
L02 –Information Theory 1 Comp411 – Spring 2013 1/14/13

4-1-1 Information

“2 bits, 4 bits, 6 bits a Byte”

 - Representing
 information
 using bits
 - Number
 representations
 - Some other bits

·  Chapter 3.1-3.3

L02 –Information Theory 2 Comp411 – Spring 2013 1/14/13

What is “Information”?

information, n. Knowledge
 communicated or received
 concerning a particular
 fact or circumstance.

Information resolves uncertainty.
Information is simply that which
cannot be predicted. The less
predictable a message is, the more
information it conveys!

Tarheels won!
Are you sure? You

 know this is a
 rebuilding year?

“ 6 Problem sets, 2
 quizzes, and a final!”

A Computer Scientist’s Definition:

L02 –Information Theory 3 Comp411 – Spring 2013 1/14/13

Quantifying Information
(Claude Shannon, 1948)

 Suppose you’re faced with N equally probable choices, and
 I give you a fact that narrows it down to M choices. Then
 you’ve been given:

 log2(N/M) bits of information

Examples:
  information in one coin flip: log2(2/1) = 1 bit
  roll of a single die: log2(6/1) = ~2.6 bits
 outcome of a Football game: 1 bit

 (well, actually, “they won” may convey more
 information if they were “expected” to lose…)

Information is measured
 in bits (binary digits) =

 number of 0/1’s required
 to encode choice(s)

L02 –Information Theory 4 Comp411 – Spring 2013 1/14/13

Example: Sum of 2 dice
2
3
4
5
6
7
8
9
10
11
12

i2 = log2(36/1) = 5.170 bits
i3 = log2(36/2) = 4.170 bits
i4 = log2(36/3) = 3.585 bits
i5 = log2(36/4) = 3.170 bits
i6 = log2(36/5) = 2.848 bits
i7 = log2(36/6) = 2.585 bits
i8 = log2(36/5) = 2.848 bits
i9 = log2(36/4) = 3.170 bits
i10 = log2(36/3) = 3.585 bits
i11 = log2(36/2) = 4.170 bits
i12 = log2(36/1) = 5.170 bits

The average information provided by the sum of 2 dice: Entropy

L02 –Information Theory 5 Comp411 – Spring 2013 1/14/13

Show Me the Bits!
•  Is there a concrete ENCODING that achieves the

 information content?
•  Can the sum of two dice REALLY be

represented using 3.274 bits?
If so, how?

•  The fact is, the average
information content is a
strict *lower-bound* on how
small of a representation
that we can achieve.

•  In practice, it is difficult
to reach this bound. But,
we can come very close.

· 

L02 –Information Theory 6 Comp411 – Spring 2013 1/14/13

Variable-Length Encoding

•  Of course we can use differing numbers of “bits” to
 represent each item of data

•  This is particularly useful if all items are *not* equally
 likely

•  Equally likely items lead to fixed length encodings:
–  Ex: Encode a “particular” roll of 5?
–  {(1,4), (2,3), (3,2), (4,1)} which are equally likely if we use fair dice
–  Entropy =

 bits
–  00 – (1,4), 01 – (2,3), 10 – (3,2), 11 – (4,1)

•  Back to the original problem. Let’s use this encoding:
2 - 10011 3 - 0101 4 - 011 5 - 001
6 - 111 7 - 101 8 - 110 9 - 000
10 - 1000 11 - 0100 12 - 10010

L02 –Information Theory 7 Comp411 – Spring 2013 1/14/13

Variable-Length Encoding

•  Taking a closer look

•  Decoding

2 - 10011 3 - 0101 4 - 011 5 - 001
6 - 111 7 - 101 8 - 110 9 - 000
10 - 1000 11 - 0100 12 - 10010

Unlikely rolls are encoded using more bits

More likely rolls use fewer bits

2 5 3 6 5 8 3
Example Stream: 1001100101011110011100101

L02 –Information Theory 8 Comp411 – Spring 2013 1/14/13

Huffman Coding

•  A simple *greedy* algorithm for approximating an
 entropy efficient encoding
1.  Find the 2 items with the smallest probabilities
2.  Join them into a new *meta* item whose probability is their sum
3.  Remove the two items and insert the new meta item
4.  Repeat from step 1 until there is only one item

