
IPED: Inheritance Path Based Pedigree

Reconstruction Algorithm Using Genotype Data

Dan He1,�, Zhanyong Wang2, Buhm Han3,4,
Laxmi Parida1, and Eleazar Eskin2

1 IBM T.J. Watson Research, Yorktown Heights, NY 10598, USA
2 Department of Computer Science, University of California Los Angeles,

Los Angeles, CA 90095, USA
3 Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School,

Boston, MA, USA
4 Program in Medical and Population Genetics, Broad Institute of Harvard and MIT,

Cambridge, MA, USA
dhe@us.ibm.com

Abstract. The problem of inference of family trees, or pedigree recon-
struction, for a group of individuals is a fundamental problem in genetics.
Various methods have been proposed to automate the process of pedigree
reconstruction given the genotypes or haplotypes of a set of individuals.
Current methods, unfortunately, are very time consuming and inaccurate
for complicated pedigrees such as pedigrees with inbreeding. In this work,
we propose an efficient algorithm which is able to reconstruct large pedi-
grees with reasonable accuracy. Our algorithm reconstructs the pedigrees
generation by generation backwards in time from the extant generation.
We predict the relationships between individuals in the same generation
using an inheritance path based approach implemented using an efficient
dynamic programming algorithm. Experiments show that our algorithm
runs in linear time with respect to the number of reconstructed gen-
erations and therefore it can reconstruct pedigrees which have a large
number of generations. Indeed it is the first practical method for recon-
struction of large pedigrees from genotype data.

1 Introduction

Inferring genetic relationships from genotype data is a fundamental problem in
genetics and has a long history [5,9,1,6,10,12]. Pedigree reconstruction is a hard
problem and even constructing sibling relationships is known to be NP-hard [7].
In this work, we focus on reconstruction methods using genotype data. Various
methods have been proposed for automatically reconstructing pedigrees using
genotype data, which can be categorized into two categories. The first cate-
gory is methods which reconstruct the haplotypes of the unknown ancestors in
the pedigree. Thompson [14] proposed a machine learning approach to find the
pedigree that maximizes the probability of observing the data. As the method

� Corresponding author.

M. Deng et al. (Eds.): RECOMB 2013, LNBI 7821, pp. 75–87, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

76 D. He et al.

reconstructs both the pedigree graph and the ancestor haplotypes at the same
time, it is very time-consuming and can be only applied to small families of
size 4-8 people. The second category is methods which reconstruct the pedi-
gree directly without reconstructing ancestor haplotypes. Thatte and Steel [13]
proposed a HMM based model to reconstruct arbitrary pedigree graphs. How-
ever, their model, in which every individual passes on a trace of their haplotypes
to all of their descendants is unrealistic. Kirkpatrick et al. [7] proposed an al-
gorithm to reconstruct pedigrees based on pairwise IBD (identity-by-descent)
information without reconstructing the ancestral haplotypes. A generation-by-
generation approach is employed and the pedigree is reconstructed backwards in
time, one generation at a time. The input of the algorithm is the set of extant
individuals with haplotype and IBD information available. At each generation,
a compatibility graph is constructed, where the nodes are individuals and the
edges indicate the pair of individuals which could be siblings. The edges are
defined via a statistical test such that an edge is constructed only when the test
score between the pair of individuals is less than a pre-defined threshold. Sibling
sets are identified in the compatibility graph using a Max-clique algorithm iter-
atively to partition the graph into disjoint sets of vertices. The vertices in the
same set have edges connecting to all the other vertices of the same set. Both
categories of methods encounter difficulties depending on the structure of pedi-
gree. When the individuals are not related through inbreeding, these methods
are fast and accurate. However, when inbreeding is present, the reconstruction
becomes much more complicated and these methods perform poorly.

In this work, we propose an efficient algorithm, IPED (Inheritance Path based
Pedigree Reconstruction), which enables the reconstruction of very large pedi-
grees, with and without the presence of inbreeding. Our algorithm follows the
approach of [7] and starts from extant individuals and reconstructs the pedigree
generation by generation backwards in time. For each generation, we predict
the pairwise relationships between the individuals at the current generation and
create parents for them according to their relationships. When we evaluate the
pairwise relationships for a pair of individuals, we consider the pairwise IBD
length for their extant descendants, namely the leaf individuals in the pedigree.
We then apply a statistical test on the two individuals to determine if they are
siblings or not siblings.

