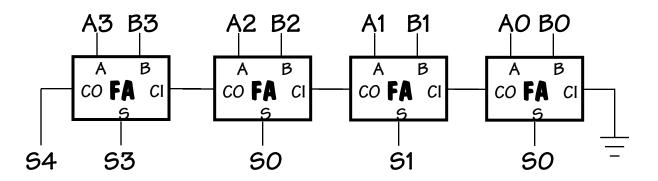
Binary Addition

Here's an example of binary addition as one might do it by "hand":



Let's start by building a block that adds one column:

Then we can cascade them to add two numbers of any size...



Designing a Full Adder: From Last Time

Start with a truth table:
 Write down eqns for the

"1" outputs

$$C_{o} = \overline{C_{i}}AB + C_{i}\overline{A}B + C_{i}A\overline{B} + C_{i}AB$$
$$S = \overline{C_{i}}AB + \overline{C_{i}}AB + C_{i}\overline{A}B + C_{i}AB$$

3)Simplifing a bit

$$C_o = C_i(A + B) + AB$$

$$S = C_i \oplus A \oplus B$$

Ci	A	В	C _o	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$C_o = C_i(A \oplus B) + AB$$

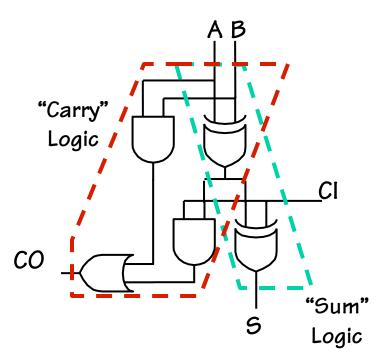
$$S = C_i \oplus (A \oplus B)$$

For Those Who Prefer Logic Diagrams ...

$$C_o = C_i(A \oplus B) + AB$$

$$S = C_i \oplus (A \oplus B)$$

A little tricky, but only
 5 gates/bit



Subtraction: A-B = A + (-B)

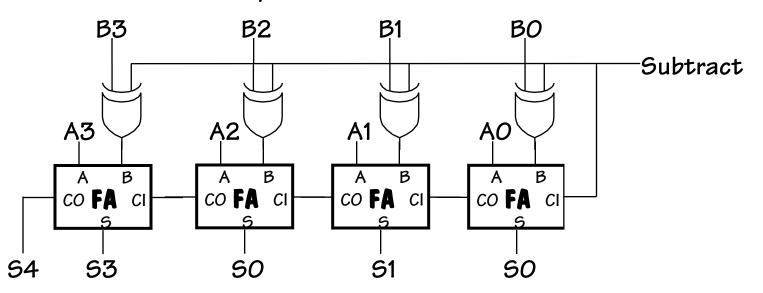
Using 2's complement representation: -B = -B + 1

`~ = bit-wise complement

В

В

So let's build an arithmetic unit that does both addition and subtraction. Operation selected by *control input*:



Condition Codes

Besides the sum, one often wants four other bits of information from an arithmetic unit:

Z (zero): result is = O big NOR gate

N (negative): result is < 0 S_{N-1}

C (carry): indicates that add in the most significant position produced a carry, e.g., "1 + (-1)" from last FA

V (overflow): indicates that the answer has too many bits to be represented correctly by the result width, e.g., " $(2^{i-1} - 1) + (2^{i-1} - 1)$ "

$$V = A_{i-1}B_{i-1}\overline{N} + \overline{A}_{i-1}\overline{B}_{i-1}N$$

-or-
$$V = CO_{i-1} \oplus CI_{i-1}$$

To compare A and B, perform A–B and use condition codes: Signed comparison: LT N⊕V Z+ (N⊕V) LE EQ Ζ NE ~Z GE ~ (N⊕V) GT ~(Z+(N⊕V)) Unsigned comparison: LTU С C+ZLEU ~C GEU ~(C+Z) GTU

Shifting Logic

Shifting is a common operation that is applied to groups of bits. Shifting can be used for alignment, as well as for arithmetic operations.

