

Hadoop:
A Cursory Introduction

Erik Scott
escott@renci.org

What is Hadoop?

●An Open-Source reimplementation of Google's
Map/Reduce paper

●A Distributed Filesystem and a Runtime for
implementing Map/Reduce algorithms

Hadoop's goals, quickly stated

● Massive Parallelism – 4 nodes to 9000 nodes.
● Does the housekeeping for us – starts jobs,

distributes workload evenly, handles failures.
● Gives up generality in exchange for simple,

uniform programming problem.
● ...But still rich enough to do a lot of useful work.

Map/Reduce

● Grossly simplified:
– First, do some sort of transformation on every item

to process

– Then, collapse all those results into useful, smaller
aggregates.

– You've probably seen this in a Survey Of
Languages course – Map/Reduce dates from the
early Lisp days.

Map/Reduce Definitions: Map()

● Map (key1, value1) -> list (key2, value2)
● Or in prosaic terms, “Take a whole bunch of

values (“value1” items), and optionally their keys
(“key1” items) and add some result of that to a
list of new keys and values (“key2 and value2”)
items.

● Strictly speaking, this is optional – it's OK to
deliberately ignore records (ex: throw out
obviously bad data)

Map/Reduce Definitions: Reduce()

● Reduce (key2, list(values2)) -> list(values3)
● In other words, “For every unique value of key2,

take all of the associated “values2” items and
compute some value “values3”, and save that
result as a record in the final result.

Reduce(), cont.

● Hadoop allows a Reduce() function to emit a
key and a value. Google's paper uses only the
value, formally, but their examples have cases
where both are used.

● Reduce(key2, list(values2)) -> list (key3,
value3)

● You're allowed to emit empty keys for key3, so
it can be just a plain list.

We desperately need an example!

Given a file containing two columns (roomNumber and studentID),
produce a file containing the number of students in each room.

Broughton1401 30040

Dabney201 48410

Broughton1401 31066

Broughton1401 48410

TompkinsG113 48410

Dabney201 30040

The Map() step

For each record <key1, value1>, emit the key back out and a “1”.
(This is practically idiomatic: if you see people emitting a “1”, that
usually means they're counting something.)

Broughton1401 1

Dabney201 1

Broughton1401 1

Broughton1401 1

TompkinsG113 1

Dabney201 1

Then the Hadoop runtime does
some sorting and shuffling...

The previous list gets combined by keys, and the
associated values get strung out into lists:

Broughton1401 1,1,1

Dabney201 1,1

TompkinsG113 1

Finally, we Reduce()

The Reduce(key2, list(value2)) method is called,
and it in turn emits rows of the form <key2,
value3>, where value3 is the number of list items
in list(value2).

Broughton1401 3

Dabney201 2

TompkinsG113 1

Dataflow (for one reducer)

From Hadoop: The Definitive Guide, by Tom White

Dataflow for many reducers

From Hadoop: The Definitive Guide, by Tom White

Some Implications of Map/Reduce

● Each input record is processed fully independently of any
other record.

● Because of this, input data can be processed in parallel. If
we have as many compute nodes as input records, we
could theoretically run every Map() for every record in
parallel.

● Because the Shuffle/Sort groups items by key, and
guarantees that every record with a given key value gets
coalesced into one input <key2,list(value2)> pair, we can
often have huge parallelism in reducers, as well.

There are some drawbacks, though:

● Every record has to be mapped independently of every other
record, and we don't even know the order they will run in.

– This means sliding windows, signal processing, or particularly complex
models, for instance, have to be pushed back into the reduce step (unless
we're clever and denormalize our data rather severely)

– Acting on two independent inputs can be done by holding one in RAM, if
it's small enough.

● The Shuffle/Sort step is implemented as an optional hash followed
by a merge sort, and for simple mappers the Shuffle/Sort can take
longer than the map.