One of the challenges in our approach is to compute the expected IBD length
between a pair of extant individuals efficiently, in the presence of inbreeding.
The CIP and COP methods of [7] are efficient for outbreed pedigrees but very
inefficient for inbred pedigrees. This is because for the inbreeding case the alleles
from an extant individual can be inherited in an exponential number of ways
from his or her ancestors with respect to the number of nodes in the pedigree
graph. The CIP algorithm applies a random walk from the ancestor to sample
these exponential number of ways to estimate the expected IBD length between a
pair of extant individuals. In addition, the pedigree needs to be explored multiple
times when constructing each generation. Therefore the algorithm is inefficient

IPED: Inheritance Path Based Pedigree Reconstruction Algorithm 77

even for relatively small number of generations. In our experiments, CIP can not
finish for a family of size around 50 individuals with 4 generations.

In order to address this problem, we consider the inheritance paths between
the ancestor and the extant individuals, where each inheritance path corresponds
to one path in the pedigree from the ancestor to the extant individual. If we know
all the inheritance paths from the ancestor to the extant individuals, we can es-
timate the probability that an allele of the extant individual is inherited from
the ancestor. The probability can be further utilized to compute the expected
average IBD length between a pair of extant individuals. However, the number
of inheritance paths can be exponential. We observed although the number of
inheritance paths can be exponential, their lengths are bounded by the height of
the pedigree. Therefore we use a hash data structure to hash all the inheritance
paths of the same length into a bucket and the number of buckets is bounded by
the height of the pedigree and thus is usually small. We save the hash tables for
each individual and we develop a dynamic programming algorithm to populate
the hash table of the individuals generation by generation. By doing this, we
avoid redundant computation of the inheritance paths where the entire pedigree
needs to be explored repeatedly and thus the dynamic programming algorithm is
very efficient. Also because we avoid the time-consuming sampling step by using
the inheritance path, our algorithm IPED is extremely efficient and it does not
need to specify whether or not inbreeding is present, which is a big advantage
over COP and CIP. Our experiments show that our algorithm is able to recon-
struct the pedigree with inbreeding for a family of size 340 individuals with 10
generations in just 14 seconds. To our knowledge, this is the first algorithm that
is able to reconstruct such large pedigrees with inbreeding using genotype data.

2 Methods

2.1 Pedigrees

A pedigree graph consists of nodes and edges where nodes are diploid individuals
and edges are between parents and children. Circle nodes are females and boxes
are males. An example of pedigree graph is shown in Figure 1. Parent nodes are
also called founders. In the example, individual 13,14,15 are extant individuals
and their founders are individuals 9, 10 and 11, 12, respectively. Outbreeding
means an individual mates with another individual from different family. In the
example, 3,4 and 6, 7 are both outbreeding cases. Inbreeding means an individual
mates with another individual from the same family. In the example, 9, 10 is
inbreeding case. We can see inbreeding case is usually more complicated as an
individual can inherit from his ancestors in multiple ways. For example, 13, 14
can inherit from 1, 2 in two ways but 15 can inherit from 1,2 in only one way.

As we only have extant individuals and we reconstruct their ancestors, the
pedigree is reconstructed backwards in time. We use the same notion of gener-
ations in [7], namely generations are numbered backwards in time, with larger
numbers being older generations. Every individual in the graph is associated with

78 D. He et al.

a generation g. All the extant individuals are associated with g=1 and their di-
rect parents are associated with generation g=2. The height of a pedigree is the
biggest g. We define an inheritance path between a child and his ancestor the
same as it is defined in [10], namely as a path between the two corresponding
nodes in the pedigree graph. For example, the inheritance path between 1 and 15
consists of nodes 1-6-11-15. There are two inheritance paths between 1 and 13:
1-4-9-13 and 1-6-10-13. Also we assume the inheritance paths are not directed.
In this work, we do not consider pedigrees with half-siblings, namely we assume
an individual only mates with another individual in the same generation.

