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4-1-1 Information 

“2 bits, 4 bits, 6 bits a Byte” 

    - Representing 
         information 
      using bits 
    - Number 
       representations 
    - Some other bits 

·   Chapter 3.1-3.3 
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What is “Information”? 

information, n.  Knowledge
 communicated or received
 concerning a particular
 fact or circumstance. 

Information resolves uncertainty. 
Information is simply that which 
cannot be predicted. The less 
predictable a message is, the more 
information it conveys! 

Tarheels won! 
Are you sure? You

 know this is a
 rebuilding year? 

“ 6 Problem sets, 2
 quizzes, and a final!” 

A Computer Scientist’s Definition: 
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Quantifying Information 
(Claude Shannon, 1948) 

 Suppose you’re faced with N equally probable choices, and
 I give you a fact that narrows it down to M choices. Then 
 you’ve been given: 

  log2(N/M) bits of information 

Examples: 
  information in one coin flip: log2(2/1) = 1 bit 
  roll of a single die: log2(6/1) = ~2.6 bits 
 outcome of a Football game: 1 bit 

 ( well, actually, “they won” may convey more  
   information if they were “expected” to lose…) 

Information is measured
 in bits (binary digits) =

 number of 0/1’s required
 to encode choice(s) 
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Example: Sum of 2 dice 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

i2 = log2(36/1) = 5.170 bits 
i3 = log2(36/2) = 4.170 bits 
i4 = log2(36/3) = 3.585 bits 
i5 = log2(36/4) = 3.170 bits 
i6 = log2(36/5) = 2.848 bits 
i7 = log2(36/6) = 2.585 bits 
i8 = log2(36/5) = 2.848 bits 
i9 = log2(36/4) = 3.170 bits 
i10 = log2(36/3) = 3.585 bits 
i11 = log2(36/2) = 4.170 bits 
i12 = log2(36/1) = 5.170 bits 

The average information provided by the sum of 2 dice:  Entropy 
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Show Me the Bits! 
•  Is there a concrete ENCODING that achieves the

 information content? 
•  Can the sum of two dice REALLY be  

represented using 3.274 bits?  
If so, how? 

•  The fact is, the average 
information content is a 
strict *lower-bound* on how 
small of a representation 
that we can achieve. 

•  In practice, it is difficult 
to reach this bound. But, 
we can come very close. 

·    
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Variable-Length Encoding 

•  Of course we can use differing numbers of “bits” to
 represent each item of data 

•  This is particularly useful if all items are *not* equally
 likely 

•  Equally likely items lead to fixed length encodings: 
–  Ex: Encode a “particular” roll of 5? 
–  {(1,4), (2,3), (3,2), (4,1)} which are equally likely if we use fair dice 
–  Entropy =                                                                                     

 bits 
–  00 – (1,4),  01 – (2,3),  10 – (3,2), 11 – (4,1) 

•  Back to the original problem. Let’s use this encoding: 
2 - 10011  3 - 0101  4 - 011  5 - 001 
6 - 111  7 - 101  8 - 110  9 - 000 
10 - 1000  11 - 0100  12 - 10010 
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Variable-Length Encoding 

•  Taking a closer look 

•  Decoding 

2 - 10011  3 - 0101  4 - 011  5 - 001 
6 - 111  7 - 101  8 - 110  9 - 000 
10 - 1000  11 - 0100  12 - 10010 

Unlikely rolls are encoded using more bits 

More likely rolls use fewer bits 

2 5 3 6 5 8 3 
Example Stream: 1001100101011110011100101 
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Huffman Coding 

•  A simple *greedy* algorithm for approximating an
 entropy efficient encoding 
1.  Find the 2 items with the smallest probabilities 
2.  Join them into a new *meta* item whose probability is their sum 
3.  Remove the two items and insert the new meta item 
4.  Repeat from step 1 until there is only one item 

