Operands and Addressing Modes

* Where is the data?
e Addresses as data
* Names and Yalues

* [ndirection

Comp 411 - Spring 2013 1/30113 L5 — Addressing Modes 1

Assembly Exercise

* Let's write some assembly language programs

* Program #1: Write a function “isodd(int X)” which returns
1if it’s argument “X” is odd and O otherwise

addiu
jal
addiu
jal
halt: beq

main:

andi
jr

isodd:

Comp 411 - Spring 2013

$a0,%0,37 The addiu instruction is
1sodd used to load constants
$00’ $0,42 (i.e. isodd(37)), can this
;S?gg halt be done in other ways?

P
9
$v0o , $a0 , 1 \
$31 The function is

implemented using only
one instruction. How does
“andi $Y,$X,1” determine
that $X is odd?

1/30113 L5 — Addressing Modes 2

Your Turn

 Program #2: A function “ones(int X)” that returns a
count of the number of ones in its argument “X”

Comp 411 - Spring 2013 1/30113 L5 — Addressing Modes 3

Last Time - "Machine” Language

32-bit (4-byte) ADD instruction:

000000/0010000010/0001100000{100000
op = R-type Rs Rt Rd func = add

Means, to MIPS, Reg[3] = Reg[4] + Reg[2]

But, most of us would prefer to write

add $3, $4, $2 (ASSEMBLER)

or, better yet,
a=>b + c; (C)

Comp 411 - Spring 2013 1/30113 L5 — Addressing Modes 4

Revisiting Operands

o Operands — the variables needed to perform an
instruction’s operation

* Three types in the MIPS ISA:
— Register:
add $2, $3, $4 # operands are the “Contents” of a register

— Immediate:
addi $2,9$2,1 # 2" source operand is part of the instruction

— Register-Indirect:
lw $2,12($28) # source operand is in memory
sw $2, 12($28) # destination operand is memory

e Simple enough, but is it enough?

Comp 411 - Spring 2013 1/30113 L5 — Addressing Modes 5

Common "Addressing Modes”

MIPS can do these with appropriate

choices for Ra and const

Absolute (Direct): 1w $8, 0x1000($0)
— Value = Mem[constant]

— Use: accessing static data
Indirect: 1w $8, 0($9

— Value = Mem[Reg[x]]

— Use: pointer accesses
Displacement: 1w $8, 16(59

— Value = Mem[Reg[x] + constant]

— Use: access to local variables

Indexed:
— Value = Mem[Reg[x] + Reg[y]]

— Use: array accesses (base+index)

Memory indirect:

— Value = Mem[Mem[Reg[x]]]

— Use: access thru pointer in mem
Autoincrement:

— Value = Mem[Reg[x]]; Reg[x]++

— Use: sequential pointer accesses
Autodecrement:

— Value = Reg[X]--; Mem[Reg[x]]

— Use: stack operations
Scaled:

— Value = Mem[Reg[x] + ¢ + d*Reg[y]]

— Use: array accesses (base+index)

Argh! s the complexity worth the cost?
Need a cost/benefit analysis!

Comp 411 - Spring 2013

1/30113

L5 — Addressing Modes ©

Memory Operands: Usage

Memory indirect

Scaled

Register indirect

Immediate

Displacement

Usage of different memory operand modes

Comp 411 - Spring 2013

TeX
spice
gce

TeX
spice
gcc

TeX
spice
gce

TeX
spice
gcc

TeX
spice
gce

1%
6%
1%

0%

16%
6%

24%
3%

- BARA

17%

43%

I 39%

32%

I— 40

From Hennessy & Patterson

55%

0% 10% 20% 30%

Frequency of the addressing mode

© 2003 Elsevier Science (USA). All riahts reserved.