Actual Code for First Example
public class StudentsPerRoom {

public static void main(String[] args) throws IOException {

 if (args.length != 2) {

 System.err.println("Usage: StudentsPerRoom <input path> <output path>");

 System.exit(-1);

 }

 JobConf conf = new JobConf(StudentsPerRoom.class);

 conf.setJobName("StudentsPerRoom");

 FileInputFormat.addInputPath(conf, new Path(args[0]));

 FileOutputFormat.setOutputPath(conf, new Path(args[1]));

 conf.setMapperClass(StudentsPerRoomMapper.class);

 conf.setReducerClass(StudentsPerRoomReducer.class);

 conf.setOutputKeyClass(Text.class);

 conf.setOutputValueClass(IntWritable.class);

 JobClient.runJob(conf);

 }

}

First Example Mapper
public class StudentsPerRoomMapper extends MapReduceBase implements Mapper<LongWritable,
Text, Text, IntWritable> {

 private Text room = new Text();

 private final static IntWritable one = new IntWritable(1);

 public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter
reporter)

 throws IOException {

 String line =value.toString();

 StringTokenizer tokenizer = new StringTokenizer(line);

 if (tokenizer.hasMoreTokens()) {

 room.set(tokenizer.nextToken());

 output.collect(room, one);

 }

 }

}

First Example Reducer
public class StudentsPerRoomReducer extends MapReduceBase

 implements Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterator<IntWritable> values,

 OutputCollector<Text, IntWritable> output, Reporter reporter)

 throws IOException {

 int sum = 0;

 while (values.hasNext()) {

 sum += values.next().get();

 }

 output.collect(key, new IntWritable(sum));

 }

}

Hadoop Streaming

● Writing Map/Reduce jobs in Java is very
flexible, but not terribly productive.

● Wouldn't it be nice if we could write Map() and
Reduce() functions in friendlier languages, like
Python? Or Shell Scripts? Or FORTRAN?

● Hadoop Streaming lets you write Map and
Reduce functions that read from standard input
and write to standard output.

Streaming Mapper, in Python

#!/usr/bin/python

import re

import sys

for line in sys.stdin:

 vals = line.strip()

 key = vals.split(' ')[0]

 print key, "\t", "1"

Streaming Reducer

#!/usr/bin/python

import re

import sys

(last_key, sum_val) = (None, 0)

for line in sys.stdin:

 (key, val) = line.strip().split("\t")

 if last_key and last_key != key:

 print last_key, "\t", sum_val

 (last_key, sum_val) = (key, int(val))

 else:

 (last_key, sum_val) = (key, sum_val + int(val))

if last_key:

 print last_key, "\t", sum_val

A little bit about HDFS

● Hadoop Distributed Filesystem – slow writes,
sequential writes only, at most one thread
writing, no editing of the file later, but
BRUTALLY fast reads.

● Not a mounted filesystem, like a thumb drive,
but a remote filesystem that acts a more like an
FTP site.

Using HDFS

● hadoop fs -ls

● hadoop fs -put localFile hdfsFile

● hadoop fs -get hdfsFile localFile

● hadoop fs -mkdir hdfsDirName

● etc.

● hadoop fs # no arguments, prints online
help.

HDFS Performance

● Distribution across the network is used to
increase the chances that a Map() function will
run on the same node that the Datanode for its
block is on.

● In other words, increases the odds of moving
the computation to the data (fast), instead of
moving data to the computation (slow)

● Reducers? Not too much we can to help there.

HDFS Performance

● MacBook Pro, 2.5” 320 gig 5400 rpm disk drive:
40 megabytes/sec

● 34 node Hadoop cluster with 10,000 rpm 600
gigabyte 2.5” SAS drives: 500 megabytes/sec

● 300 node Hadoop cluster with 5400 rpm 40
gigabyte 2.5” laptop-grade drives: 1.25
gigabytes/sec.
– Or, reads 100+ million rows per second

Hadoop at Scale

● Lousy for small jobs – you lose the first few
seconds just starting up Java and waiting for
classes to load.

● Very much a batch-oriented system. You could
use it for interactive work, but there is better
stuff for that.

● 2000 nodes is considered a practical upper
limit, though 9000 has been demonstrated.

Apache Pig:

A package for Relational Algebra
on top of Hadoop

Motivation

• Pig is a software package for doing
Relational Algebra very quickly.

• Resembles a Relational Database
(MySQL, Postgres, Oracle...)

