
Comp 521 – Files and Databases Fall 2014 1

Concurrency Control

Chapter 17

Announcement:
2nd Midterm is

delayed until 11/25

Comp 521 – Files and Databases Fall 2014 2

Conflict Serializable Schedules
!  Recall conflicts (WR, RW, WW) were the cause of

sequential inconsistency
!  Two schedules are conflict equivalent if:

"  Involve the same actions over the same transactions
"  Every pair of conflicting actions is ordered the same way

!  A schedule is conflict serializable if it is conflict
equivalent to some serializable schedule

Comp 521 – Files and Databases Fall 2014 3

Example 1

!  A non-serializable schedule that is also not
conflict serializable:

!  The cycle in the graph reveals the problem.
The output of T1 depends on T2, and vice-
versa.

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

T1 T2
A

B
Precedence graph

Comp 521 – Files and Databases Fall 2014 4

Example 2

!  A serializable schedule that is not conflict serializable:

!  Serializable because it is equiv to
 T1, T2, T3, or T2, T1, T3

!  Not conflict serializable, because the ordering:
 R1(A),W2(A),W1(A),W3(A)
is not consistent with any ordering, but conflict equivalent

!  Importance of this distinction is that it can be proven that
Strict 2PL permits only conflict serializable schedules

T1: R(A), W(A), C
T2: W(A), C
T3: W(A), C

T1

T2

T3

Comp 521 – Files and Databases Fall 2014 5

Review: Strict 2PL
!  Strict Two-phase Locking (Strict 2PL) Protocol:

"  Each Xact must obtain a S (shared) lock on object
before reading, and an X (exclusive) lock on object
before writing.

"  All locks held by a transaction are released when the
transaction completes

"  If an Xact holds an X lock on an object, no other
Xact can get a lock (S or X) on that object.

!  Strict 2PL allows only schedules whose
precedence graph is acyclic (a DAG)

Comp 521 – Files and Databases Fall 2014 6

Two-Phase Locking (2PL)
!  Two-Phase Locking Protocol

"  Each Xact must obtain a S (shared) lock on object before
reading, and an X (exclusive) lock on object before writing.

"  A transaction can release its locks once it has performed its
desired operation (R or W). A transaction cannot request
additional locks once it releases any locks.

"  If an Xact holds an X lock on an object, no other Xact can
get a lock (S or X) on that object.

!  Note: locks can be released before Xact completes (commit/
abort), thus relaxing Strict 2PL. 2PL starts with a “growing”
phase, where locks are requested followed by a “shrinking”
phase, where locks are released

Comp 521 – Files and Databases Fall 2014 7

View Serializability
!  Schedules S1 and S2 are view equivalent if:

"  If Ti reads initial value of A in S1, then Ti also reads
initial value of A in S2

"  If Ti reads value of A written by Tj in S1, then Ti also
reads value of A written by Tj in S2

"  If Ti writes final value of A in S1, then Ti also writes final
value of A in S2

!  Enforcing view serializabiliy is expensive, thus
mainly of theoretical interest

T1: R(A) W(A)
T2: W(A)
T3: W(A)

T1: R(A),W(A)
T2: W(A)
T3: W(A)

Comp 521 – Files and Databases Fall 2014 8

Lock Management
!  Lock and unlock requests are handled by the

database’s lock manager
!  Lock table entry (per table, record, or index):

"  Number of transactions currently holding a lock
"  Type of lock held (shared or exclusive)
"  Pointer to queue of lock requests

!  Locking and unlocking must be atomic
!  Lock upgrades: transaction that holds a shared

lock can be upgraded to hold an exclusive lock

Comp 521 – Files and Databases Fall 2014 9

Deadlocks

! Deadlock: Cycle of transactions waiting
for locks to be released by each other.

! Relatively rare schedules lead to
deadlock

! Two ways of dealing with deadlocks:
"  Deadlock detection
"  Deadlock prevention

Comp 521 – Files and Databases Fall 2014 10

Deadlock Detection
!  Create a waits-for graph:

"  Nodes are transactions
"  Edge from Ti to Tj indicates Ti is waiting

for Tj to release a lock
!  DBMS periodically checks for cycles in the waits-for graph
!  ex: T1: A = f(B), T2: B = g(C) , T3: C = h(A), arriving T1,T3,T2

T1: S(B),R(B), X(A),…
T2: S(C),R(C),X(B),…
T3: S(A),R(A), X(C),…

T1

T2 T3

Comp 521 – Files and Databases Fall 2014 11

Deadlock Detection (Continued)

Example:

T1: S(A), R(A), S(B)…
T2: X(B),W(B) X(C)…
T3: S(C), R(C)
T4: X(B)…

T1 T2

T4 T3

T1 T2

T4 T3

X(A)

Comp 521 – Files and Databases Fall 2014 12

Deadlock Prevention
!  When there is high contention for locks,

detection and aborting can hurt performance
!  Assign priorities (eg. based on timestamps).