36/36

11
2/36 3

2/36

4/36 4
3/36

7/36

9
4/36 5

4/36

8/36
15/36

12
1/36 2

1/36

2/36

7
6/36

11/36

8
5/36 6

5/36

10/36
21/36

10
3/36

5/36

Huffman decoding
tree

L02 –Information Theory 9 Comp411 – Spring 2013 1/14/13

Converting Tree to Encoding

36/36

4
3/36

11
2/36 3

2/36

4/36

7/36

9
4/36 5

4/36

8/36
15/36

7
6/36

10
3/36

12
1/36 2

1/36

2/36

5/36

11/36

8
5/36 6

5/36

10/36
21/36

0

0

0

0
0 0

0

0

0

0
1

1
1

1

1
1

1

1

1

1

Huffman decoding
tree

•  Once the *tree* is constructed, label its edges consistently
 and follow the paths from the largest *meta* item to each
 of the real item to find the encoding.

2 - 10011 3 - 0101 4 - 011 5 - 001
6 – 111 7 – 101 8 - 110 9 - 000
10 - 1000 11 - 0100 12 - 10010

L02 –Information Theory 10 Comp411 – Spring 2013 1/14/13

Encoding Efficiency
•  How does this encoding strategy compare to the

 information content of the roll?

•  Pretty close. Recall that the lower bound was 3.274 bits.
 However, an efficient encoding (as defined by having an
 average code size close to the information content) is
 not always what we want!

L02 –Information Theory 11 Comp411 – Spring 2013 1/14/13

Encoding Considerations
•  Encoding schemes that attempt to match the

 information content of a data stream remove
 redundancy. They are data compression techniques.

•  However, sometimes our goal in encoding information
 is increase redundancy, rather than remove it. Why?

•  Make the information easier to manipulate
 (fixed-sized encodings)

•  Make the data stream resilient to noise
 (error detecting and correcting codes)

-Data compression allows us to
 store our entire music and video
 collections in a pocketable device

-Data redundancy
 enables us to store
 that *same*
 information
 reliably on
 a hard drive

L02 –Information Theory 12 Comp411 – Spring 2013 1/14/13

Information Encoding Standards

 Encoding describes the process of
assigning representations to information

 Choosing an appropriate and efficient encoding is a
 real engineering challenge (and an art)

 Impacts design at many levels
 - Mechanism (devices, # of components used)
 - Efficiency (bits used)
 - Reliability (noise)
 - Security (encryption)

L02 –Information Theory 13 Comp411 – Spring 2013 1/14/13

If all choices are equally likely (or we have no reason to expect
 otherwise), then a fixed-length code is often used. Such a code
 should use at least enough bits to represent the information
 content.

 ex. Decimal digits 10 = {0,1,2,3,4,5,6,7,8,9}
 4-bit BCD (binary code decimal)

 log2(10/1) = 3.322 < 4 bits

 ex. ~84 English characters = {A-Z (26), a-z (26), 0-9 (10),
 punctuation (8), math (9), financial (5)}
 7-bit ASCII (American Standard Code for Information Interchange)

 log2(84/1) = 6.392 < 7 bits

Fixed-Length Encodings

BCD	
0 – 0000	
1 – 0001	
2 – 0010	
3 – 0011	
4 – 0100	
5 – 0101	
6 – 0110	
7 – 0111	
8 – 1000	
9 - 1001	

L02 –Information Theory 14 Comp411 – Spring 2013 1/14/13

ASCII
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

000 NUL SOH STX ETX EOT ACK ENQ BEL BS HT LF VT FF CR SO SI

001 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

010 ! “ # $ % & ‘ () * + , - . /
011 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
100 @ A B C D E F G H I J K L M N O
101 P Q R S T U V W X Y Z [\] ^ _
110 ` a b c d e f g h I j k l m n o
111 p q r s t u v w x y z { | } ~ DEL

-  For letters upper and lower case differ in the 6th “shift” bit
- 10aaaaaa is upper, and 11aaaaa is lower

- Special “control” characters set upper two bits to 00
-  ex. cntl-g  bell, cntl-m  carriage return, cntl-[ esc

- This is why bytes have 8-bits (ASCII + optional parity). Historically, there
 were computers built with 6-bit bytes, which required a special “shift”
 character to set case.