Fig. 1. An example of pedigree graph

2.2 Metrics to Evaluate the Relationship of a Pair of Individuals

As our algorithm reconstructs the pedigree generation by generation, we need
to determine the relationship of any pair of individuals at a generation. We
consider two different metrics for extant individuals and ancestral individuals,
respectively.

To determine the relationship of a pair of extant individuals, we consider the
IBD (identity-by-descent) length of the two individuals. In order to be distin-
guished from IBS (identity-by-state), the IBD region needs to be long enough,
for example, of size 1Mb. If we are given the genotypes of the extant individuals,
we can compute the IBD regions between a pair of individuals using existing
tools such as Beagle [3]. In this work, in our simulation, we assume we are given
haplotypes of the extant individuals and we consider identical regions of length
greater than 1Mb between the two individuals as their IBD regions. We con-
sider the averaged IBD length instead of total length of IBD to handle the cases
where IBD regions are unevenly distributed. For simplicity, we use “IBD length”
to denote “averaged IBD length”.

Then for a pair of extant individuals i, j, we conduct a statistical test and
compute a score vi,j as the following:

vi,j =

(
estimate(IBDi,j)− E(IBDi,j)

)2

var(IBDi,j)
(1)

IPED: Inheritance Path Based Pedigree Reconstruction Algorithm 79

where estimate(IBDi,j) is the estimated IBD length between individuals i and
j, E(IBDi,j) is the expected IBD length between i and j, var(IBDi,j) is the
variance of the IBD length between i and j. estimate(IBDi,j) can be computed
easily given genotypes or haplotypes of individual i and j. As recombination
occurs in meioses, it is shown [4] that the length of IBD between i and j follows an
exponential distribution exp(Mr), where M is the number of meioses between i
and j, r is the recombination rate which is set as 10−8, namely the probability for
recombination occurs at any loci is 10−8. Therefore, E(IBDi,j) and var(IBDi,j)
are computed as the following:

E(IBDi,j) =
1

M × r
(2)

var(IBDi,j) =
1

(M × r)2
(3)

For outbreeding case, M = 2(g − 1) where g is the generation. So for extant
individuals, as we are constructing the second generation, g = 2. For inbreeding
case, a random walk algorithm whose complexity is exponential is applied. More
details will be given in the next section.

As we need to consider both paternal and maternal alleles, our IBD estimation
is chromosome-wise instead of individual-wise. As i, j both have a pair of chromo-
somes noted as i1, i2, j1, j2, there are two possible ways to compare them for IBD,
namely [(i1, j1), (i2, j2)] or [(i1, j2), (i2, j1)]. We select the way that maximizes
the sum of the averaged IBD length for both chromosomes. Without losing gen-
erality, assuming we select [(i1, j1), (i2, j2)]. Then we compute vi,j =

vi1,j1+vi2,j2

2 ,
where vi1,j1 is computed according to Formula 1 by considering the estimated
IBD between i1, j1. Notice E(IBDi,j) and var(IBDi,j) don’t depend on the
chromosomes of i and j.

In the method of Kirkpatrick et al. [7], if the test score vi,j is less than a
pre-defined threshold value S, i, j are considered as siblings. However, it is not
clear how to determine the value S and the threshold usually varies for individ-
uals of different relatedness. In [7], the threshold is determined empirically by
simulating many pedigrees. As we show in our experiments, the performance of
the algorithms varies with the threshold.

In our work, we try to avoid using a threshold. As the pair of nodes are either
siblings or non-siblings, we can compute the number of meioses between them for
each case. For the case that they are siblings, the number of meioses is 2 and we
can compute the length of the expected IBD using Formula 3. For non- sibling
cases, we don’t know exactly how many meioses there are between the pair of
nodes. However, we can compute a lower bound for such number: namely the
two nodes are first-cousin and the number of meioses is 4, which is the minimum
number for a pair of non-sibling nodes. Then we can compute the length of the
expected IBD for non-sibling again using Formula 3. We compare the two test
scores and determine the pair of nodes are siblings if the test score for sibling
case is lower.