Assume Ti wants a lock that Tj holds. Two
policies are possible:
"  Wait-Die: If Ti has higher priority, Ti waits for Tj;

otherwise abort Ti
"  Wound-wait: If Ti has higher priority, abort Tj;

otherwise Ti waits

!  When Ti re-starts, it retains its original
timestamp, thus moves up the priority list

Comp 521 – Files and Databases Fall 2014 13

Multi-Granularity Locks
!  Hard to decide what granularity to lock

(tuples vs. pages vs. tables).
!  Shouldn’t have to decide!
!  Data “containers” are nested:

Tuples

Tables

Pages

Database

contains

Comp 521 – Files and Databases Fall 2014 14

Solution: New Lock Modes, Protocol

!  Allow Xacts to lock at each level, but with a
special protocol using new “intention” locks:

❖  Before locking an item, Xact
 must set “intention locks”
 on all its ancestors.

❖  For unlock, go from specific
 to general (i.e., bottom-up).

❖  SIX mode: Like holding the
 S & IX locks at the same
 time.

-- IS IX

--

IS

IX

√	

√	

√	

√	

 √	

√	

S X

√	

√	

S

X

√	

 √	

√	

√	

√	

√	

 √	

√	

Grant request rules

Comp 521 – Files and Databases Fall 2014 15

Multiple Granularity Lock Protocol

!  Each Xact starts from the root of the hierarchy.
!  To get S or IS lock on a node, must first hold an

IS or IX lock on the node’s.
!  To get X or IX or SIX on a node, must hold IX or

SIX on parent node.
!  Must release locks in bottom-up order.

Protocol is correct in that it is equivalent to directly setting
locks at the leaf levels of the hierarchy.

Comp 521 – Files and Databases Fall 2014 16

Examples

!  T1 scans R, and updates a few tuples:
"  T1 gets an SIX lock on R, then repeatedly gets an S lock on

tuples of R, and occasionally upgrades to X on the tuples.

!  T2 uses an index to read only part of R:
"  T2 gets an IS lock on R, and repeatedly

gets an S lock on tuples of R.

!  T3 reads all of R:
"  T3 gets an S lock on R.
"  OR, T3 could behave like T2; can use

lock escalation to decide which.

-- IS IX

--

IS

IX

√	

√	

√	

√	

 √	

√	

S X

√	

√	

S

X

√	

 √	

√	

√	

√	

√	

 √	

√	

Comp 521 – Files and Databases Fall 2014 17

Dynamic Databases

!  If we relax the assumption that the DB is a
fixed collection of objects, even Strict 2PL will
not assure serializability:
"  T1 locks all pages containing sailor records with

rating = 1, and finds oldest sailor (say, age = 71).
"  Next, T2 inserts a new sailor; rating = 1, age = 96.
"  T2 also deletes oldest sailor with rating = 2 (and,

say, age = 80), and commits.
"  T1 now locks all pages containing sailor records

with rating = 2, and finds oldest (say, age = 63).

!  No consistent DB state where T1 is “correct”!

Comp 521 – Files and Databases Fall 2014 18

The Problem

!  T1 implicitly assumes that it has locked the
set of all sailor records with rating = 1.
"  Assumption only holds if no sailor records are

added while T1 is executing!
"  Need some mechanism to enforce this

assumption. (Index locking and predicate
locking.)

!  Example shows that conflict serializability
guarantees serializability only if the set of
objects is fixed!

Comp 521 – Files and Databases Fall 2014 19

Index Locking

!  If there is a dense index on the rating field
using Alternative (2), T1 should lock the
index page containing the data entries with
rating = 1.
"  If there are no records with rating = 1, T1 must

lock the index page where such a data entry would
be, if it existed!

!  If there is no suitable index, T1 must lock all
pages, and lock the file/table to prevent new
pages from being added, to ensure that no
new records with rating = 1 are added.

r = 1
Data

Index

Comp 521 – Files and Databases Fall 2014 20

Predicate Locking
!  Grant lock on all records that satisfy some

logical predicate, e.g. age > 2*salary.
!  Index locking is a special case of predicate

locking for which an index supports efficient
implementation of the predicate lock.
"  What is the predicate in the sailor example?

!  In general, predicate locking has a lot of
locking overhead.

Comp 521 – Files and Databases Fall 2014 21

Locking in B+ Trees

!  How can we efficiently lock a particular leaf
node?

!  One solution: Ignore the tree structure, just lock
pages while traversing the tree, following 2PL.

!  This has terrible performance!
"  Root node (and many higher level nodes) become

bottlenecks because every tree access begins at the
root.

Comp 521 – Files and Databases Fall 2014 22

Two Useful Observations

!  Higher levels of the tree only direct searches
for leaf pages.

!  For inserts, a node on a path from root to
modified leaf must be locked (in X mode),
only if a split can propagate up to it from the
modified leaf. (Similar point holds w.r.t.
deletes.)