• A good way to very rapidly write
Map/Reduce workflows without resorting to
Java.

Projection

• Project (sname, rating) onto S2:

grunt> A = load 's2' using PigStorage(':');

grunt> B = foreach A generate $1, $2;

grunt> dump B;

(yuppy,9)

(lubber,8)

(guppy,5)

(rusty,10)

Selection

• Select rows where rating > 8 from S2

C = filter A by $2 > 8;

Dump C;

(28,yuppy,9,35.0)

(58,rusty,10,35.0)

Compounding selection and
projection

• Another ex: p s
sname rating rating

S
,

(())
>8

2

A = load 's2' using PigStorage(':') as (sid, sname, rating, age);
B = filter A by rating > 8;
C = foreach B generate sname, rating;
dump C;

(yuppy,9)
(rusty,10)

Union

• Union of S1 and S2 – note duplicates!

A = load 's1' using PigStorage(':') as (sid, sname, rating, age);

B = load 's2' using PigStorage(':') as (sid, sname, rating, age);

C = union A, B;

dump C;

(22,dustin,7,45.0)

(31,lubber,8,55.5)

(58,rusty,10,35.0)

(28,yuppy,9,35.0)

(31,lubber,8,55.5)

(44,guppy,5,35.0)

(58,rusty,10,35.0)

Must explicitly remove
duplicates

• DISTINCT

D = distinct C;

dump D;

(22,dustin,7,45.0)

(28,yuppy,9,35.0)

(31,lubber,8,55.5)

(44,guppy,5,35.0)

(58,rusty,10,35.0)

Cross Product

Cross product of S1 and R1:

S1 = load 's1' using PigStorage(':') as (sid:int,
sname:chararray, rating:int, age:float);

R1 = load 'r1' using PigStorage(':') as (sid:int, bid:int,
day:chararray);

CROSSPROD = CROSS S1, R1;

dump CROSSPROD;

(22,dustin,7,45.0,22,101,19961010)

(22,dustin,7,45.0,58,103,19961112)

(31,lubber,8,55.5,22,101,19961010)

(31,lubber,8,55.5,58,103,19961112)

(58,rusty,10,35.0,22,101,19961010)

(58,rusty,10,35.0,58,103,19961112)

Equijoin

S1 = load 's1' using PigStorage(':') as
(sid:int, sname:chararray, rating:int,
age:float);

R1 = load 'r1' using PigStorage(':') as
(sid:int, bid:int, day:chararray);

EJ = join S1 by sid, R1 by sid;

dump EJ;

(22,dustin,7,45.0,22,101,19961010)

(58,rusty,10,35.0,58,103,19961112)

Special Extras in Pig

• Not strictly relational: relations can contain non-
atomic data (even other relations).
– See GROUP, FLATTEN

• Can, like any modern database, execute user-
defined functions (“UDF”s), in this case written in
Java or Python

• Can execute user-defined Java map and reduce
functions inside the Hadoop framework, so these
UDFs can run very quickly in parallel.

Non First Normal Database

• Items need not be the atomic types supported
by pig (int, long, float, double, chararray,
bytearray, boolean), but in fact can be a:
– Tuple – an embedded “row” within a cell.

• ('Poland', 2, 0.66)

– Bag – a collection of tuples (more or less a
“relation”, if you relax the first normal requirement)
• {('Poland', 2), ('Greece'), ('3.14')}

– Map – an associative array
• ['UNC'#'Chapel Hill, NC','NCSU'#'Raleigh, NC']

Coming up next...

• Gee, what if we could combine the brute-
force parallelism of Hadoop with the
elegance, productivity, and convenience of
a declarative programming language like
SQL?

• Well then you'd have Apache Hive...

Hive:
A Relational Database
With a Mostly SQL-like

Language

Motivation

● Hadoop requires Java knowledge
– Yes, there are workarounds, but incomplete

● Pig is better
– But the language is still arcane, and just enough like

SQL to really mess you up.

● Facebook wanted something big and cheap like
Hadoop, but usable by analysts who only knew
SQL.

Hive in a Nutshell

● Stores tables as human-readable flat files, delimited
by “ctrl-A” characters.