80 D. He et al.

To determine the relationship of a pair of ancestral individuals, we use a
similar strategy as the one in [7]. Assuming individuals k and l are at generation
g > 1. The sets of all extant descendants of k and l are K and L, respectively.
We compute a score vk,l between k and l as

vk,l =
1

|K||L|
∑

i∈K

∑

j∈L

vi,j

=
1

|K||L|
∑

i∈K

∑

j∈L

(
estimate(IBDi,j)− E(IBDi,j)

)2

var(IBDi,j)
(4)

where |K| is the size of K, the number of extant descendants of k, i ∈ K is an
extant individual in K, vi,j is computed via Formula 1. Again, we compute vk,l
for both sibling case and first-cousin case and determine k, l are siblings if the
score for sibling case is lower. More details will be given in the next section on
how to compute E(IBDi,j) and var(IBDi,j).

2.3 IPED: Inheritance Path Based Pedigree Reconstruction
Algorithm

The computation of E(IBDi,j) and var(IBDi,j) is complicated in that the num-
ber of possible meioses between i and j can be exponential with respect to the
nodes in the pedigree graph. To estimate the expected length of IBD between a
pair of extant individuals, we need to consider all possible options for a pair of
alleles to inherit from the shared ancestor, which is also exponential to the num-
ber of nodes in the pedigree. A random walk algorithm CIP from the founders
with sampling is applied in [7]. However, the sampling is still time consuming in
an exponential search space. What’s more, as the reconstruction is generation-
by-generation, from generation 2 to higher generation, the sampling strategy
needs to be conducted every time when we move from one generation to the
next generation backwards, which obviously involves redundant computation.
Therefore, CIP is not efficient for inbreeding case. In our experiments, CIP can
not finish for a family of size around 50 individuals with 4 generations.

To address the aforementioned two problems, we proposed a very efficient algo-
rithm IPED (Inheritance Path based Pedigree Reconstruction Algorithm), which
is based on the idea that the probability that a pair of alleles from two individuals
are inherited from shared ancestor depends on the number of possible inheritance
paths and their corresponding lengths from the shared ancestor. An example of
inheritance path is shown in Figure 1. We can see the length of inheritance path
determines the number of meioses between the two individuals and thus deter-
mines the probability of a pair of alleles from the two extant individuals inherited
from the same ancestor. For example, the number of meioses between 8, 9 is 2 as
they are siblings and the distance between them in the pedigree is 2. The number
of meioses between 13 and 15 can be either 6 or 4, as there are multiple paths in
the pedigree graph between them. In our algorithm, if there are multiple possible

IPED: Inheritance Path Based Pedigree Reconstruction Algorithm 81

numbers of meioses, we used the averaged value to approximate the IBD length.
So for 13 and 15 the average number of meioses is 5.

Therefore, to determine the number of possible distances, or possible meioses
between the extant individuals, for any founder in the current generation, we
save the number of inheritance paths and the length of these inheritance paths
from the founder to all the extant descendant individuals. Notice for inbreeding,
there maybe an exponential number of inheritance paths with respect to the
number of nodes in the pedigree. However, the length of the inheritance paths
is finite, which is bounded by the height of the pedigree. Therefore, what we
need to save is just a hash table with (length, number) pairs where the length
of the inheritance path is the key and the number of inheritance paths with
such length is the value. For example, there are 2 length-2 paths, 5 length-
3 paths, 6 length-4 paths, then we just need to save three pairs (2,2), (3,5),
(4,6), instead of saving all 9 paths separately. Therefore, we don’t need to save
exponential number of paths. Instead, we save only a small number of pairs,
which is bounded by the height of the pedigree. Notice we need to save such pairs
[i, ((li1 , ni2), . . . , (lik , nik)] between the founder and every extant descendant of
it, where i is the i-th extant descendant, (lik , nik) is the k-th (length, number)
pair between the founder and the descendant. We call such pairs Inheritance
Path Pair (IPP). Given the number of extant individuals is fixed and is usually
not a big number, the complexity is bounded by a constant.

