M{(Searchmg Genomic Sequences

e Searching for a string of length m in a text of
length n

* Indexing strings with trees

— Keyword tree O(n) construction, O(m) search
— Suffix tree O(m)

e Suffix Arrays as a practical alternative to Suffix tree
O(logn)

* Burrows-Wheeler transform, back to O(m)

* Atree for representing a “dictionary” of terms
Merges common prefixes into a single path

Example:

— MISS

— mississippi
— mist

— mister

— sister

— Sippy

2/12/14 2

* Queries supported:
Does keyword, k, appear in my text?

— missstep
— sip

e Searching via
“Threading”

e Useful for spell
checking, but hashing
is preferred

* Not good for how many words contain “sis”

2/12/14

. Suffix Trees

* A compressed keyword tree of suffixes from a single string

 Compressed by
collapsing all ;
nodes with out- I
degree of one

fh/ssiss io pig

S

* Leaf nodes are
labeled by the
starting location
of the suffix that
terminates there

* Note that we now add an
end-of-string character ‘S’

2/12/14

SSipp, s

o
gsi DI

ippi$
/Sa:

Qb/ ¢
D

mississippi$
ississippi$
ssissippi$
sissippi$
issippi$
ssippid
sippi$
ippi$

ppid

. pi$

10. i$

11. %

©COE®NOORWN—~O

* How many leaves in a text of length n?

e Given a suffix tree
for a text. ?
How long to S
determine if a
substring of length n
occurs in the text?

S

 Can | find how many
occurrences of a substring,
and where?

2/12/14

mississippi$
ississippi$
ssissippi$
sissippi$
issippi$
ssippid
sippi$
ippi$

ppid

. pi$

10. i$

11.$

©COE®NOORWN—~O

. How much storage?

2 0. mississippi$
— Just for the edge strings O(n?) 1. ississinpi$
— Trick: Rather than ; 2. ssissippi$
) i 3. sissippid
storing an Disissny 4. issippi$
actual string at P 5. ssippi$
s 6. sippi$
each edge, we can 7. ippi$
instead store 2 integer g- P%ﬁ
|
offsets into the original 10. ,93
11. $

text

* |n practice the storage overhead of Suffix Trees is too
high, O(n) vertices with data and O(n) edges with
associated data

2/12/14

* There exists a depth-first traversal that corresponds

to lexigraphical ordering (alphabetizing) all suffixes

2/12/14

1.9
10. i$

7.

NOWo ®OOo =~H

ippi$
issippi$
ississippi$
mississippi$
pi$

ppid

sippi$
sissippi$
ssippi$
ssissippi$

ipp

i

* One could exploit this property to construct a Suffix
Tree

— Make a list of all suffixes: O(n)
— Sort them: O(n? log n) $

— Traverse the list from

ppi$

Ssi /$

beginning to end while

threading each suffix into

the tree created so far, when

the suffix deviates from a

known path in the tree, add a new
node with a path to a leaf.

Q‘\%
sti ppi$

ippi$

/Sar
S ‘.‘ o
5

* There is a faster O(m) algorithm
by Ukkonen

2/12/14

11. %

10.i$

ippi$
issippi$
ississippi$
mississippi$
pi$

ppi$
sippi$
sissippi$
ssippi$
ssissippi$

NOAWROO BN

Sorting however did capture important aspects of the suffix
trees structure

A sorted list of tree-path traversals, our sorted list, can be
considered a “compressed”

version of a suffix tree. - s
Save only the index to ””Sst;,bp,$ &
the beginning of each suffix : S i

'O/;X.

1,10,7,4,1,0,9,8,6, 3,5, 2 5
i Ssippi$

ippi$

e Key: Argsort(text): returns the

indices of the sorted elements of a text

2/12/14

* One of the smallest Python functions yet:

def argsort(text):
return sorted(range(len(text)), cmp=lambda 1i,j: -1 if text[i:] < text[j:] else 1)

print argsort("mississippi$")

$ python suffixarray.py
11, 1e, 7, 4, 1, 0, 9, 8, 6, 3, 5, 2]

 What types of queries can be made from this
“compressed” form of a suffix tree

* We call this a “Suffix Array”

2/12/14 10

Has similar capabilities toa Sufﬁx Tree
Does ‘sip” occur in “mississippi”?

