

Comp 790-087

Computational Genetics

- Administrative Details
- Course Overview
- Simple Genetics

Course overview

 \mathbf{p}

Synopsis

- Graduate-level project course
- Guided readings, discussions,
 in-class exercises, final projects and write-up
- We will probably move to SN325 (will meet here next week)

Website

— To appear at: http://www.csbio.unc.edu/mcmillan/index.py?run=Courses.Comp790S14

Course Grading

 Class Participation 	10%
 Research Paper Presentation 	20%
Project Proposal	20%
 Final Project & Write-up 	50%

Syllabus

\mathbf{p}

- Part 1. Background Topics (1/3) each student will contribute to a shared s/w library (bring your laptops, preloaded with Python 2.7)
 - Genotyping and Sequencing
 - Recombination, phasing, genome mapping
 - Population structure and coalescent theory
 - Selection, evolution, and phylogenetic trees
 - Epigenetics, imprinting, chromatin structure, and X inactivation
- Part 2. Paper Presentations (1/3) each student will be assigned two papers One
 as a presenter, the second as a discussant
 - Haplotype assembly from sequence data
 - De novo genome and transcriptome assembly
 - Sequence archival, comparative genomic analysis, genomic compression, and query
 - Detecting structural variation using sequence and genotype data
 - Inferring chromatin structure using sequence and methylation data
- Part 3. Project Proposals (1/3)

Do you want to be genotyped?

- - I have 10 donated kits and will get more if needed
 - Analyze yourself using the tools we develop
 - Contribute your genotypes if you want others to use
 - You must be signed up (not auditing) to be genotyped
 - Who in this class is your closest relative?

It's about genes

 \mathcal{A}

- Genetics is most clearly understood by considering its subject to be genes rather than organisms
- Organisms are merely vessels for assuring the survival of genes
- The central objective of a gene is to propagate itself
- Successful genes live on long after their host organism

"[Genes] that survived were the ones that built survival machines for themselves to live in. But making a living got steadily harder as new rivals arose with better and more effective survivial machines. Survival machines got bigger and more eloborate, and the process was cumulative and progressive..."

-- Dawkins,

The Selfish Gene

Top-down and bottom-up

Genetics results from inheritance

Ancestral properties can be inferred from extant

populations

Exercise

Answer the following

- How many distinct Y chromosomes are in this pedigree and who shares them?
- How many distinct Mitochondrial DNAs are in this pedigree and who shares them?
- Explain how you might reconstruct the paternal X chromosome of siblings B, C, and D?
- What fraction of DNA is shared between G and H?
- What fraction of DNA is shared by H and I?
- Suppose that the samples, P, A, D, G, and I have a common phenotype not present in the remainder. Which two samples are most helpful for localizing the genetic component?

Population genetics

- Population genetics differs from classical genetics
 - Analysis rather than synthesis
 - Depends on models, which attempt to explain observations
 - Less emphasis on Darwin's natural selection
- Considers population dynamics
 - Isolation
 - Bottlenecks

Why computer science

- Classically, genetics, both top-down (classical) and bottom-up (population) have focused on mathematical/statistical models
- Access to genetics data has recently outpaced our capability to process, interpret, and analyze it
- As model complexity increases, it becomes harder to find closed-form solutions
- Relies more and more on computational modeling to infer structure, account for noise etc.

Wright-Fisher model

- One of the first, and simplest models of population genealogies was introduced by Wright (1931) and Fisher (1930).
- Model emphasizes transmission of genes from one generation to the next
- For simplicity we'll first focus on a fixed population size, each with a distinct gene variant

Simple haploid model

Rules

- Antecedent genes are chosen randomly, with replacement, from their parental generation
- No selection
- Fixed population size

What will this population eventually look like?

Assumptions of Wright/Fisher

- Discrete and non-overlapping generations
- Haploid individuals
- Populations size is constant
- All individuals are equally fit
- No population of social structure
- Genes segregate independently

Some Graphical Abstractions

- - Replace letters with colors
 - Draw lineages
 - Sort topologically

Repeats

Every population results in just one gene

Onset of uniformity

- - 10000 trials
 - Mode = 11 (616)
 - Mean = 17.5

Next Time

- Genetics Background
 - Inbreeding
 - Coefficient of relatedness
 - Diploidy
 - Recombination
 - Phasing
- Bring your laptops loaded with Python 2.7
 - We will analyze real genotypes
- A list of recent papers to choose from