!  We can exploit these observations to design
efficient locking protocols that guarantee
serializability even though they violate 2PL.

Comp 521 – Files and Databases Fall 2014 23

A Simple Tree Locking Algorithm

!  Search: Start at root and go down;
repeatedly, S lock child then unlock parent.

!  Insert/Delete: Start at root and go down,
obtaining X locks as needed. Once child is
locked, check if it is safe:
"  If child is safe, release all locks on ancestors.

!  Safe node: Node such that changes will not
propagate up beyond this node.
"  Inserts: Node is not full.
"  Deletes: Node is not half-empty.

Comp 521 – Files and Databases Fall 2014 24

Example

ROOT
A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1) Search 38*
2) Delete 38*
3) Insert 45*
4) Insert 25*

23

Comp 521 – Files and Databases Fall 2014 25

“Optimistic” 2PL

!  Basic premise: Most Xacts do not contend for
the same object

!  Idea: Make a local modified copy, and get
locks when ready to commit

!  Modified Algorithm:
" Obtain S locks as usual.
" Make changes to private copies of objects.
" Obtain all X locks at end of Xact, make

local writes global, then release all locks.

Comp 521 – Files and Databases Fall 2014 26

Timestamp CC

! Idea: Give each object 2 timestamps and
each transaction a timestamp:
"  read-timestamp (RTS), when it was last read
"  write-timestamp (WTS), when it was last written
"  give each Xact a timestamp (TS) when it begins:

! If action ai of Xact Ti conflicts with action
aj of Xact Tj, and TS(Ti) < TS(Tj), then ai
must occur before aj. Otherwise, abort
violating Xact.

Comp 521 – Files and Databases Fall 2014 27

When Xact T wants to read Object O

!  If TS(T) < WTS(O), this violates timestamp
order of T w.r.t. writer of O.
"  So, abort T and restart it with a new, larger TS. (If

restarted with same TS, T will fail again! Contrast
use of timestamps in 2PL for ddlk prevention.)

!  If TS(T) > WTS(O):
" Allow T to read O.
"  Reset RTS(O) to max(RTS(O), TS(T))

!  Change to RTS(O) on reads must be written to
disk! This and restarts represent overheads.

Comp 521 – Files and Databases Fall 2014 28

When Xact T wants to Write Object O

!  If TS(T) < RTS(O), this violates timestamp order
of T w.r.t. writer of O; abort and restart T.

!  If TS(T) < WTS(O), violates timestamp order of
T w.r.t. writer of O.
"  Thomas Write Rule: We can safely ignore such

outdated writes; need not restart T! (T’s write is
effectively followed by another
write, with no intervening reads.)
Allows some serializable but non
conflict serializable schedules:

!  Else, allow T to write O.

 T1
 T2
R(A)

 W(A)
 Commit

W(A)
Commit

Same result as T1; T2

Comp 521 – Files and Databases Fall 2014 29

Timestamp CC and Recoverability

!  Timestamp CC can be modified
to allow only recoverable
schedules:
"  Buffer all writes until writer commits (but

update WTS(O) when the write is allowed.)
"  Block readers T (where TS(T) > WTS(O)) until

writer of O commits.
!  Similar to writers holding X locks until commit,

but still not quite 2PL.

 T1
 T2
W(A)

 R(A)
 W(B)
 Commit

❖  Unfortunately, unrecoverable
 schedules are allowed:

Comp 521 – Files and Databases Fall 2014 30

Summary
!  There are several lock-based concurrency

control schemes (Strict 2PL, 2PL). Conflicts
between transactions can be detected in the
dependency graph

!  The lock manager keeps track of the locks
issued. Deadlocks can either be prevented or
detected.

!  Naïve locking strategies may have the
phantom problem

Comp 521 – Files and Databases Fall 2014 31

Summary (Contd.)
!  Index locking is common, and affects

performance significantly.
"  Needed when accessing records via index.
"  Needed for locking logical sets of records (index

locking/predicate locking).
!  Tree-structured indexes:

"  Straightforward use of 2PL very inefficient.
!  In practice, better techniques now known; do

record-level, rather than page-level locking.

Comp 521 – Files and Databases Fall 2014 32

Summary (Contd.)
!  Multiple granularity locking reduces the

overhead involved in setting locks for nested
collections of objects (e.g., a file of pages);
should not be confused with tree index locking!

!  Optimistic CC aims to minimize CC overheads
in an ”optimistic” environment where reads are
common and writes are rare.

!  Optimistic CC has its own overheads however;
most real systems use locking.

Comp 521 – Files and Databases Fall 2014 33

Summary (Contd.)
!  Timestamp CC is another alternative to 2PL;

allows some serializable schedules that 2PL
does not (although converse is also true).

!  Ensuring recoverability with Timestamp CC
requires ability to block Xacts, which is similar
to locking.

!  Multiversion Timestamp CC is a variant which
ensures that read-only Xacts are never restarted;
they can always read a suitable older version.
Additional overhead of version maintenance.