The inheritance path pairs can be used to compute the possible distances, or
the average number of meioses of a pair of extant individuals. Assuming a pair
of founders G and K with inheritance path pairs [i, ((lg1 , ng1), . . . , (lgh , ngh)] and
[j, ((lk1 , nk1), . . . , (lkf

, nkf
))]. The average number of meioses between individual

i, j can be computed with Algorithm 1, where t is a test option. For sibling case,
t = 1 and for first-cousin case, t = 2. Once the number of meioses is computed,
it can be applied to Formula 3 directly to compute the statistic test score.

Algorithm 1. Calculate the average number of meioses between i, j

Input: t (test option), [i, ((lg1 , ng1), . . . , (lgh , ngh)] and [j, ((lk1 , nk1), . . . , (lkf
, nkf

))]
Output: The average number of meioses between i, j

Length← 0
Num← 0
for a = 1 to h do

for b = 1 to f do
Num← Num + nga × nkb

Length← Length+ (lga + t+ lkb
+ t)× (nga × nkb

)
end for

end for
number of meioses← Length

Num

Notice some of the inheritance paths may be shared by two extant individuals
for inbreeding case. For example, in Figure 1, the inheritance paths between 1
and 15 1-6-11-15 and between 1 and 13 1-6-10-13 share one edge 1-11. Thus the

82 D. He et al.

number of meioses is 4 instead of 6. Using the above algorithm, we will have 6
as the number of meioses. However, as we want to avoid saving the exponential
paths explicitly, we just assume the paths do not overlap. Therefore, IPED is not
optimal. Instead, it is an approximation algorithm. Another approximation our
method is employing is that we approximate the mean and variance of the IBD
length by using the average number of meioses (Algorithm 1). We also assume
that if there are multiple paths between two individuals, it is not possible for
the individuals to be IBD through one path at a locus and IBD through another
path at the next locus. Such case should be rare in practice because multiple
recombination events should simultaneously occur in the pedigree at one locus.
Despite of these approximations, our experiments show that IPED achieves good
reconstruction accuracy.

Once we save such pairs for each founder at one generation, when we recon-
struct the next generation (the parents of the current generation) backwards,
we need to compute such pairs between all the possible founders in the next
generation and all the extant individuals. A naive algorithm is to compute the
IPPs between every founder and every extant individual on each generation.
However, this requires significant redundant computations since all the nodes of
lower generation will be explored multiple times when computing the inheritance
paths. We developed a dynamic programming algorithm where the IPPs of the
current generation can be used to compute the IPPs of the next generation.

The dynamic programming algorithm starts the reconstruction from gener-
ation 2 as generation 1 consists of all the known extant individuals. Then at
generation 2, assuming we have a founder Gi

2 (without losing generality, assum-
ing he is father) and his k children in generation 1 as Gi1

1 , Gi2
1 , . . . , Gik

1 . Then
for every paternal allele of each child, obviously we have 1 possible length 1
inheritance path from the founder. Therefore, we save [G

ij
1 , (1, 1)] for Gi

2 for
1 ≤ j ≤ k. Now let’s assume we are at generation T, and we are reconstructing
generation T + 1. Again, assuming we have a founder Gi

T+1 as father and his k

children in generation T as Gi1
T , Gi2

T , . . . , Gik
T . We then obtain the IPPs for Gi

T+1

by merging the IPPs for Gi1
T , Gi2

T , . . . , Gik
T . The recursion is shown as below:

IPP (Gi
T+1) =

k∑

j=1

IPP (G
ij
T) + 1

where IPP (Gi
T+1) is the set of IPPs for node Gi

T+1. Assuming for G
ij
T , we have

IPPs
[Gt

1, ((Lj1 , Nj1), . . . , (Ljm , Njm))], IPP (G
ij
T) + 1 is to update these pairs as

[Gt
1, (Lj1+1, Nj1), . . . , (Ljm+1, Njm)]. IPP (Ga

T)+IPP (Gb
T) is to merge two sets

of IPPs. When we merge two pairs (La, Na) and (Lb, Nb), if La = Lb, we obtain a
merged pair (La, Na+Nb). Otherwise we keep the two pairs. Therefore, after the
merge, we obtain [Gt

1, ((L1, N1), . . . , (Lm, Nm))] for each extant individual Gt
1

who is the descendant of Gi
T+1, where L1, . . . , Lm are all unique and m ≤ T +1.