How many times does ‘is’ occur?

How many ‘i’’s?

What is the longest repeated
subsequence?

Given a suffix array for a sequence.
How long to determine if a

pattern of length m occurs in

the sequence?

1.9
10. i$

7.

NOWo oo ~A

ippi$
issippi$
ississippi$
mississippi$
pi$

ppi$

sippi$
sissippi$
ssippi$
ssissippi$

* Functions to find the first and last occurrence of a pattern

def findFirst(pattern, text, sfa):
""" Finds the index of the first occurrence of pattern in the suffix array
hi = len(text)
lo =0
while (lo < hi):
mid = (lo+hi)//2
if (pattern > text[sfa[mid]:]):
lo =mid + 1
else:
hi = mid
return lo

nmman

def findLast(pattern, text, sfa):
""" Finds the index of the last occurrence of pattern in the suffix array
hi len(text)
lo =0
m = len(pattern)
while (lo < hi):
mid = (lo+hi)//2
i = sfa[mid]
if (pattern >= text[i:i+m]):
lo =mid + 1
else:
hi = mid
return lo-1

2/12/14 12

@ﬂé:% Augmenting Suffix Arrays

* Itis possible to augment a sufﬁx array to facilitate convertmg
it into a suffix tree

e Longest Common Prefix, (Icp)

— Note than branches, and, hence, interior nodes if needed are
introduced immediately following . 1.§
a shared prefix of two 10.1%

i 7. ippi$
adjacent suffix array entries Mssise. » | 4. issippi$
lcp = Ppig ppi$ 1. ississippi$

5 cp=0 P $Sippig 0. mississippi$

is lcp=1 s 9. pi$

ippi$ lcp=1 8. ppis

... lcp = S 6. sippi$

@plf’ ' cp=4 _ g‘;i$ 3. sissippi$

ississippiS lcp=0 5. ssippi$

mississippiS lcp=0 ippis 2. ssissippi$

SS/ o

* If we store the Icp along with the suffix
array it is a simple matter to reconstruct and traverse the

corresponding Suffix Tree
2/12/14 13

* There is another trick for ﬁndmg patterns in a text

string, it comes from a rather odd remapping of the

original text called a “Burrows-Wheeler Transform”
or BWT.

* BWTs have a long history. They were invented back in
the 1980s as a technique for improving lossless
compression. BWTs have recently been rediscovered
and used for DNA sequence alignments. Most

notably by the Bowtie and BWA programs for
sequence alignments.

. Before descrlbmg the BWT, we need to deﬁne
the notion of Rotating a string. The idea is
simple, a rotation of i moves the prefix, to the
string’s end making it a suffix.

Rotate(“tar
Rotate(“tar
Rotate(“tar

nee
nee

nee

S” 3) 2 “heelStar”
S” 7) = “Starheel”
S” 1) =2 “arheelSt”

BWT (strmg text)
table, = Rotate(text, i) for i = 0..len(text)-1
sort table alphabetically
return (last column of the table)

tarheel$ $tarhedl
arheel$t arheel$t
rheel$ta eel$tarih
heel$tar el$tarhe BTW(“tarheels$”) = “Itherea$”
eel$tarh heel$tdr
el$tarhe 1$tarhde
1$tarhee rheel$ta
$tarheel tarheell$

2/12/14 16

* Once again, this is one of the simpler algorithms that
we’ve seen

def BWT(s):
create a table, with rows of all possible rotations of s
rotation = [s[1:] + s[:1] for 1 in xrange(len(s))]
sort rows alphabetically
rotation.sort()
return (last column of the table)
return "".join([r[-1] for r 1in rotation])

* Input string of length n, output a messed up string of
length n

. A property of any transform IS that there IS no |nformat|on
loss and they are invertible.