36/36 

11 
2/36 3 

2/36 

4/36 4 
3/36 

7/36 

9 
4/36 5 

4/36 

8/36 
15/36 

12 
1/36 2 

1/36 

2/36 

7 
6/36 

11/36 

8 
5/36 6 

5/36 

10/36 
21/36 

10 
3/36 

5/36 

Huffman decoding 
tree 
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Converting Tree to Encoding 

36/36 

4 
3/36 

11 
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2/36 
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6/36 

10 
3/36 
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2/36 

5/36 
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0 
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0 

0 

0 

0 
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1 
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1 

1 
1 

1 

1 

1 

1 

Huffman decoding 
tree 

•  Once the *tree* is constructed, label its edges consistently
 and follow the paths from the largest *meta* item to each
 of the real item to find the encoding. 

2 - 10011  3 - 0101  4 - 011   5 - 001 
6 – 111  7 – 101  8 - 110   9 - 000 
10 - 1000  11 - 0100  12 - 10010 
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Encoding Efficiency 
•  How does this encoding strategy compare to the

 information content of the roll? 

•  Pretty close. Recall that the lower bound was 3.274 bits.
 However, an efficient encoding (as defined by having an
 average code size close to the information content) is
 not always what we want! 
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Encoding Considerations 
•  Encoding schemes that attempt to match the

 information content of a data stream remove
 redundancy. They are data compression techniques. 

•  However, sometimes our goal in encoding information
 is increase redundancy, rather than remove it. Why? 

•  Make the information easier to manipulate 
    (fixed-sized encodings) 

•  Make the data stream resilient to noise  
 (error detecting and correcting codes) 

-Data compression allows us to
 store our entire music and video
 collections in a pocketable device  

-Data redundancy
 enables us to store
 that *same*
 information
 *reliably* on 
 a hard drive 
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Information Encoding Standards 

  Encoding describes the process of 
assigning representations to information 

 Choosing an appropriate and efficient encoding is a
 real engineering challenge (and an art) 

 Impacts design at many levels 
 - Mechanism (devices, # of components used) 
 - Efficiency (bits used) 
 - Reliability (noise) 
 - Security (encryption) 
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If all choices are equally likely (or we have no reason to expect
 otherwise), then a fixed-length code is often used. Such a code
 should use at least enough bits to represent the information
 content.  

 ex. Decimal digits 10 = {0,1,2,3,4,5,6,7,8,9} 
      4-bit BCD (binary code decimal)  

  log2(10/1) = 3.322 < 4 bits 

 ex. ~84 English characters = {A-Z (26), a-z (26), 0-9 (10),  
      punctuation (8), math (9), financial (5)} 
      7-bit ASCII (American Standard Code for Information Interchange) 

  log2(84/1) = 6.392 < 7 bits 

Fixed-Length Encodings 

BCD	
0 – 0000	
1 – 0001	
2 – 0010	
3 – 0011	
4 – 0100	
5 – 0101	
6 – 0110	
7 – 0111	
8 – 1000	
9 - 1001	
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ASCII 
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

000 NUL SOH STX ETX EOT ACK ENQ BEL BS HT LF VT FF CR SO SI 

001 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US 

010 ! “ # $ % & ‘ ( ) * + , - . / 
011 0 1 2 3 4 5 6 7 8 9 : ; < = > ? 
100 @ A B C D E F G H I J K L M N O 
101 P Q R S T U V W X Y Z [ \ ] ^ _ 
110 ` a b c d e f g h I j k l m n o 
111 p q r s t u v w x y z { | } ~ DEL 

-  For letters upper and lower case differ in the 6th “shift” bit  
- 10aaaaaa is upper, and 11aaaaa is lower 

- Special “control” characters set upper two bits to 00 
-  ex. cntl-g  bell, cntl-m  carriage return, cntl-[  esc 

- This is why bytes have 8-bits (ASCII + optional parity). Historically, there
 were computers built with 6-bit bytes, which required a special “shift”
 character to set case. 
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Unicode 

·  ASCII is biased towards western languages. 
English in particular. 