L02 –Information Theory 15 Comp411 – Spring 2013 1/14/13

Unicode

·  ASCII is biased towards western languages.
English in particular.

·  There are, in fact, many more than 256 characters in
 common use:

 â, m, ö, ñ, è, ¥, 揗, 敇, 횝, カ, ℵ, ℷ, ж, క, ค
·  Unicode is a worldwide standard that supports all

 languages, special characters, classic, and arcane
·  Several encoding variants 16-bit (UTF-8)

1 0 x x x x x x 1 0 z y y y y x 1 1 1 1 0 w w w 1 0 w w z z z z

0 x x x x x x x ASCII equiv range:

1 0 x x x x x x 1 1 0 y y y y x Lower 11-bits of 16-bit Unicode

1 0 x x x x x x 1 0 z y y y y x 1 1 1 0 z z z z 16-bit Unicode

L02 –Information Theory 16 Comp411 – Spring 2013 1/14/13

Encoding Positive Integers

211 210 29 28 27 26 25 24 23 22 21 20
0 1 1 1 1 1 0 1 0 0 0 0

It is straightforward to encode positive integers as a sequence of bits.
 Each bit is assigned a weight. Ordered from right to left, these weights
 are increasing powers of 2. The value of an n-bit number encoded in this
 fashion is given by the following formula:

 24 = 16

+ 28 = 256

+ 26 = 64
+ 27 = 128

+ 29 = 512
+ 210 = 1024

200010

L02 –Information Theory 17 Comp411 – Spring 2013 1/14/13

Some Bit Tricks
•  You are going to have to get accustomed to working in

 binary. Specifically for Comp 411, but it will be helpful
 throughout your career as a computer scientist.

•  Here are some helpful guides

1.  Memorize the first 10 powers of 2

20 = 1 25 = 32
21 = 2 26 = 64
22 = 4 27 = 128
23 = 8 28 = 256
24 = 16 29 = 512

L02 –Information Theory 18 Comp411 – Spring 2013 1/14/13

More Tricks with Bits
•  You are going to have to get accustomed to working in

 binary. Specifically for Comp 411, but it will be helpful
 throughout your career as a computer scientist.

•  Here are some helpful guides

2. Memorize the prefixes for powers of 2 that are
multiples of 10

210 = Kilo (1024)
220 = Mega (1024*1024)
230 = Giga (1024*1024*1024)
240 = Tera (1024*1024*1024*1024)
250 = Peta (1024*1024*1024 *1024*1024)
260 = Exa (1024*1024*1024*1024*1024*1024)

L02 –Information Theory 19 Comp411 – Spring 2013 1/14/13

Even More Tricks with Bits
•  You are going to have to get accustomed to working in

 binary. Specifically for Comp 411, but it will be helpful
 throughout your career as a computer scientist.

•  Here are some helpful guides

3.  When you convert a binary number to decimal,
first break it down into clusters of 10 bits.

4.  Then compute the value of the leftmost
 remaining bits (1) find the appropriate prefix
 (GIGA) (Often this is sufficient)

5.  Compute the value of and add in each remaining
 10-bit cluster

0000101000 0001100000 0001100000 01

L02 –Information Theory 20 Comp411 – Spring 2013 1/14/13

Other Helpful Clusters

€

v = 8 i di
i=0

n−1

∑
211 210 29 28 27 26 25 24 23 22 21 20
0 1 1 1 1 1 0 1 0 0 0 0

03720

Octal - base 8

000 - 0
001 - 1
010 - 2
011 - 3
100 - 4
101 - 5
110 - 6
111 - 7

Oftentimes we will find it convenient to cluster groups of
bits together for a more compact written representation.
Clustering by 3 bits is called Octal, and it is often indicated
with a leading zero, 0. Octal is not that common today.

= 200010

Seems natural
to me!

0 2 7 3

 200010

 0*80 = 0

+ 3*83 = 1536

+ 2*81 = 16
+ 7*82 = 448

L02 –Information Theory 21 Comp411 – Spring 2013 1/14/13

One Last Clustering

€

v = 16 i di
i=0

n−1

∑
211 210 29 28 27 26 25 24 23 22 21 20
0 1 1 1 1 1 0 1 0 0 0 0

0x7d0

Hexadecimal - base 16

0000 - 0 1000 - 8
0001 - 1 1001 - 9
0010 - 2 1010 - a
0011 - 3 1011 - b
0100 - 4 1100 - c
0101 - 5 1101 - d
0110 - 6 1110 - e
0111 - 7 1111 - f

Clusters of 4 bits are used most frequently. This
representation is called hexadecimal. The hexadecimal digits
include 0-9, and A-F, and each digit position represents a
power of 16. Commonly indicated with a leading “0x”.

