
Behind the Curtain 1 Comp 411 – Spring 2013 1/16/13

Behind the Curtain

1. Computer organization
2. Computer Instructions
3. Memory concepts
4. Where should code go?
5. Computers as systems

Introduce TAs
Friday’s lab is posted.

CS logins.
Do Prelab ahead before class

1st Problem set next Wed

Behind the Curtain 2 Comp 411 – Spring 2013 1/16/13

Computers Everywhere

•  The computers we are used to
-  Desktops

-  Laptops

-  Embedded processors
•  Cars
•  Mobile phones
•  Toasters, irons, wristwatches, happy-meal toys

Behind the Curtain 3 Comp 411 – Spring 2013 1/16/13

Computer Organization

·  Every computer has at least three basic units
-  Input/Output

•  where data arrives from the outside world
•  where data is sent to the outside world
•  where data is archived for the long term (i.e. when the lights go out)

-  Memory
•  where data is stored (numbers, text, lists, arrays, data structures)

-  Central Processing Unit
•  where data is manipulated, analyzed, etc.

I/O
(Input/Output)

CPU
(Central

Processing Unit)
Memory

Where bits arrive from and
 are sent to

Where bits are processed Where bits are stored

Behind the Curtain 4 Comp 411 – Spring 2013 1/16/13

Computer Organization (cont)

·  Properties of units
-  Input/Output

•  must convert symbols to bits and vice versa
•  where the analog “real world” meets the digital “computer world”
•  must somehow synchronize to the CPU’s clock

-  Memory
•  stores bits in “addressable” units, such as bytes or words
•  every memory unit has an “address” and “contents”, like a mailbox

-  Central Processing Unit
•  besides processing, it also coordinates data’s movements between units

keyboard
hard drive

display

adder
shifter
logic

01001010
10001001
11100000

I/O CPU Memory

Behind the Curtain 5 Comp 411 – Spring 2013 1/16/13

What Sorts of Processing?
A CPU performs low-level operations called INSTRUCTIONS

 Arithmetic
-  ADD X to Y then put the result in Z
-  SUBTRACT X from Y then put the result back in Y

 Logical
-  Set Z to 1 if X AND Y are 1, otherwise set Z to 0

(AND X with Y then put the result in Z)
-  Set Z to 1 if X OR Y are 1, otherwise set Z to 0

(OR X with Y then put the result in Z)

 Comparison
-  Set Z to 1 if X is EQUAL to Y, otherwise set Z to 0
-  Set Z to 1 if X is GREATER THAN OR EQUAL to Y, otherwise set Z to 0

 Control
-  Skip the next INSTRUCTION if Z is EQUAL to 0

Behind the Curtain 6 Comp 411 – Spring 2013 1/16/13

Anatomy of an Instruction
Nearly all instructions can be made to fit a common template

 OPCODE DESTINATION, OPERAND1, OPERAND2

Issues remaining ...
•  Which operations to include?
•  Where to get variables and constants?
•  Where to store the results?

What to do:
ADD
SUB
AND
OR
SEQ
SGE
SEQ

Who to apply
the operation to…

variables, constants, etc..

Where to put
the result

Memory

CPU

Behind the Curtain 7 Comp 411 – Spring 2013 1/16/13

Memory Concepts
•  Memory is divided into “addressable”

 blocks, each with an address (like an
 array with indices)

•  Addressable blocks are usually larger
 than a bit, typically 8, 16, 32, or 64
 bits

•  Each address has variable “contents”
•  Contents might be:

•  Integers in 2’s complement
•  Floats in IEEE format
•  Strings in ASCII or Unicode
•  Data structure de jour
•  ADDRESSES
•  Nothing distinguishes the difference

Address Contents

0 42

1 3.141592

2 “Lee “

3 “Hart”

4 “Bud “

5 “Levi”

6 “le “

7 2

8 0c3c1d7fff

9 0x37bdfffc

10 0x24040090

11 0x0c00000e

12 0x1000ffff

13 -100

14 0x00004020

15 0x20090001

Behind the Curtain 8 Comp 411 – Spring 2013 1/16/13

One More Thing…
•  INSTRUCTIONS for the CPU are stored in

memory along with data
•  CPU fetches instructions, decodes them

and then performs their implied operation
•  Mechanism inside the CPU directs which

instruction to get next.
•  They appear in memory as a string of

bits that are typically uniform in size
•  Their encoding as “bits” is called

“machine language.” ex: 0c3c1d7fff
•  We assign “mnemonics” to particular

bit patterns to indicate meanings.
These mnemonics are called assembly
language. ex: lui $sp, 0x7fff

Address Contents

0 42

1 3.141592

2 “Lee “

3 “Hart”

4 “Bud “

5 “Levi”