·  There are, in fact, many more than 256 characters in
 common use: 

 â, m, ö, ñ, è, ¥, 揗, 敇, 횝, カ, ℵ, ℷ, ж, క, ค 
·  Unicode is a worldwide standard that supports all

 languages, special characters, classic, and arcane 
·  Several encoding variants 16-bit (UTF-8) 

1 0 x x x x x x 1 0 z y y y y x 1 1 1 1 0 w w w 1 0 w w z z z z 

0 x x x x x x x ASCII equiv range: 

1 0 x x x x x x 1 1 0 y y y y x Lower 11-bits of 16-bit Unicode 

1 0 x x x x x x 1 0 z y y y y x 1 1 1 0 z z z z 16-bit Unicode 
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Encoding Positive Integers 

211 210 29 28 27 26 25 24 23 22 21 20 
0 1 1 1 1 1 0 1 0 0 0 0 

It is straightforward to encode positive integers as a sequence of bits.
 Each bit is assigned a weight. Ordered from right to left, these weights
 are increasing powers of 2. The value of an n-bit number encoded in this
 fashion is given by the following formula: 

   24 =     16 

+ 28 =   256 

+ 26 =    64 
+ 27 =    128 

+ 29 =    512 
+ 210 = 1024 

200010 
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Some Bit Tricks 
•  You are going to have to get accustomed to working in

 binary. Specifically for Comp 411, but it will be helpful
 throughout your career as a computer scientist. 

•  Here are some helpful guides  

1.  Memorize the first 10 powers of 2 

20 = 1   25 = 32 
21  = 2   26 = 64 
22 = 4   27 = 128 
23 = 8   28 = 256 
24 = 16   29 = 512 



L02 –Information Theory   18 Comp411 – Spring 2013 1/14/13 

More Tricks with Bits 
•  You are going to have to get accustomed to working in

 binary. Specifically for Comp 411, but it will be helpful
 throughout your career as a computer scientist. 

•  Here are some helpful guides  

2.   Memorize the prefixes for powers of 2 that are 
multiples of 10 

210  = Kilo (1024) 
220  = Mega (1024*1024) 
230  = Giga (1024*1024*1024) 
240  = Tera (1024*1024*1024*1024) 
250  = Peta (1024*1024*1024 *1024*1024) 
260  = Exa  (1024*1024*1024*1024*1024*1024)   
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Even More Tricks with Bits 
•  You are going to have to get accustomed to working in

 binary. Specifically for Comp 411, but it will be helpful
 throughout your career as a computer scientist. 

•  Here are some helpful guides  

3.  When you convert a binary number to decimal, 
first break it down into clusters of 10 bits. 

4.  Then compute the value of the leftmost
 remaining bits (1) find the appropriate prefix
 (GIGA) (Often this is sufficient) 

5.  Compute the value of and add in each remaining
 10-bit cluster 

0000101000 0001100000 0001100000 01 
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Other Helpful Clusters 

€ 

v = 8 i di
i=0

n−1

∑
211 210 29 28 27 26 25 24 23 22 21 20 
0 1 1 1 1 1 0 1 0 0 0 0 

03720 

Octal - base 8 

000 - 0 
001 - 1 
010 - 2 
011 - 3 
100 - 4 
101 - 5 
110 - 6 
111 - 7 

Oftentimes we will find it convenient to cluster groups of 
bits together for a more compact written representation. 
Clustering by 3 bits is called Octal, and it is often indicated 
with a leading zero, 0. Octal is not that common today. 

= 200010 

Seems natural 
to me! 

0 2 7 3 

 200010 

   0*80 =        0 

+ 3*83 =   1536 

+ 2*81  =       16 
+ 7*82 =    448 
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One Last Clustering 

€ 

v = 16 i di
i=0

n−1

∑
211 210 29 28 27 26 25 24 23 22 21 20 
0 1 1 1 1 1 0 1 0 0 0 0 

0x7d0 

Hexadecimal - base 16 

0000 - 0   1000 - 8 
0001 - 1     1001 - 9 
0010 - 2    1010 - a 
0011 - 3     1011 - b 
0100 - 4     1100 - c 
0101 - 5     1101 - d 
0110 - 6     1110 - e 
0111 - 7     1111 - f 

Clusters of 4 bits are used most frequently. This 
representation is called hexadecimal. The hexadecimal digits 
include 0-9, and A-F, and each digit position represents a 
power of 16. Commonly indicated with a leading “0x”. 