X << 1 is approx the same as 2^*X X >> 1 can be the same as X/2

For example:

 $X = 2O_{10} = OOO1O1OO_2$

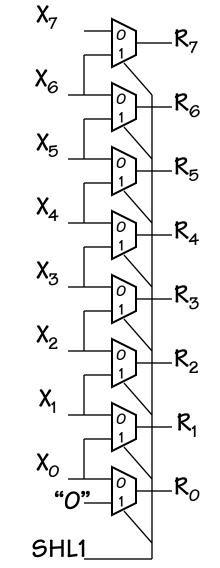
Left Shift:

 $(X << 1) = 00101000_2 = 40_{10}$

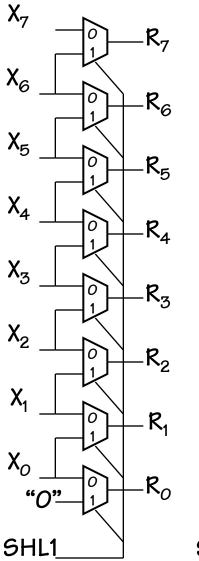
Right Shift:

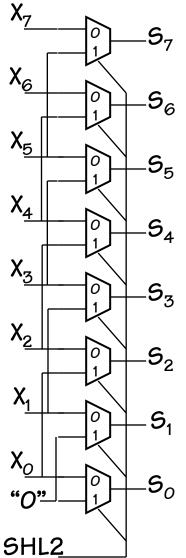
 $(X >> 1) = 00001010_2 = 10_{10}$ Signed or "Arithmetic" Right Shift:

 $(-X >> 1) = (11101100_2 >> 1) = 11110110_2 = -10_{10}$



More Shifting

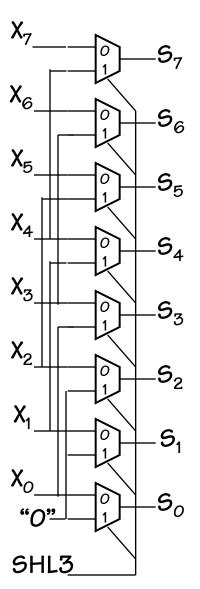




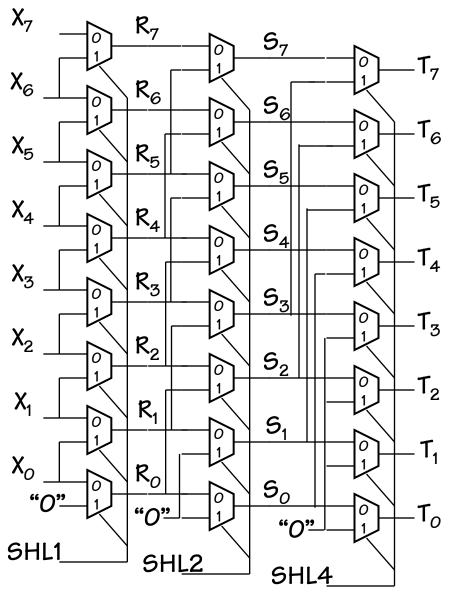
Using the same basic idea we can build left shifters of arbitrary sizes using muxes.

Each shift amount requires its own set of muxes.

> Hum, maybe we could do something more clever.



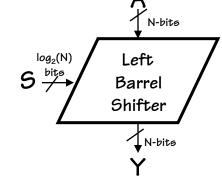
Barrel Shifting



If we connect our "shift-left -two" shifter to the output of our "shift-left-one" we can shift by 0, 1, 2, or 3 bits.