AQ ® 3 ® S5+~

2/12/14

1$
ta
he

ce
rh

ar

$t

InverseBWT(string s)
add s as the first column of a table strings

repeat length(s)-1 times:

sort rows of the table alphabetically
add s as the first column of the table
return (row that ends with the 'EOF' character)

1$t
tar
hee
eel
rhe
el$
arh
$ta

1$ta
tarh
heel
eel$
rhee
el$t
arhe
$tar

1$tar
tarhe
heel$
eel$t
rheel
el$ta
arhee
$tarh

1$tarh
tarhee
heel$t
eel$ta
rheel$
el$tar
arheel
$tarhe

1$tarhe
tarheel
heel$ta
eel$tar
rheel$t
el$tarh
arheel$
$tarhee

1$tarhee

tarheel$

heel$tar
eel$tarh
rheel$ta
el$tarhe
arheel$t
$tarheel

18

e A slightly more complicated routine

def inverseBWT(s):
initialize table from s
table = [c for c in s]
repeat length(s) - 1 times
for j in xrange(len(s)-1):
sort rows of the table alphabetically
table.sort()
prepend s as the first column
table = [s[i]+table[1] for 1 in xrange(len(s))]
return (row that ends with the 'EOS' character)
return table[[r[-1] for r in table].index('$')]

2/12/14 19

 ABWTis a “last-first” mapping meaning the ith occurrence of a
character in the first column corresponds to

FM-index

the ith occurrence in the last. ‘
* Also, recall the first column is sorted C[letter][i] = $imps
[P cn (“: Py) 0 1 00000
o BWT(“mississippiS”) =2 “ipssmSpissii 1 p 01000
 Compute from BWT(s) a sorted dictionary ?2) z 8%8%?
of the number of occurrences of each letter 4 m 01012
M (i’ () { /4 () ' 5 $ @1112
C[*][i+1] ={‘S":1, i:4, ‘m’:1, ‘p’:2, ‘s":4 } c b 11112
* Using the last entry it is a simple matter / 1 11122
to find indices of the first occurrence of a S z ggg
character on the “left” sorted side 10 1 12124
[(7, (7, (. 7, (.7, (.7, 11 1- 13124
0={‘S"0, ‘I:1, ‘m’:5, ‘p":6, 's":8 } 14124
O[letter] = 01568

2/12/14

20

* Find “iss” in ”mississippi”

* Searches for patterns take place

in reverse order gLetterlt]
(last character to first) ;
e Use the Oindexto ;
find the range of g
entries starting with 7
the last character 3
10
11

| ={‘$:0, i:1, ‘m”:5, ‘p’:6, ‘s’:8 }

2/12/14

O[letter]

e N AT A 0D T

$imps
00000
01000
01010
01011
01012
01112
11112
11122
12122
12123
12124
13124
14124

= 01568

21

. Th|s IS done usmg the FI\/Ilndex as foIIows
def find(pattern, FMindex):

lo =0
hi = len(Fmindex) C[letter][i] = $imps
for 1 in reversed(pattern): 0 1 00000
lo = O[1] + C[lo][1] 1 p 01000
hi = O[1] + C[hi][1] 2 s 01010
return lo, hi 3 s 01011
4 1012
find(“iss”, Fmindex) 5 g 81?12
lo@, h1i0 = 0, 12 6 p 11112
lol = O[‘s’] + C[0][‘s’] =8 + 0 = 8 / 1 11122
hil = O[‘s’] + C[12][‘s’] =8 + 4 =12 8 s 12122
lo2 = O[*s’] + C[8][‘s’] =8 +2=10 s e
hi2 = O[§ 1 + C[12][§ 1=8+4=12 11 i 13124
lo3 = O[‘}’] + C[10][‘1’] =1 +2 =3 14124
hi3 = O[‘1’] + C[12][‘1’] =1+ 4 =5 O[letter] = 01568

