
L07 – Assemblers and Compilers 1 Comp 411 – Spring 2013 2/11/12

Assemblers and Compilers

When I find my code in tons of trouble,
Friends and colleagues come to me,

Speaking words of wisdom:
"Write in C."

Long, long, time ago, I can still remember
How mnemonics used to make me smile...
Cause I knew that with those opcode names
that I could play some assembly games
and I’d be hacking kernels in just awhile.
But Comp 411 made me shiver,
With every new lecture that was delivered,
There was bad news at the door step,
I just didn’t get the problem sets.
I can’t remember if I cried,
When inspecting my stack frame’s insides,
All I know is that it crushed my pride,
On the day the joy of software died.
And I was singing…

Study sections 2.10-2.15

L07 – Assemblers and Compilers 2 Comp 411 – Spring 2013 2/11/12

Path from Programs to Bits

·  Traditional Compilation

C or C++ program

Compiler

Assembly Code

“Object Code”

“Executable”

Loader

“Memory”

“Library Routines”
High-level, portable
 (architecture independent)
 program description

Architecture dependent
 mnemonic program
 description with symbolic
 memory references

Machine language
with symbolic memory
 references

A collection of precompiled
 object code modules

Machine language
with all memory references
 resolved

Program and data bits
loaded into memory

Assembler

Linker

L07 – Assemblers and Compilers 3 Comp 411 – Spring 2013 2/11/12

How an Assembler Works
Three major components of assembly

 1) Allocating and initialing data storage
 2) Conversion of mnemonics to binary instructions
 3) Resolving addresses

.data
array: .space 40
total: .word 0

.text

.globl main
main: la $t1,array
 move $t2,$0
 move $t3,$0
 beq $0,$0,test
loop: sll $t0,$t3,2
 add $t0,$t1,$t0
 sw $t3,($t0)
 add $t2,$t2,$t3
 addi $t3,$t3,1
test: slti $t0,$t3,10
 bne $t0,$0,loop
 sw $t2,total
 jr $ra

lui $9, arrayhi
ori $9,$9,arraylo

0x3c09????
0x3529????

L07 – Assemblers and Compilers 4 Comp 411 – Spring 2013 2/11/12

Resolving Addresses- 1st Pass
·  “Old-style” 2-pass assembler approach

Segment
 offset

Code Instruction

0
4

0x3c090000
0x35290000

 la $t1,array

8
12

0x00005021
0x00005821

 move $t2,$
 move $t3,$0

16 0x10000000 beq $0,$0,test

20 0x000b4080 loop:
 sll $t0,$t3,2

24
28
32
36

0x01284020
0xad0b0000
0x014b5020
0x216b0001

 add $t0,$t1,$t0
 sw $t0,($t0)

 add $t0,$t1,$t0
 addi $t3,$t3,1

40 0x2968000a test:
 slti $t0,$t3,10

44 0x15000000 bne $t0,$0,loop

48
52

0x3c010000
0xac2a0000

 sw $t2,total

56 0x03e00008 j $ra

Symbol Segment
Location
 pointer
 offset

array data 0

total data 40

main text 0

loop text 20

test text 40

Pass 1

Symbol table after Pass 1

- In the first pass, data and
 instructions are encoded and
 assigned offsets within their
 segment, while the symbol table
 is constructed.
- Unresolved address references
 are set to 0

L07 – Assemblers and Compilers 5 Comp 411 – Spring 2013 2/11/12

Resolving Addresses in 2 Passes

·  “Old-style” 2-pass assembler approach

Pass 2

Symbol Segment
Location
 pointer
 offset

array data 0

total data 40

main text 0

loop text 20

test text 40

Symbol table after Pass 1

–  In the second pass, the
 appropriate fields of those
 instructions that reference
 memory are filled in with the
 correct values if possible.