= 200010 

0 d 7 

 200010 

   0*160  =         0  
+ 13*161  =    208 
+ 7*162   =    1792 
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Signed-Number Representations 
•  There are also schemes for representing signed integers with

 bits. One obvious method is to encode the sign of the integer
 using one bit. Conventionally, the most significant bit is used
 for the sign. This encoding for signed integers is called the
 SIGNED MAGNITUDE representation. 

•  The Good:   
–  Easy to negate, find absolute value 

•  The Bad: 
–  Add/subtract is complicated; depends on the signs 
–  Two different ways of representing a 0 

•  Not used that frequently in practice 
–  with one important exception 

S 210 29 28 27 26 25 24 23 22 21 20 
0 1 1 1 1 1 0 1 0 0 0 0 

€ 

v = −1S 2 i bi
i=0

n−2

∑
2000 

1 

-2000 

Anything
 weird? 
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2’s Complement Integers 

20 21 22 23 … 2N-2 -2N-1 … … 
N bits 

The 2’s complement representation for signed integers is the
 most commonly used signed-integer representation. It is a
 simple modification of unsigned integers where the most
 significant bit is considered negative. 

“binary” point “sign bit” 
Range: – 2N-1  to  2N-1 – 1 

€ 

v = −2n−1bn−1 + 2 i bi
i=0

n−2

∑
8-bit 2’s complement example: 

    11010110  = –27 + 26 + 24 + 22 + 21 
   = – 128 + 64 + 16 + 4 + 2 = – 42 
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Why 2’s Complement? 
 If we use a two’s complement representation for signed
 integers, the same binary addition mod 2n procedure will
 work for adding positive and negative numbers (don’t
 need separate subtraction rules).  The same procedure
 will also handle unsigned numbers! 

Example: 
	5510  = 001101112	

   + 1010  = 000010102	
 	6510  = 010000012	

     5510 =  001101112	
+-1010 =  111101102	
  4510 = 1001011012	

When using signed
 magnitude
 representations, adding a
 negative value really means
 to subtract a positive
 value. However, in 2’s
 complement, adding is
 adding regardless of sign.
 In fact, you NEVER need to
 subtract when you use a
 2’s complement
 representation. 

ignore this
 overflow 
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2’s Complement Tricks 
-  Negation – changing the sign of a number 

-  First invert every bit (i.e. 1 → 0, 0 → 1) 
-  Add 1 
Example:  20 = 00010100, -20 = 11101011 + 1 = 11101100 

-  Sign-Extension – aligning different sized  
   2’s complement integers 

-  Simply copy the sign bit into higher positions 
-  16-bit version of 42  = 0000 0000 0010 1010 
-  8-bit version of -2  =                         1 1 1 1  1 110 1 1 1 1  1 1 1 1 
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CLASS EXERCISE 
10’s-complement Arithmetic  

 (You’ll never need to borrow again) 
Step 1) Write down 2 3-digit numbers that you  

 want to subtract 

Step 2) Form the 9’s-complement of each digit 
 in the second number (the subtrahend) 

0 → 9 
1 → 8 
2 → 7 
3 → 6 
4 → 5 
5 → 4 
6 → 3 
7 → 2 
8 → 1 
9 → 0 

Helpful Table of the 
9’s complement for 

each digit 

Step 3) Add 1 to it (the subtrahend) 

Step 4) Add this number to the first 

What did you get? Why weren’t you taught to subtract this way? 

Step 5) If your result was less than 1000, 
       form the 9’s complement again and add 1 
       and remember your result is negative 
 else 
        subtract 1000 
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Fixed-Point Numbers 
 By moving the implicit location of the “binary”
 point, we can represent signed fractions too.
 This has no effect on how operations are
 performed, assuming that the operands are
 properly aligned. 