2/12/14

* The Search algorithm returns the indices of matches within a
suffix array that is implicitly represented by the BWT

* We can recover any suffix
array entry by also using the
FM-index

e Recall at this point we only
have access to the BWT
(shown in black) and the
FMindex (Shown in red
and green)

2/12/14

=

C[letter][1i]

PO WOWOoCLO~NOUIAPWNES

O[letter]

e N AT A 0D T

$imps
00000
01000
01010
01011
01012
01112
11112
11122
12122
12123
12124
13124
14124

= 01568

23

* The ith entry of the “hidden” Suffix Array can be found as follows:

def suffix(i, Fmindex, bwt):
result = ¢’
j=1
while True:
j = O[bwt[3]] + C[31[bwt[3]1]
result = bwt[j] + result
if (1 == j):
break
return result

suffix(3, Fmindex, bwt)

)

j =0[s’] + C[3][‘s’] = 8 + 1; result = ‘s

Jj =0[s’] + C[9][‘s’] = 8 + 3; result = ‘ss’

j =0[‘1’] + C[11][‘1’] = 1 + 3; result = ‘iss’
j=0['mM] + C[4][‘'m’] =5 + @; result = ‘miss’

j =0[%] + C[5JL‘$’] = 0 + 0; result = ‘$miss’

j =0[‘1’] + C[@][‘1’] = 1 + @; result = “i%$miss’
j =0[‘p’] + C[1][‘p’] = 6 + @; result = ‘pi%miss’

2/12/14

C[letter][1i]

PO WOWOoCLO~NOUIAPWNES

=

e N AT A 0D T

O[letter] =

$imps
00000
01000
01010
01011
01012
01112
11112
11122
12122
12123
12124
13124
14124
01568

24

suffix(3, Fmindex, bwt)

]
J
]
j
]
]

* The ith entry of the “hidden” Suffix Array can be found as follows:

def suffix(i, Fmindex, bwt):

result = ¢’
j =i
while True:

j = Ofbwt[j1] + C[j1[bwt[j]]
result = bwt[j] + result

if (i = j):

break
return result

(continued)

= O[‘p’] + C[11L*p’]

] = 0[‘p’] + C[6][*p’]

= 0[“1’] + CL7IL*i’]

=0 + 0,
=0+ 1;

1+ 1;

= 0[‘s’] + C[2][‘s’] = 8 + O;

= 0[‘s’] + C[8][‘s’] = 8 + 2;
= 0[‘1’] + C[1Q][‘i’] = 1 + 2; result = ‘issippi$miss’

2/12/14

C[letter][1] =
) 1
1 P
2 S
3 S
4 m
5 $
6 p
7 1
result = ‘pi%miss’ 8 S
result = ‘ppi$miss’ 9 S
result = ‘ippi$miss’ 10 1
result = ‘sippi$miss’1ll 1

result = ‘ssippi$miss’

O[letter] =

$imps
00000
01000
01010
01011
01012
01112
11112
11122
12122
12123
12124
13124
14124
01568

25

Searching for a pattern, p, in a BWT requires
O(|p|) steps (same as Suffix Tree!)

Recovering any suffix from the implicit suffix tree requires
O(n) steps, where n is the length of the BWT encoded string

There is actually yet another index that allows one to find
prefixes, r, of suffixes in O(|r|)

The largest cost associated with the BWT is constructing and
storing the FMindex. It can be built in O(|n|) steps, and
stored in O(|Z]| |n|) memory, where X is the alphabet size

The FM-index can be sampled (not every entry needs to be
computed), with the missing entries filled in on the fly

. Query Power (Blg iS good)
— BWTs support the fewest query types of these

data structs

— Suffix Trees perform
a variety of
gueries
in O(m)

Augmented Suffix Arrays

2/12/14 27

 Memory Footprint (SmaII is good)
— BWTs compress very well on real data

— Difficult to store
a full suffix
tree for an
entire
genome

Augmented Suffix Arrays

2/12/14

28