6 “le “

7 2

8 lui $sp,0x7fff

9 ori $sp,$sp,0x7fff

10 addiu $a0,$0,144

11 jal 0x0000000e

12 beq $0,$0,0x0c

13 -100

14 add $t0,$0,$0

15 addi $t1,$0,1

Behind the Curtain 9 Comp 411 – Spring 2013 1/16/13

A Bit of History
·  There is a commonly reoccurring debate over whether “data” and

 “instructions” should be mixed. Leads to two common flavors
 of computer architectures

I/O
(Input/Output)

CPU
(Central

Processing Unit) Data Memory

I/O
(Input/Output)

CPU
(Central

Processing Unit)

Unified
Memory

Program Mem
“Harvard” Architecture

“Von Neumann” Architecture

Behind the Curtain 10 Comp 411 – Spring 2013 1/16/13

A Bit of History
·  Harvard Architecture

-  Instructions and data do not interact, they can
have different “word sizes” and exist in different
“address spaces”

-  Advantages:
•  No self-modifying code (a common hacker trick)
•  Optimize word-lengths of instructions for control and data for applications
•  Higher Throughput (i.e. you can fetch data and instructions from their

 memories simultaneously)

-  Disadvantages:
•  The H/W designer decides the trade-off between how big of a program and

 how large are data
•  Hard to write “Native” programs that generate new programs

(i.e. assemblers, compliers, etc.)
•  Hard to write “Operating Systems” which are programs that at various

 points treat other programs as data (i.e. loading them from disk into
 memory, swapping out processes that are idle)

Howard Aiken:
 Architect of the
 Harvard Mark 1

Behind the Curtain 11 Comp 411 – Spring 2013 1/16/13

A Bit of History
·  Von Neumann Architecture

-  Instructions and data are indistinguishable bits in a
common memory that share a common “word size”
and “address space”

-  Most common model used today, and what we assume in 411
-  Advantages:

•  S/W designer decides how to allocate memory between data and programs
•  Can write “Native” programs to create new programs

 (assemblers and compliers)
•  Programs and subroutines can be loaded, relocated, and modified by other

 programs (dangerous, but powerful)
-  Disadvantages:

•  Word size must suit both common data types and instructions
•  Slightly lower performance due to memory bottleneck (mediated in modern

 computers by the use of separate program and data caches)
•  We need to be very careful when treading on memory. Folks have taken

 advantage of the program-data unification to introduce viruses.

John Von Neumann:
 Proponent of unified
 memory architecture

Behind the Curtain 12 Comp 411 – Spring 2013 1/16/13

Compiler for (i = 0; i < 3; i++)
 m += i*i;

Assembler and Linker addi $8, $6, $6
 sll $8, $8, 4 CPU

Module
ALU A B

Cells
 A B
CO CI
 S

FA

Computer Systems
•  What is a computer system?
•  Where does it start?
•  Where does it end?

Gates

Transistors

Behind the Curtain 13 Comp 411 – Spring 2013 1/16/13

Computers as Translators

Much of what computers do is run programs that interpret a
 “High-level” problem specification and converts it to a
 “lower-level” problem that is closer the simple instructions that
 it understands

•  High-Level Languages
  Compilers
  Interpreters

•  Assembly Language

x: .word 0
y: .word 0
c: .word 123456

...
lw $t0, x
addi $t0, $t0, -3
lw $t1, y
lw $t2, c
add $t1, $t1, $t2
mul $t0, $t0, $t1
sw $t0, y

int x, y;
y = (x-3)*(y+123456)

Behind the Curtain 14 Comp 411 – Spring 2013 1/16/13

Much of what computers do is run programs that interpret a
 “High-level” problem specification and converts it to a
 “lower-level” problem that is closer the simple instructions that
 it understands

•  Assembly Language
•  Machine Language

Computers as Translators

x: .word 0
y: .word 0
c: .word 123456

...
lw $t0, x
addi $t0, $t0, -3
lw $t1, y
lw $t2, c
add $t1, $t1, $t2
mul $t0, $t0, $t1
sw $t0, y

0x04030201
0x08070605
0x00000001
0x00000002
0x00000003
0x00000004
0x706d6f43

Behind the Curtain 15 Comp 411 – Spring 2013 1/16/13

Why So Many Languages?

•  Application Specific
  Pre-historically: COBOL vs. Fortran
  Middle ages: C++ vs. Objective C
  Recent Past: C# vs. Java
  Today: Python vs. Matlab

•  Code Maintainability
  High-level specifications are

easier to understand and modify

•  Code Reuse
•  Code Portability
•  Virtual Machines

Behind the Curtain 16 Comp 411 – Spring 2013 1/16/13

Next Time

•  A complete Instruction Set
•  Assembly Language
• Machine Language