1/30113

60%

L5 — Addressing Modes 7

Absolute (Direct) Addressing

¢ What we want:

— The contents of a specific memory location

* Examples:

“c” “MIPS Assembly”
int x = 10; main: 1w $2,x
addi $2,%$2,1
main () { sw $2,x
X =x+ 1; jr $31
} Allocates space for a

x: .word 10 - ~ single integer (4-bytes)
and initializes its value

10
e Caveats e

— In practice $gp is often used as a base address for variables
— Can only address the first and last 32K of memory this way

— Sometimes generates a two instruction sequence:

lui $1,xhighbits
1w $2,xlowbits ($1)

Comp 411 - Spring 2013 1/30113 L5 — Addressing Modes &

An Aside: Let's C

C is an ancestor to many languages commonly used today.
{Algol, Fortran, Pascal} = C = C++ > Java

C was developed to write the operating system UNIX.
C is still widely used for “systems™ programming

C’s developers were frustrated that the high-level languages
available at the time, lacked the expressiveness and
capabilities of assembly code necessary to write an 0S.

The advantage of high-level languages is that they are
portable (i.e. not ISA specific).

C, thus, was an attempt to create a portable blend of a high
-level language and an assembler

Comp 411 - Spring 2013 1/30113 L5 — Addressing Modes 9

C begat Java

C++ was envisioned to add Object-Oriented (OO) concepts
on top of C

Java was envisioned to be more purely OO0, and hide the
details of Class/Method/Member implementation

For our purposes C is almost identical to JAYA except:

C has “functions”, whereas JAYA has “methods’.

C has explicit variables that contain the addresses of other

variables or data structures in memory.
JAVYA hides them under the covers.

Comp 411 - Spring 2013 1/30113 L5 - Add

C pointers

int i; // simple integer variable

int a[l0]; // array of integers (a is a pointer)
int *p; // pointer to integer(s)

* (expression) is content of address computed by expression .
alk] = *(a+k)

a is a constant of type “int *”

alk] = a[k+l] = *(a+k) = *(a+k+1l)

Comp 411 - Spring 2013 1/30113 L5 — Addressing Modes 11

Other Pointer Related Syntax

Comp 411 - Spring 2013

//
//
//

//
//
//
//
//
//
//
//

simple integer variable
array of integers
pointer to integer (s)

& means address of

no need for & on a

address of 6" element of a
value of location pointed by p
change value of that location
change value of next location
exactly the same as above

step pointer to the next element

173013 L5 — Addressing Modes 12

Legal uses of Pointers

int i; // simple integer variable
int a[l0]; // array of integers
int *p; // pointer to integer (s)

So what happens when
p = &i;

What is value of p[0]°?
What is wvalue of p[l]~?

Comp 411 - Spring 2013 1/30113 L5 — Addressing Modes 13

C Pointers vs. object size

int i; // simple integer variable
int a[l0]; // array of integers
int *p; // pointer to integer (s)

Does “p++” really add 1 to the pointer?
NO! It adds 4. Why 47?

char *q;

qgt++; // really does add 1

Comp 411 - Spring 2013 1/30113 L5 — Addressing Modes 14

Clear123

void clearl (int array[], int size) ({
for (int 1=0; i<size; i++)
array[i] = O;

void clear2(int array[], int size) ({
for (int *p = &array[0];, p < &array[size]; p++)
X = .
p=20;

void clear3(int *array, int size) {
int *end = array + size;
while (array < end)
*array++ = 0;

Comp 411 - Spring 2013 1/30113 L5 — Addressing Modes 15

Pointer summary

* In the “C” world and in the “machine” world:
— a pointer is just the address of an object in memory
— size of pointer is fixed regardless of size of object

— to get to the next object increment by the object’s size in
bytes
— to get the the i*" object add i*sizeof(object)
* More details:
— int R[B] = R is int* constant address of 20 bytes storage
— R[i] = *(R+i)
— int *p = &R[3] = p = (R+3) (p points 12 bytes after R)

Comp 411 - Spring 2013 1/30113 L5 — Addressing Modes 16

Indirect Addressing

¢ What we want:

— The contents of a memory location held in a register

* Examples:

“c” “MIPS Assembly”
. Loads the “address”
int x = 10; . : @ — ofxinto$2, notits
main: ori $2,$0,x contents
main () { addi $3,$0,2
int *y = &x; sw $3,0($82)
*y = 2 ; jr $31

x: .word 10

e Caveats

— You must make sure that the register contains a valid address
(double, word, or short aligned as required)