= 200010

0 d 7

 200010

 0*160 = 0
+ 13*161 = 208
+ 7*162 = 1792

L02 –Information Theory 22 Comp411 – Spring 2013 1/14/13

Signed-Number Representations
•  There are also schemes for representing signed integers with

 bits. One obvious method is to encode the sign of the integer
 using one bit. Conventionally, the most significant bit is used
 for the sign. This encoding for signed integers is called the
 SIGNED MAGNITUDE representation.

•  The Good:
–  Easy to negate, find absolute value

•  The Bad:
–  Add/subtract is complicated; depends on the signs
–  Two different ways of representing a 0

•  Not used that frequently in practice
–  with one important exception

S 210 29 28 27 26 25 24 23 22 21 20
0 1 1 1 1 1 0 1 0 0 0 0

€

v = −1S 2 i bi
i=0

n−2

∑
2000

1

-2000

Anything
 weird?

L02 –Information Theory 23 Comp411 – Spring 2013 1/14/13

2’s Complement Integers

20 21 22 23 … 2N-2 -2N-1 … …
N bits

The 2’s complement representation for signed integers is the
 most commonly used signed-integer representation. It is a
 simple modification of unsigned integers where the most
 significant bit is considered negative.

“binary” point “sign bit”
Range: – 2N-1 to 2N-1 – 1

€

v = −2n−1bn−1 + 2 i bi
i=0

n−2

∑
8-bit 2’s complement example:

 11010110 = –27 + 26 + 24 + 22 + 21
 = – 128 + 64 + 16 + 4 + 2 = – 42

L02 –Information Theory 24 Comp411 – Spring 2013 1/14/13

Why 2’s Complement?
 If we use a two’s complement representation for signed
 integers, the same binary addition mod 2n procedure will
 work for adding positive and negative numbers (don’t
 need separate subtraction rules). The same procedure
 will also handle unsigned numbers!

Example:
	5510 = 001101112	

 + 1010 = 000010102	
 	6510 = 010000012	

 5510 = 001101112	
+-1010 = 111101102	
 4510 = 1001011012	

When using signed
 magnitude
 representations, adding a
 negative value really means
 to subtract a positive
 value. However, in 2’s
 complement, adding is
 adding regardless of sign.
 In fact, you NEVER need to
 subtract when you use a
 2’s complement
 representation.

ignore this
 overflow

L02 –Information Theory 25 Comp411 – Spring 2013 1/14/13

2’s Complement Tricks
-  Negation – changing the sign of a number

-  First invert every bit (i.e. 1 → 0, 0 → 1)
-  Add 1
Example: 20 = 00010100, -20 = 11101011 + 1 = 11101100

-  Sign-Extension – aligning different sized
 2’s complement integers

-  Simply copy the sign bit into higher positions
-  16-bit version of 42 = 0000 0000 0010 1010
-  8-bit version of -2 = 1 1 1 1 1 110 1 1 1 1 1 1 1 1

L02 –Information Theory 26 Comp411 – Spring 2013 1/14/13

CLASS EXERCISE
10’s-complement Arithmetic

 (You’ll never need to borrow again)
Step 1) Write down 2 3-digit numbers that you

 want to subtract

Step 2) Form the 9’s-complement of each digit
 in the second number (the subtrahend)

0 → 9
1 → 8
2 → 7
3 → 6
4 → 5
5 → 4
6 → 3
7 → 2
8 → 1
9 → 0

Helpful Table of the
9’s complement for

each digit

Step 3) Add 1 to it (the subtrahend)

Step 4) Add this number to the first

What did you get? Why weren’t you taught to subtract this way?

Step 5) If your result was less than 1000,
 form the 9’s complement again and add 1
 and remember your result is negative
 else
 subtract 1000

L02 –Information Theory 27 Comp411 – Spring 2013 1/14/13

Fixed-Point Numbers
 By moving the implicit location of the “binary”
 point, we can represent signed fractions too.
 This has no effect on how operations are
 performed, assuming that the operands are
 properly aligned.

