

Pedigree and Genotype

- Genotype
- Allele States
- Inherited Allele States

Diploidy

- Ploidy is the number of chromosome sets in a cell's nucleus.
- Cells with a ploidy of two are called diploid.
- Generally, one chromosome set is inherited from mom and the other from pop.
- Nearly all mammals are diploid

Genotype

\text{MODESSANTESS

- Genotype is the genetic state of an organism
- Genotyping decomposes genotype into one or more component alleles (genetic state variables)
- Since diploid organisms
 have two homologous
 copies of their state,
 genotyping provides
 pairs of alleles
- Genotyping can be in terms of any genetic feature including DNA fragment size,

Microsatellite, Single Nucleotide Polymorphisms, repeat copy number, insertions, deletions, ...

Binary Alleles

- Most Alleles come in two variants (e.g. wild, mutant)
- We will consider binary alleles as having one of two binary states 0 or 1
- And a diploid organism has two alleles which can be in one of 3 states: [(0,0), (0,1), (1,1)]
- Sometimes denoted: [0,1,2]

Note: For now we assume the chromosome origin of each order is unknown, thus $(0,1) \equiv (1,0)$

Allele Types

- An organism is homozygous when the same allele is present on all homologous chromosomes.
- A diploid organism is
 heterozygous when it has
 different alleles on its
 homologous chromosomes.
- A chromosome in a diploid organism is hemizygous when only one copy is present (e.g. X in males)

Allele-type notation:

Homozygous: AA or aa

Heterozygous: Aa

Hemizygous: A or a

Inherited Allele States

 Punnett squares: A diagram representing all possible outcomes of a cross.

	Α	а	
Α	AA	Aa	
а	Aa	aa	
	Α	а	
Α	AA	Aa	
Α	АА	Aa	

	а	a	
Α	Aa	Aa	
Α	Aa	Aa	
	Α	Α	
————	A	A	

Genotype Phasing

- Phasing addresses questions of allele origin
- In other words, which allele was inherited from mom and which was inherited from pop
- This is a difficult problem given only a single genotype, but it becomes almost trivial when given a Trio pedigree.

Trio Cases

 P_{0}

Maternal Allele	Paternal Allele	Child's Allele	Maternal Contribution	Paternal Contribution
AA	AA	AA	А	А
AA	aa	Aa	А	а
Aa	AA	Aa	а	А
Aa	AA	AA	А	А
AA	Aa	Aa	А	а
AA	Aa	AA	А	А
Aa	Aa	AA	А	А
Aa	Aa	aa	а	а
Aa	Aa	Aa	?	,

Concrete Example

- Consider the pedigree given last lecture
 - Genotypes are available on-line
 - Goto lecture web page for support
 - Before the next class meeting write a phasing algorithm
 - Rewrite Ordered Alleles
 - Use lower case to indicate unphased alleles
 - How to treat No-Calls (impute or ignore)

Next Time

- Using allele sequence to infer missing phase state
- Recombination
- Mapping haplotype origin
- Inference in non-Trio relationships