The summation (
∑

) is similarly defined as the repeated merging operation over
multiple sets of IPPs.

IPED: Inheritance Path Based Pedigree Reconstruction Algorithm 83

An example of the dynamic programming algorithm is shown in Figure 2. As
we can see in the example, when we merge the IPPs, we increase the length
of the paths by 1 and add the number for the paths of the same length. The
complexity of this dynamic programming algorithm is O(E × k ×H) where E
is the number of extant individuals, k is the number of direct children for each
founder, H is the height of the pedigree. Therefore it is linear time with respect
to the height of the pedigree.

Fig. 2. An example of the dynamic programming algorithm

Once we compute the inheritance path pairs for each founder, we can calculate
the number of meioses of any pair of extant individuals using Algorithm 1 and
further compute the test score according to Formula 4.

2.4 Creating Parents

Once we determined the relationships of all the individuals of the current gener-
ation, we need to create parents for them. In order to guarantee that we create
the same parents for all the individuals that are siblings, we create a graph for all
the individuals at the current generation. Every individual is a node and there
is an edge between a pair of nodes if they are determined as siblings according
to the test. We call the graph Sibling Graph. Then we apply a Max-Clique algo-
rithm [2] on the sibling graph for the current generation. We select the maximum
clique where all the individuals in the clique are siblings to each other. We then
create parents for them, and remove them from the sibling graph. We then select
the next maximum clique from the remaining sibling graph and we repeat the
procedure until all nodes are selected and all parents are created.

2.5 Performance Evaluation

Once we reconstructed the pedigree, we need to evaluate the accuracy of the
reconstruction. We can not simply compare the reconstructed pedigree with the
true pedigree directly due to graph polymorphism [8]. Therefore we consider the
following metric:

84 D. He et al.

accuracy(R,O) =

∑
i∈E,j∈E F (Ri,j , Oi,j)

|E|2

F (Ri,j , Oi,j) =

{
1 if Ri,j = Oi,j

0 otherwise

where R is the reconstructed pedigree, O is the original pedigree, E is the set of
extant individuals, |E| is the number of extant individuals, Ri,j is the distance
of individual i and j in pedigree R and Ri,j = ∞ if i, j are not connected in
the pedigree graph. Notice if there are multiple paths between i and j in R, we
select the shortest path. Therefore in this metric, we only compare the distance
of extant individuals. If the distance between a pair of extant individuals in two
pedigrees are the same (or two individuals are not connected in both pedigrees
as the pedigrees are not high enough), we consider the reconstruction correct for
this pair.

3 Experimental Results

We use the simulator from [7] to simulate the pedigrees. Instead of genotype data,
we simulate haplotypes directly. The haplotypes of the individuals are generated
according to the Wright-Fisher Model [11] with monogamy. The model takes
parameters for a fixed populations size, a Poisson number of offspring and a
number of generations (or the height of pedigree). We consider identical regions
of length greater than 1Mb as IBD regions. We only compare our algorithm
IPED with COP and CIP as the pedigree size in our simulation is relatively big
and can not be handled by other algorithms. All the experiments are done on a
2.4GHz Intel Dual Core machine with 4G memory.

3.1 Outbreeding Simulation

We first test the outbreeding case. In the Wright-Fisher simulation, we fix the
average number of children of each founder as 3, the individual of each generation
is 20 and we vary the height of the pedigree. Notice according to the Wright-
Fisher model, the number of individuals simulated each generation may not be
20. We compare the accuracy of COP and IPED. We randomly simulate 10
pedigrees for each parameter setting and show the averaged accuracy in Table 1.
We can see that generally the accuracy drops as the generation and family size
increase. IPED achieves slightly better results for outbreeding cases compared to
COP. Also IPED is very fast, comparable to COP. For all different generations,
IPED finishes in less than one second.