Segment
 offset

Code Instruction

0
4

0x3c091001
0x35290000

 la $t1,array

8
12

0x00005021
0x00005821

 move $t2,$
 move $t3,$0

16 0x10000006 beq $0,$0,test

20 0x000b4080 loop:
 sll $t0,$t3,2

24
28
32
36

0x01284020
0xad0b0000
0x014b5020
0x216b0001

 add $t0,$t1,$t0
 sw $t0,($t0)

 add $t0,$t1,$t0
 addi $t3,$t3,1

40 0x2968000a test:
 slti $t0,$t3,10

44 0x1500fffa bne $t0,$0,loop

48
52

0x3c011001
0xac2a0028

 sw $t2,total

56 0x03e00008 j $ra

L07 – Assemblers and Compilers 6 Comp 411 – Spring 2013 2/11/12

Modern Way – 1-Pass Assemblers

 Modern assemblers keep more information in their
 symbol table which allows them to resolve addresses in
 a single pass.

•  Known addresses (backward references) are immediately
 resolved.

•  Unknown addresses (forward references) are “back-filled”
 once they are resolved.

SYMBOL SEGMENT Location
 pointer
 offset

Resolved? Reference
 list

array data 0 y null

total data 40 y null

main text 0 y null

loop text 20 y null

test text ? n 16

State of the
symbol table
after the
instruction
sw $t0, ($t0)
is assembled

L07 – Assemblers and Compilers 7 Comp 411 – Spring 2013 2/11/12

The Role of a Linker

Some aspects of address resolution cannot be handled by
 the assembler alone.
 1) References to data or routines in other object modules
2) The layout of all segments (.text, .data) in memory
3) Support for REUSABLE code modules
4) Support for RELOCATABLE code modules

This final step of resolution is the job of a LINKER

Linker
Executable

File

Libraries

Source
file

Assembler Object
file

Source
file

Assembler Object
file

Source
file

Assembler Object
file

L07 – Assemblers and Compilers 8 Comp 411 – Spring 2013 2/11/12

Static and Dynamic Libraries

•  LIBRARIES are commonly used routines stored as a
 concatenation of “Object files”. A global symbol table is
 maintained for the entire library with entry points for
 each routine.

•  When a routine in a LIBRARY is referenced by an
 assembly module, the routine’s address is resolved by
 the LINKER, and the appropriate code is added to the
 executable. This sort of linking is called STATIC linking.

•  Many programs use common libraries. It is wasteful of
 both memory and disk space to include the same code in
 multiple executables. The modern alternative to STATIC
 linking is to allow the LOADER and THE PROGRAM
 ITSELF to resolve the addresses of libraries routines.
 This form of lining is called DYNAMIC linking (e.x. .dll).

L07 – Assemblers and Compilers 9 Comp 411 – Spring 2013 2/11/12

Why are we loading the
function’s address into
a register first, and then
calling it?

Dynamically Linked Libraries

·  C call to library function:
 printf(“sqr[%d] = %d\n”, x, y);

·  Assembly code

·  Maps to:

 addi $a0,$0,1
 la $a1,ctrlstring
 lw $a2,x
 lw $a3,y
 call fprintf

 addi $a0,$0,1
 lui $a1,ctrlstringHi
 ori $a1,ctrlstringLo
 lui $at,globaldata
 lw $a2,x($at)
 lw $a3,y($at)
 lui $at,fprintfHi
 lw $at,fprintfLo($at)
 jalr $at,$31

How does
 dynamic linking
 work?

Yet another
 pseudoinstruction

L07 – Assemblers and Compilers 10 Comp 411 – Spring 2013 2/11/12

Dynamically Linked Libraries

.globl stdio:
stdio:
fopen: .word sysload
fclose: .word sysload
fgetc: .word sysload
fputc: .word sysload
fprintf: .word sysload

• Before any call is made to
 a procedure in “stdio.dll”

.globl stdio:
stdio:
fopen: dfopen
fclose: dclose
fgetc: dfgetc
fputc: dfputc
fprintf: dprintf

• After first call is made to
 any procedure in “stdio.dll”

Because, the entry
 points to dynamic
 library routines are
 stored in a TABLE.
 And the contents of
 this table are loaded
 on an “as needed”
 basis!