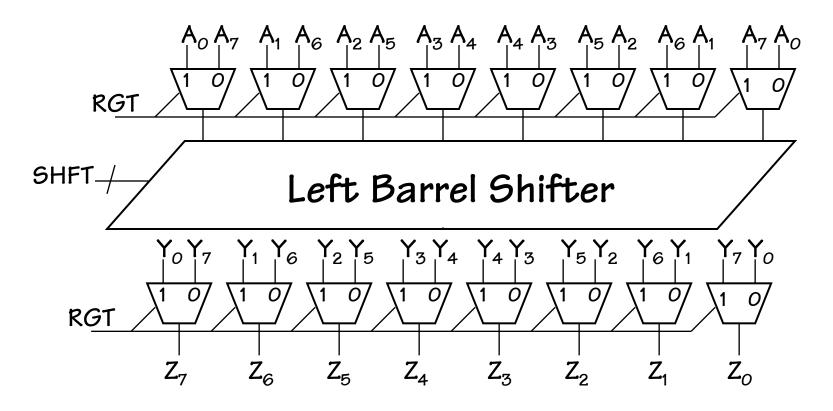
And, if we add one more "shift-left-4" shifter we can do any shift up to 7 bits!

So, let's put a box around it and call it a new functional block. \triangle



Barrel Shifting with a Twist

At this point it would be straightforward to construct a "Right barrel shifter" unit. However, a simple trick that enables a left shifter to do both.



Boolean Operations

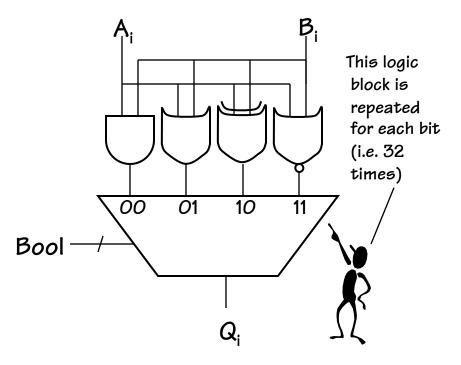
We also need to perform logical operations on groups of bits. Which ones?

ANDing is useful for "masking" off groups of bits.
ex. 10101110 & 00001111 = 00001110 (mask selects last 4 bits)
ANDing is also useful for "clearing" groups of bits.
ex. 10101110 & 00001111 = 00001110 (0's clear first 4 bits)
ORing is useful for "setting" groups of bits.
ex. 10101110 | 00001111 = 10101111 (1's set last 4 bits)
XORing is useful for "complementing" groups of bits.
ex. 10101110 ^ 00001111 = 10100001 (1's complement last 4 bits)
NORing is useful. Uhm, because John Hennessy says it is!
ex. ~(10101110 | 00001111) = 01010000 (0's complement, 1's clear)

Boolean Unit (The book's way)

It is simple to build up a Boolean unit using primitive gates and a mux to select the function.

Since there is no interconnection between bits, this unit can be simply replicated at each position. The cost is about 7 gates per bit. One for each primitive function, and approx 3 for the 4-input mux.



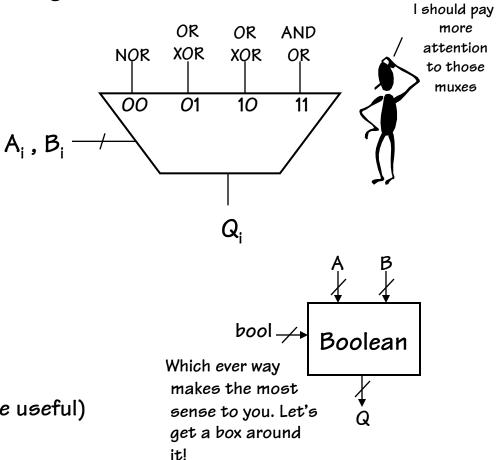
This is a straightforward, but not too elegant of a design.

Cooler Bools

We can better leverage a mux's capabilities in our Boolean unit design, by connecting the bits to the select lines.

Why is this better?

- 1) While it might take a little logic to decode the truth table inputs, you only have to do it once, independent of the number of bits.
- 2) It is trivial to extend this module to support any 2-bit logical function. (How about NAND, John? Actually A & /B might be more useful)



An ALU, at Last