Next we show that COP algorithm is affected by the score threshold. As the
empirically determined threshold is 0.7 in the work of [7], we vary the score
threshold as 0.7 and 0.9. We show the results in Table 2. As we can see, the
performance of COP varies with different thresholds. Our algorithm IPED, on
the contrary has the advantage of not relying on any threshold.

IPED: Inheritance Path Based Pedigree Reconstruction Algorithm 85

Table 1. Outbreeding Accuracy for IPED and COP. Average number of children of
each founder is 3. The number of individuals for each generation is 20. We vary the
height of the pedigree.

Height Family Size IPED COP

g = 3 52 0.966 0.955

g = 4 84 0.782 0.751

g = 5 144 0.831 0.836

g = 6 266 0.78 0.79

g = 7 384 0.706 0.655

g = 8 860 0.617 0.64

Table 2. Outbreeding Accuracy for COP with different test score thresholds. Average
number of children of each family is 3. The number of individuals for each generation
is 20. We vary the height of the pedigree.

Height COP (0.7) COP (0.9)

g = 4 0.905 0.89

g = 5 0.77 0.816

g = 6 0.874 0.895

g = 7 0.684 0.605

3.2 Inbreeding Simulation

Next we test the inbreeding case. As the CIP algorithm is very inefficient for
inbreeding case, even for small pedigree it takes a long time and most often just
simply crashes, we only compare our algorithm with CIP for pedigrees of height
3, with family size 40. IPED achieves an average accuracy of 0.91 while CIP
achieves an average accuracy of 0.902 on 10 randomly simulated pedigrees.

Then we compare our algorithm with COP, which is aimed for outbreeding
case, as it is able to finish fast on the simulated data sets. When COP is applied
to a pedigree with inbreeding, it simply assumes there is only outbreeding in the
pedigree.

We first fix the average number of children as 3, the individual of each gen-
eration is 20 and we vary the height of the pedigree. We show the averaged
accuracy of IPED and COP in Table 3. We can see that for all generations,
IPED achieves better results consistently. The accuracy generally drops for both
methods. When the generation number is small, such as 3 and 4, the perfor-
mances of IPED and COP are similar. However, as the pedigree gets bigger
and more complicated, our algorithm significantly outperforms COP, which is
reasonable as COP doesn’t consider inbreeding. The algorithm CIP does con-
sider inbreeding but it is not able to handle pedigrees of this size. IPED, on the
contrary, is able to finish in just a few seconds for all parameter settings.

Next we show the performance of both algorithms for different family sizes.
We vary the number of individuals of each generation as 20, 40 and 60. We
set the generation number as 6. We show the averaged results from 10 random

86 D. He et al.

Table 3. Inbreeding Accuracy of IPED and COP for different pedigree heights. Average
number of children of each family is 3. The number of each generation is 20. We vary
the height of the pedigree.

Height Family Size IPED COP improvement

g = 3 50 0.93 0.924 0.6%

g = 4 62 0.722 0.715 0.9%

g = 5 74 0.689 0.605 13.9%

g = 6 88 0.65 0.446 45.7%

g = 7 94 0.599 0.335 78.8%

g = 8 110 0.533 0.297 79.5%

Table 4. Inbreeding Accuracy of IPED and COP for different population size. Average
number of children of each family is 3. We vary the number of individual for each
generation used in the Wright-Fisher model as 20, 40, 60.

Number of Individual Family Size IPED COP

S = 20 88 0.65 0.446

S = 40 156 0.66 0.55

S = 60 300 0.631 0.572

simulations in Table 4. We can see for all family sizes, our method achieves
better accuracies, and the accuracies remain similar to each other, indicating
the performance of our method is very stable w.r.t the size of the pedigree.
Again, IPED is very fast and finishes in a few seconds for all datasets.

Finally we simulate a set of deep pedigrees and show the accuracy and running
time of our algorithm in Table 5. As we can see, although the accuracy of IPED
is relatively low, it is still a few times better than that of COP, the only existing
algorithm that is able to handle such large pedigrees. In addition, IPED is faster
than COP.