Comp 411 - Spring 2013 1/30113 L5 — Addressing Modes 17

Displacement Addressing

¢ What we want:

— The contents of a memory location relative to a register

o Examples:
“MIPS Assembly”

“C”
int a[5]; main: addi $2,$0,3
addi $3/$012
main () { sll $1,%2,2
- B . . pace or a Integers
al[i] = 2; jr 831 (20-bytes)
}
a: . space 5,\"_.8
e Caveats

— Must multiply (shift) the “index” to be properly aligned

Comp 411 - Spring 2013 1/30113 L5 — Addressing Modes 16

Displacement Addressing: Once More

¢ What we want:

— The contents of a memory location relative to a register

o Examples:
“MIPS Assembly”

“C”
struct p { main: ori $1,80,p
int x, y; addi $2,$0,3
} sw $2,0(S1)
addi $2,$0,2
main() { sw $2,4(31) 2wt
P.X = Z ’ Jr $31 integers (8-bytes)
P.Y = </
} pP: . space 8 v\—-‘g
* Caveats

— Constants offset to the various fields of the structure

— Structures larger than 32K use a different approach

Comp 411 - Spring 2013 1/30113 L5 — Addressing Modes 19

C/Assembly Translation: Conditionals

C code:

if (expr) {
STUFF
}

C code:

if (expr) {
STUFF1

} else {
STUFF2

}

Comp 411 - Spring 2013

MIPS assembly:
(compute expr in $rx)
beq $rx, $0, Lendif

(compile STUFF)
Lendif:

MIPS assembly:
(compute expr in $rx)
beq $rx, $0, Lelse
(compile STUFFT)

beq $0, $0, Lendif
Lelse:

(compile STUFF2)
Lendif:

1/30113

There are little tricks
that come into play
when compiling
conditional code
blocks. For instance,
the statement:

if (y > 32) {
X =x+1;

}

compiles to:

1w $24, y

ori $15, $0, 32
slt $1, $15, S$24
beq $1, $0, Lendif
lw $24, x

addi $24, $24, 1

sSwW $24, x

Lendif:

L5 — Addressing Modes 20

C/Assembly Translation: Loops

C code: MIPS assembly: Alternate MIPS
Lwhile: assembly:

while (expr) { beq $0,%$0,Ltest

STUFF (compute expr in $rx)

Lwhile:
} beq $rX,$0,Lendw (compile STUFF)
(compile 5TUFF)

Ltest:
beq $0,$0,Lwhile

Lendu : (compute expr in $rx)

bne $rX,$0,Lwhile

Lendw:

Compilers spend a lot of time optimizing in and around loops.
- moving all possible computations outside of loops
- unrolling loops to reduce branching overhead
- simplifying expressions that depend on “loop variables™

Comp 411 - Spring 2013 1/30113 L5 — Addressing Modes 21

C/Assembly Translation: For Loops

* Most high-level languages provide loop constructs that
establish and update an iteration variable, which is used
to control the loop’s behavior

C code:
int sum = 0;

int data[l0] =
{11213141516171819110};

int 1i;
for (i=0; i<10; i++) {
sum += data[i]

}

Comp 411 - Spring 2013

MIPS assembly:

sum:
.word 0xO0

data:
.word Ox1, 0x2, 0x3, 0x4, 0x5
.word 0x6, 0x7, 0x8, 0x9, Oxa

add $30,$0,5$0
Lfor:

lw $24,sum($0)

sll $15,$30,2

lw $15,data($15)

addu $24,$24,$15

sw $24,sum

add $30,$30,1

slt $24,$30,10

bne $24,$0,Lfor

Lendfor:
1/30/13 L5 — Addressing Modes 22

Next Time

e Pseudo instructions
e More C idioms
e Calling procedures

e Recursion

U
#PEY

Comp 411 - Spring 2013 1/30113 L5 — Addressing Modes 23