● Performs relational algebra mostly like Pig
● Stays much closer to the relational model
● Tuples usually contain atomic values, but can

contain structures, maps, or arrays.
● Front end supports a query parser much like SQL, a

socket interface for remote connections (even
JDBC), and actual support for real metadata.

A worked example in Hive

● Create Tables
● Load data
● Execute Queries
● Save Results

CREATE TABLE

CREATE TABLE enrollment (classID INT, studentID INT);

CREATE TABLE classes (classid INT, course STRING,
section INT);

SHOW TABLES;

OK

enrollment

classes

Time taken: 0.059 seconds, Fetched: 2 row(s)

Loading

load data local inpath
'/home/escott/projects/hiveEx/enrollment.tab'
overwrite into table enrollment;

load data local inpath
'/home/escott/projects/hiveEx/classes.tab'
overwrite into table classes;

Selects

select * from classes;

OK

7 ece201 1

8 ece202 1

9 ece204 13

Time taken: 0.038 seconds, Fetched: 3
row(s)

SELECT with a JOIN

SELECT studentID, course, section
FROM enrollment e
JOIN classes c on (e.classID = c.classID);

OK

4 ece201 1

22 ece201 1

13 ece202 1

19 ece202 1

19 ece204 13

Time taken: 4.528 seconds, Fetched: 5 row(s)

Saving results (and outer join)

CREATE TABLE results (studentID INT,
course STRING, section INT);

INSERT OVERWRITE TABLE results select
studentID, course, section from
enrollment e JOIN classes c on
(e.classID = c.classID);

...and seeing the results

select * from results;

OK

4 ece201 1

22 ece201 1

13 ece202 1

19 ece202 1

19 ece204 13

Time taken: 0.044 seconds, Fetched: 5 row(s)

Aggregate Functions

● Works just like you expect...

SELECT max(classID) from enrollment;

OK

9

Aggregate Functions

● COUNT(), COUNT(DISTINCT)
● SUM()
● AVG()
● MIN()
● MAX()

Other Useful Stuff
You Can Do
With Hadoop

Apache Mahout

● A package of “machine learning” algorithms for
Hadoop

Mahout Algorithm Families

● Recommender Documentation

● Restricted Boltzmann Machines

● K-Means Clustering

● Fuzzy K-Means

● Canopy Clustering

● Mean Shift Clustering

● Hierarchical Clustering

● Dirichlet Process Clustering

● Latent Dirichlet Allocation

● Collocations

● Dimensional Reduction

● Expectation Maximization

●
Gaussian Discriminative Analysis

●
Independent Component Analysis

●
Principal Components Analysis

●
Bayesian

●
Locally Weighted Linear Regression

● Minhash Clustering

● Online Passive Aggressive

● Online Viterbi

● Parallel Viterbi

● RowSimilarityJob

● Spectral Clustering

● Stochastic Singular Value
Decomposition

● Top Down Clustering

●
Support Vector Machines

●
Parallel Frequent Pattern Mining

●
Boosting

●
Collaborative Filtering with ALS-WR

●
Itembased Collaborative Filtering

● Logistic Regression Page:
Neural Network

● Hidden Markov Models

● Random Forests

● Perceptron and Winnow

Apache Giraph

● Graph Traversal and Manipulation
● Developed at Facebook
● More of a programmer's library than a sit-down

interactive tool
● The big, open-source player in parallel

distributed graph databases is Neo4J. It
doesn't use Hadoop...

Apache HBase

● Very high rate of insertions and selections
● For interactive use, not as well suited for batch

processing
● Based strongly on Google's BigTable

IBM's BigSheets

● An interface between Pig and Excel
● ...hence it looks like a spreadsheet.
● ...but has some computational muscle behind it.

SAS's newly-announced partnership

● SAS to work with Hortonworks to connect SAS
to Hadoop.

● Press releases make it sound like adding
Hadoop (Pig? Hive?) as a provider for
SAS/Access.

R

● Revolution Analytics' commercial package to
integrate R and Hadoop.

● RHadoop – open source, free. Installation is...
“tedious”.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