Table 5. Inbreeding Accuracy of IPED and COP for different family size. Average
number of children of each family is 3.

Family Size Generation IPED COP IPED running time (.s) COP running time (.s)

260 10 0.365 0.125 7 13

340 10 0.227 0.08 14 193

4 Conclusions

We proposed a very efficient algorithm IPED for pedigree reconstruction using
genotype data. Our method is based on the idea of inheritance path where the
time-consuming sampling can be avoided. A dynamic programming algorithm is
developed to avoid redundant computation during the generation-by-generation

IPED: Inheritance Path Based Pedigree Reconstruction Algorithm 87

reconstruction process. We show our method is much more efficient than the
state-of-the-art methods especially when inbreeding is involved in the pedigree.
To our knowledge it is the first algorithm that is able to reconstruct pedigrees
with inbreeding containing hundreds of individuals with tens of generations. Our
algorithm still does not consider all possible complicated cases in pedigrees, such
as half-siblings. Also it reconstructs pedigree only from the extant individuals.
When the genotype of the internal individuals are known, it is helpful to use all
such information. We would like to address these problems in our future work.

Acknowledgement. The authors would like to thank Bonnie Kirkpatrick for
her help on the pedigree simulation.

References

1. Abecasis, G.R., Cherny, S.S., Cookson, W.O., Cardon, L.R.: Merlin-rapid analysis
of dense genetic maps using sparse gene flow trees. Nature Genetics 30(1), 97–101
(2002)

2. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM 16(9), 575–577 (1973)

3. Browning, B.L., Browning, S.R.: A fast, powerful method for detecting identity by
descent. The American Journal of Human Genetics 88(2), 173–182 (2011)

4. Donnelly, K.P.: The probability that related individuals share some section of
genome identical by descent. Theoretical Population Biology 23(1), 34–63 (1983)

5. Elston, R.C., Stewart, J.: A general model for the genetic analysis of pedigree data.
Human Heredity 21(6), 523–542 (1971)

6. Fishelson, M., Dovgolevsky, N., Geiger, D.: Maximum likelihood haplotyping for
general pedigrees. Human Heredity 59(1), 41–60 (2005)

7. Kirkpatrick, B., Li, S., Karp, R., Halperin, E.: Pedigree reconstruction using iden-
tity by descent. Journal of Computational Biology 18(3), 1181–1193 (2011)

8. Kirkpatrick, B., Reshef, Y., Finucane, H., Jiang, H., Zhu, B., Karp, R.M.: Com-
paring pedigree graphs. Arxiv preprint arXiv:1009.0909 (2010)

9. Lander, E.S., Green, P.: Construction of multilocus genetic linkage maps in humans.
Proceedings of the National Academy of Sciences 84(8), 2363 (1987)

10. Li, X., Yin, X., Li, J.: Efficient identification of identical-by-descent status in pedi-
grees with many untyped individuals. Bioinformatics 26(12), i191–i198 (2010)

11. Press, W.H.: Wright-fisher models, approximations, and minimum increments of
evolution (2011)

12. Sobel, E., Lange, K.: Descent graphs in pedigree analysis: applications to haplo-
typing, location scores, and marker-sharing statistics. American Journal of Human
Genetics 58(6), 1323 (1996)

13. Thatte, B.D., Steel, M.: Reconstructing pedigrees: A stochastic perspective. Jour-
nal of Theoretical Biology 251(3), 440–449 (2008)

14. Thompson, E.A.: Pedigree analysis in human genetics. Johns Hopkins University
Press, Baltimore (1986)

	IPED: Inheritance Path Based Pedigree Reconstruction Algorithm Using Genotype Data
	Introduction
	Methods
	Pedigrees
	Metrics to Evaluate the Relationship of a Pair of Individuals
	IPED: Inheritance Path Based Pedigree Reconstruction Algorithm
	Creating Parents
	Performance Evaluation

	Experimental Results
	Outbreeding Simulation
	Inbreeding Simulation

	Conclusions
	References