     1101.0110  = –23 + 22 + 20 + 2-2 + 2-3 
               = – 8 + 4 + 1 + 0.25 + 0.125 
               = – 2.625 

        OR 
1101.0110      = -42 * 2-4 = -42/16 = -2.625 

-23 22 21 20 2-1 2-2 2-3 2-4 
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Repeated Binary Fractions 
 Not all fractions can be represented exactly using a
 finite representation. You’ve seen this before in decimal
 notation where the fraction 1/3 (among others) requires
 an infinite number of digits to represent (0.3333…). 

 In Binary, a great many fractions that you’ve grown
 attached to require an infinite number of bits to
 represent exactly. 

  EX:   1 / 10 = 0.110 = .000110011…2 

    1 / 5 = 0.210 = .0011…2 = 0.333…16 
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Bias Notation 
•  There is yet one more way to represent signed integers,

 which is surprisingly simple. It involves subtracting a
 fixed constant from a given unsigned number. This
 representation is called  “Bias Notation”. 

€ 

v = 2 i bi
i=0

n−1

∑ −Bias 1 1 0 1 0 1 1 0 
20 25 24 23 22 21 26 27 

EX: (Bias = 127) 
6 * 1   =        6 

13 * 16   =   208 
       - 127 
         87 

Why? Monotonicity 
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Floating Point Numbers 
 Another way to represent numbers is to use a notation
 similar to Scientific Notation. This format can be used
 to represent numbers with fractions (3.90 x 10-4), very
 small numbers (1.60 x 10-19), and large numbers (6.02 x
 1023). This notation uses two fields to represent each
 number. The first part represents a normalized fraction
 (called the significand), and the second part represents
 the exponent (i.e. the position of the “floating” binary
 point).  

€ 

Normalized Fraction × 2Exponent

Normalized Fraction Exponent 

“dynamic range” “bits of accuracy” 
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IEEE 754 Format 
-  Single precision format 

-  Example 

1 23 8 

S Significand Exponent 

This is effectively a
 signed magnitude 
 fixed-point number with
 a “hidden” 1. 

The 1 is hidden
 because it
 provides no
 information
 after the
 number is
 “normalized” 

The exponent is
 represented in
 bias 127
 notation. Why? 

v = -1s x 1.Significand x 2Exponent-127 

          42.75 = 00101010.110000002 
Normalize:   001.0101011000002 x 25 

       (127+5) 

0 10000100 010101100000000000000002 
0100 0010 0010 1011 0000 0000 0000 00002 

  42.75 = 0x422B000016 
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IEEE 754 Format 
-  Single precision limitations 

-  A little more than 7 decimal digits of precision 
-  minimum positive normalized value: ~1.18 x 10-38 

-  maximum positive normalized value: ~3.4 x 1038 

-  Inaccuracies become evident after multiple single
 precision operations  

-  Double precision format 

1 

S 

52 

Significand 

11 

Exponent 

v = -1s x 1.Significand x 2Exponent-1023 
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Summary 
Information resolves uncertainty 

•  Choices equally probable: 
•  N choices narrowed down to M →  

  log2(N/M) bits of information 
•  Choices not equally probable: 

•  choicei with probability pi →  
  log2(1/pi) bits of information 

•  average number of bits = Σpilog2(1/pi)  
•  variable-length encodings 

Next time: 
•  How to encode thing we care about using bits,
 such as numbers, characters, etc… 
•  Bit’s cousins, bytes, nibbles, and words 
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Summary (continued) 
1)  Selecting the encoding of information has important

 implications on how this information can be processed,
 and how much space it requires. 

2)  Computer arithmetic is constrained by finite
 representations, this has advantages (it allows for
 complement arithmetic) and disadvantages (it allows
 for overflows, numbers too big or small to be
 represented).  

3)  Bit patterns can be interpreted in an endless number of
 ways, however important standards do exist 
-  Two’s complement 
-  IEEE 754 floating point 