 sysload: addui $sp,$sp,16
 .
 .
 # check if stdio module
 # is loaded, if not load it
 .
 .
 # backpatch jump table
 la $t1,stdio
 la $t0,$dfopen
 sw $t0,($t1)
 la $t0,$dfclose
 sw $t0,4($t1)
 la $t0,$dfputc
 sw $t0,8($t1)
 la $t0,$dfgetc
 sw $t0,12($t1)
 la $t0,$dfprintf
 sw $t0,16($t1)

•  Lazy address resolution:

L07 – Assemblers and Compilers 11 Comp 411 – Spring 2013 2/11/12

Modern Languages

·  Intermediate “object code language”

Java program

Compiler

JVM bytecodes

Interpreter

“Library Routines”

High-level, portable
 (architecture independent)
 program description

PORTABLE mnemonic
 program description with
 symbolic memory references

An application that
EMULATES a virtual
machine. Can be written
for any Instruction Set
Architecture. In the end,
machine language
 instructions must be
 executed for each JVM
 bytecode

L07 – Assemblers and Compilers 12 Comp 411 – Spring 2013 2/11/12

Modern Languages

·  Intermediate “object code language”

Java program

Compiler

JVM bytecodes

JIT Compiler

“Library Routines”

High-level, portable
 (architecture independent)
 program description

PORTABLE mnemonic
 program description with
 symbolic memory references

While interpreting on the
first pass it keeps a copy
of the machine language
instructions used.
Future references access
machine language code,
avoiding further
 interpretation

“Memory”

Today’s JITs are nearly as
 fast as a native compiled
 code (ex. .NET).

L07 – Assemblers and Compilers 13 Comp 411 – Spring 2013 2/11/12

Assembly? Really?
·  In the early days compilers were dumb

–  literal line-by-line generation of assembly code of “C” source
–  This was efficient in terms of S/W development time

•  C is portable, ISA independent, write once– run anywhere
•  C is easier to read and understand
•  Details of stack allocation and memory management are hidden

–  However, a savvy programmer could nearly always generate code
 that would execute faster

·  Enter the modern era of Compilers
–  Focused on optimized code-generation
–  Captured the common tricks that low-level programmers used
–  Meticulous bookkeeping (i.e. will I ever use this variable again?)
–  It is hard for even the best hacker to improve on code generated

 by good optimizing compilers

L07 – Assemblers and Compilers 14 Comp 411 – Spring 2013 2/11/12

Example Compiler Optimizations

·  Example “C” Code:

int array[10];
int total;

int main() {
 int i;

 total = 0;
 for (i = 0; i < 10; i++) {
 array[i] = i;
 total = total + i;
 }
}

L07 – Assemblers and Compilers 15 Comp 411 – Spring 2013 2/11/12

Unoptimized Assembly Output

·  With debug flags set:
.globl main
.text
main:
 addiu $sp,$sp,-8 # allocates space for ra and i
 sw $0,total # total = 0
 sw $0,0($sp) # i = 0
 lw $8,0($sp) # copy i to $t0
 b L.3 # goto test
L.2: # for(...) {
 sll $24,$8,2 # make i a word offset
 sw $8,array($24) # array[i] = i
 lw $24,total # total = total + i
 addu $24,$24,$8
 sw $24,total
 addi $8,$8,1 # i = i + 1
L.3:
 sw $8,0($sp) # update i in memory
 slti $1,$8,10 # (i < 10)?
 bne $1,$0,L.2 #} if TRUE loop
 addiu $sp,$sp,8
 jr $31

Why does turning on debugging
 generate the worse code?

Ans: Because the complier reverts
 back to line-by-line translation.

103, that’s not so bad

L07 – Assemblers and Compilers 16 Comp 411 – Spring 2013 2/11/12

Register Allocation

·  Assign local variable “i” to a register
.globl main
.text
main:
 addiu $sp,$sp,-4 #allocates space for ra
 sw $0,total #total = 0
 move $8,$0 #i = 0
 b L.3 #goto test
L.2: #for(...) {
 sll $24,$8,2 # make i a word offset
 sw $8,array($24) # array[i] = i
 lw $24,total # total = total + i
 addu $24,$24,$8
 sw $24,total
 addi $8,$8,1 # i = i + 1
L.3:
 slti $1,$8,10 # (i < 10)?
 bne $1,$0,L.2 #} if TRUE loop
 addiu $sp,$sp,4
 jr $31

Two instructions
 outside the loop are
 replaced with one

91, I can play in public.