 1101.0110 = –23 + 22 + 20 + 2-2 + 2-3
 = – 8 + 4 + 1 + 0.25 + 0.125
 = – 2.625

 OR
1101.0110 = -42 * 2-4 = -42/16 = -2.625

-23 22 21 20 2-1 2-2 2-3 2-4

L02 –Information Theory 28 Comp411 – Spring 2013 1/14/13

Repeated Binary Fractions
 Not all fractions can be represented exactly using a
 finite representation. You’ve seen this before in decimal
 notation where the fraction 1/3 (among others) requires
 an infinite number of digits to represent (0.3333…).

 In Binary, a great many fractions that you’ve grown
 attached to require an infinite number of bits to
 represent exactly.

 EX: 1 / 10 = 0.110 = .000110011…2

 1 / 5 = 0.210 = .0011…2 = 0.333…16

L02 –Information Theory 29 Comp411 – Spring 2013 1/14/13

Bias Notation
•  There is yet one more way to represent signed integers,

 which is surprisingly simple. It involves subtracting a
 fixed constant from a given unsigned number. This
 representation is called “Bias Notation”.

€

v = 2 i bi
i=0

n−1

∑ −Bias 1 1 0 1 0 1 1 0
20 25 24 23 22 21 26 27

EX: (Bias = 127)
6 * 1 = 6

13 * 16 = 208
 - 127
 87

Why? Monotonicity

L02 –Information Theory 30 Comp411 – Spring 2013 1/14/13

Floating Point Numbers
 Another way to represent numbers is to use a notation
 similar to Scientific Notation. This format can be used
 to represent numbers with fractions (3.90 x 10-4), very
 small numbers (1.60 x 10-19), and large numbers (6.02 x
 1023). This notation uses two fields to represent each
 number. The first part represents a normalized fraction
 (called the significand), and the second part represents
 the exponent (i.e. the position of the “floating” binary
 point).

€

Normalized Fraction × 2Exponent

Normalized Fraction Exponent

“dynamic range” “bits of accuracy”

L02 –Information Theory 31 Comp411 – Spring 2013 1/14/13

IEEE 754 Format
-  Single precision format

-  Example

1 23 8

S Significand Exponent

This is effectively a
 signed magnitude
 fixed-point number with
 a “hidden” 1.

The 1 is hidden
 because it
 provides no
 information
 after the
 number is
 “normalized”

The exponent is
 represented in
 bias 127
 notation. Why?

v = -1s x 1.Significand x 2Exponent-127

 42.75 = 00101010.110000002
Normalize: 001.0101011000002 x 25

 (127+5)

0 10000100 010101100000000000000002
0100 0010 0010 1011 0000 0000 0000 00002

 42.75 = 0x422B000016

L02 –Information Theory 32 Comp411 – Spring 2013 1/14/13

IEEE 754 Format
-  Single precision limitations

-  A little more than 7 decimal digits of precision
-  minimum positive normalized value: ~1.18 x 10-38

-  maximum positive normalized value: ~3.4 x 1038

-  Inaccuracies become evident after multiple single
 precision operations

-  Double precision format

1

S

52

Significand

11

Exponent

v = -1s x 1.Significand x 2Exponent-1023

L02 –Information Theory 33 Comp411 – Spring 2013 1/14/13

Summary
Information resolves uncertainty

•  Choices equally probable:
•  N choices narrowed down to M →

 log2(N/M) bits of information
•  Choices not equally probable:

•  choicei with probability pi →
 log2(1/pi) bits of information

•  average number of bits = Σpilog2(1/pi)
•  variable-length encodings

Next time:
•  How to encode thing we care about using bits,
 such as numbers, characters, etc…
•  Bit’s cousins, bytes, nibbles, and words

L02 –Information Theory 34 Comp411 – Spring 2013 1/14/13

Summary (continued)
1)  Selecting the encoding of information has important

 implications on how this information can be processed,
 and how much space it requires.

2)  Computer arithmetic is constrained by finite
 representations, this has advantages (it allows for
 complement arithmetic) and disadvantages (it allows
 for overflows, numbers too big or small to be
 represented).

3)  Bit patterns can be interpreted in an endless number of
 ways, however important standards do exist
-  Two’s complement
-  IEEE 754 floating point