L07 – Assemblers and Compilers 17 Comp 411 – Spring 2013 2/11/12

Loop-Invariant Code Motion

·  Temporarily allocate temp registers to hold global values
 to avoid loads inside the loop, yet mirroring changes

.globl main

.text
main:
 addiu $sp,$sp,-4 #allocates space for ra
 sw $0,total #total = 0
 move $9,$0 #temp for total
 move $8,$0 #i = 0
 b L.3 #goto test
L.2: #for(...) {
 sll $24,$8,2 # make i a word offset
 sw $8,array($24) # array[i] = i
 addu $9,$9,$8
 sw $9,total
 addi $8,$8,1 # i = i + 1
L.3:
 slti $1,$8,10 # (i < 10)?
 bne $1,$0,L.2 #} if TRUE loop
 addiu $sp,$sp,4
 jr $31

We’ve added an
 instruction here
 outside of the loop

and eliminated an
lw inside of loop

82! Side-bets anyone?

L07 – Assemblers and Compilers 18 Comp 411 – Spring 2013 2/11/12

Remove Unnecessary Tests

·  Since “i” is initially set to “0”, we already know it is less
 than “10”, so why bother testing it the first time?

.globl main

.text
main:
 addiu $sp,$sp,-4 #allocates space for ra
 sw $0,total #total = 0
 move $9,$0 #temp for total
 move $8,$0 #i = 0
L.2: #for(...) {
 sll $24,$8,2 # make i a word offset
 sw $8,array($24) # array[i] = i
 addu $9,$9,$8
 sw $9,total
 addi $8,$8,1 # i = i + 1
 slti $1,$8,10 # loads const 10
 bne $1,$0,L.2 #} loops while i < 10
 addiu $sp,$sp,4
 jr $31

Eliminated a branch
here and the
label it
referenced

79, almost scratch!

L07 – Assemblers and Compilers 19 Comp 411 – Spring 2013 2/11/12

Remove Unnecessary Stores

·  All we care about it the value of total after the loop
 finishes, so there is no need to update it on each pass

.globl main

.text
main:
 addiu $sp,$sp,-4 #allocates space for ra and i
 sw $0,total #total = 0
 move $9,$0 #temp for total
 move $8,$0 #i = 0
L.2:
 sll $24,$8,2 #for(...) {
 sw $8,array($24) # array[i] = i
 addu $9,$9,$8
 addi $8,$8,1 # i = i + 1
 slti $1,$8,10 # loads const 10
 bne $1,$0,L.2 #} loops while i < 10
 sw $9,total
 addiu $sp,$sp,4
 jr $31

70, ready for the PGA!

Moved this
instruction
outside the loop

L07 – Assemblers and Compilers 20 Comp 411 – Spring 2013 2/11/12

Unrolling Loops
·  By examining the function we can see it is always

 executed 10 times. Thus, we can make 2, 5, or 10 copies
 of the inner loop reduce the branching overhead.

.globl main

.text
main:
 addiu $sp,$sp,-4 #allocates space for ra and i
 sw $0,total #total = 0
 move $9,$0 #temp for total
 move $8,$0 #i = 0
L.2:
 sll $24,$8,2 #for(...) {
 sw $8,array($24) # array[i] = i
 addu $9,$9,$8
 addi $8,$8,1 # i = i + 1
 sll $24,$8,2 #
 sw $8,array($24) # array[i] = i
 addu $9,$9,$8
 addi $8,$8,1 # i = i + 1
 slti $24,$8,10 # loads const 10
 bne $24,$0,L.2 #} loops while i < 10
 sw $9,total
 addiu $sp,$sp,4
 jr $31

Added a second
copy of these
four lines. 60, watch out Tiger!

L07 – Assemblers and Compilers 21 Comp 411 – Spring 2013 2/11/12

Next Time
·  We go deeper into the rabbit hole…

·  Quiz on Friday
–  Multiple Choice
–  Open book/open notes
–  No computers or calculators

